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A systematic fluid theory of nonlinear magnetic island dynamics in conventional

low-β, large aspect-ratio, circular cross-section tokamak plasmas is developed using

an extended-MHD model which incorporates diamagnetic flows, ion gyroviscosity,

fast parallel electron heat transport, the ion sound wave, the drift-wave, and av-

erage magnetic field-line curvature. The model excludes the compressible Alfvén

wave, geodesic field-line curvature, neoclassical effects, and ion Landau damping. A

collisional closure is used for plasma dynamics parallel to the magnetic field. Two

distinct branches of island solutions are found—namely, the “sonic” and “hyper-

sonic” branches. Both branches are investigated analytically, using suitable ordering

schemes, and in each case the problem is reduced to a relatively simple set of nonlin-

ear differential equations which can be solved numerically via iteration. The solution

determines the island phase-velocity, relative to the plasma, and the effect of local

currents on the island stability. Sonic islands are relatively wide, flatten both the

temperature and density profiles, and tend to propagate close to the local ion fluid

velocity. Hypersonic islands, on the other hand, are relatively narrow, only flatten

the temperature profile, radiate drift-acoustic waves, and tend to propagate close

to the local electron fluid velocity. The hypersonic solution branch ceases to exist

above a critical island width. Under normal circumstances, both types of island are

stabilized by local ion polarization currents.
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I. INTRODUCTION

A magnetic confinement device is designed to trap a thermonuclear plasma on a set

of toroidally-nested magnetic flux-surfaces.1 Heat and particles flow around flux-surfaces

relatively rapidly due to the free streaming of charged particles along magnetic field-lines.

On the other hand, heat and particles are only able to diffuse across flux-surfaces relatively

slowly, assuming that the magnetic field-strength is sufficiently large to render the particle

gyroradii much smaller than the minor radius of the device. This article will concentrate

on tokamaks, which are a type of toroidally axisymmetric magnetic confinement device in

which the magnetic field is dominated by an approximately uniform toroidal component

whose energy density is much larger than that of the plasma.2

Tokamak plasmas are subject to a number of macroscopic instabilities which limit their

effectiveness.2 Such instabilities can be divided into two broad classes. So-called ideal insta-

bilities are non-reconnecting modes which destroy the plasma in a matter of micro-seconds.

However, such instabilities can easily be avoided by limiting the plasma pressure and/or

by tayloring the magnetic equilibrium.3 Tearing modes, on the other hand, are relatively

slowly growing instabilities which are far more difficult to avoid.3,4 These instabilities tend

to saturate at relatively low levels,5–7 in the process reconnecting magnetic flux-surfaces to

form helical structures known as magnetic islands. Magnetic islands are radially localized

structures centered on so-called rational flux-surfaces, which satisfy k · B = 0, where k is

the wave-number of the instability, and B the equilibrium magnetic field. Magnetic islands

degrade plasma confinement because they enable heat and particles to flow very rapidly

along field-lines from their inner to their outer radii, implying an almost complete loss of

confinement in the region lying between these radii.8

The aim of this article is to develop a systematic fluid theory of tearing mode dynamics

in conventional low-β, large aspect-ratio, circular cross-section tokamak plasmas. For the

sake of simplicity, we shall use a slab approximation to model the magnetic geometry, and

employ a collisional closure for the plasma dynamics parallel to the magnetic field. Magnetic

islands which are sufficiently wide to significantly degrade overall energy confinement are,

in effect, helical magnetic equilibria. Moreover, the equations governing such equilibria are

nonlinear in nature.2 Hence, our investigation will concentrate on nonlinear tearing mode

dynamics.
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Given that tearing modes are macroscopic instabilities, it is natural to investigate them

using some form of fluid model. Unfortunately, whilst the well-known, and relatively sim-

ple, magnetohydrodynamical (MHD) model is appropriate for describing violently unstable

plasma instabilities, it fails to capture many important aspects of slowly evolving instabili-

ties such as tearing modes.9 Consequently, it is necessary to use some form of extended-MHD

model in our investigation. The particular model employed in this article is the so-called

five-field model,10–12 which is a generalization of the well-known four-field model of Hazel-

tine, et al. 13 The five-field model is derived using a low-β, drift-MHD ordering of plasma

parameters.9 It incorporates diamagnetic flows, ion gyroviscosity, fast parallel electron heat

transport, the shear-Alfvén wave, the ion sound wave, the drift-wave, and average mag-

netic field-line curvature. However, the compressional Alfvén wave, which propagates much

faster than the aforementioned waves in a low-β plasma, effectively decoupling from them,

is excluded from the model. (Incidentally, a tearing mode is a modified shear-Alfvén wave.)

Electron inertia is also neglected in the model, since it has a negligible effect on slowly

evolving instabilities. The main failings of the five-field model are that it uses a collisional

closure for plasma dynamics parallel to the magnetic field, and that it neglects ion Landau

damping.

For those interested, Ref. 14 includes a comprehensive history and discussion of previously

published fluid theories of magnetic islands in tokamaks.

II. PRELIMINARY ANALYSIS

A. Coordinates

For the sake of simplicity, let us work in slab geometry, using the associated right-handed

Cartesian coordinates (x, y, z). Suppose that there is no variation of quantities in z-

direction: i.e., ∂/∂z ≡ 0. The system is assumed to be periodic in the y-direction, with

periodicity length 2π/k. Roughly speaking, the x-direction represents the radial direction,

the y-direction the poloidal direction, and the z-direction the direction along the resonant

field-line.
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B. Asymptotic Matching

Consider a quasi-neutral plasma consisting of electrons and singly-charged ions. The

plasma is conveniently divided into an “inner region”, which comprises the plasma in the

immediate vicinity of the island, and an “outer region”, which comprises the remainder of

the plasma. As is well-known, the five-field equations reduce to the much simpler ideal-MHD

equations in the outer region.4 Let us assume that a conventional ideal-MHD solution has

been found in this region. The solution is characterized by a single parameter, ∆′, defined

as the jump in the logarithmic derivative of the x-component of the perturbed magnetic

field across the inner region.4 This parameter measures the free energy available in the outer

region to drive the tearing mode. The mode is destabilized if ∆′ > 0. It, therefore, remains

to solve the five-field equations in the inner region, and then to asymptotically match this

solution to the previously obtained ideal-MHD solution at the boundary between the inner

and outer regions.

C. Plasma Equilibrium

The plasma equilibrium is assumed not to vary in y-direction. The inner region is confined

to a relatively thin layer, centered on the rational surface. In this region, the equilibrium

magnetic field takes the form

B = Bz

(
x

Ls
ey + ez

)
, (1)

where Bz is a uniform constant, and Ls the magnetic shear length. Likewise, the equilibrium

electron number density is written

ne = ne 0

(
1 +

x

Ln

)
, (2)

where ne 0 is a uniform constant, and Ln the density gradient scale-length. The equilibrium

electron temperature takes the form

Te = Te 0

(
1 +

x

LT

)
, (3)

where Te 0 is a uniform constant, and LT the electron temperature gradient scale-length.

For the sake of simplicity, the ion temperature is assumed to take the constant value Ti.

Furthermore, the equilibrium E×B velocity is assumed to be uniform. Finally, the plasma
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is subject to a uniform gravitational acceleration g in the −x-direction. This acceleration is

intended to mimic the effect of average magnetic field-line curvature.15 In fact, the effective

radius of curvature of the field-lines is given by Lc = (Te 0 + Ti)/mi g, where mi is the ion

mass.

D. Tearing Perturbation

Suppose that the plasma equilibrium is perturbed by a tearing instability which is periodic

in the y-direction with wave-number k. Note that k · B = 0 at x = 0. Hence, the rational

surface lies at x = 0. The instability is assumed to saturate at a relatively low amplitude to

produce a thin (relative to the width of the plasma in the x-direction) magnetic island. The

magnetic island is wholly contained within the inner region. Let the width of the island in

the x-direction satisfy

w ≪ Ls, Ln, LT , Lc, k
−1. (4)

Finally, suppose that the island propagates in y-direction at some steady phase-velocity Vp.

E. Important Plasma Parameters

At this stage, it is helpful to define the following important plasma parameters. Firstly,

the electron beta,

β =
µ0 ne 0 Te 0

B 2
z

, (5)

which is assumed to be much less than unity. Secondly, the ion sound radius,

ρs =

√
Te 0/mi

(eBz/mi)
, (6)

which is assumed to be less than, or of order, the width of the inner region, and, therefore,

much smaller than Ls, Ln, LT , Lc, or k−1. Here, e is the magnitude of the electron charge.

Thirdly, the electron diamagnetic velocity,

V∗ =
Te 0

eBz Ln
. (7)

The island phase-velocity is assumed to be of order V∗. Fourthly, the shear parameter,

ǫn =
Ln
Ls
, (8)
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which is assumed to be much less than unity. Fifthly, the ion to electron temperature ratio,

τ =
Ti
Te0

, (9)

which is assumed to be less than or of order unity. Finally, the curvature parameter,

γc =
2L 2

s

Lc Ln
, (10)

which is also assumed to be less than or of order unity. Note that γc > 0 corresponds to

unfavorable average magnetic field-line curvature.15

It is also helpful to define the normalized beta,

β̂ =
β

ǫ 2
n

, (11)

the normalized ion sound radius,

ρ =
ρs
w
, (12)

and the ion sound parameter,

α =
√

1 + τ
ǫn
ρ
. (13)

This last parameter measures how effective ion sound waves are at flattening the plasma

density across the island (they are effective if α≫ 1, and ineffective if α≪ 1).

F. Five-Field Model

According to the five-field model,10–12 a steady-state inner region solution in the island

rest frame is governed by the following set of equations:

0 = [φ− n− ζ T, ψ] + ρ4C J, (14)

0 = [φ, n] + [V + ρ2 J, ψ] − ρ2 α2 (1 + τ)−1 γc [x, φ − n] + ρ2Dnxx, (15)

0 = [φ, φxx] + [J, ψ] + α2 γc [x, n] − τ

2
{[φxx, n] + [nxx, φ] + [φ, n]xx}

+ρ2 µ (φ+ τ n)xxxx, (16)

0 = [φ, V ] + α2 [n + T/(1 + τ), ψ] + ρ2 χVxx, (17)

0 = ρ−2 κ‖ [[T, ψ], ψ] + (3/2) [φ, T ] + [V + ζ ρ2 J, ψ] + ρ2 κ⊥ Txx, (18)

with all lengths normalized to w, and all velocities to V∗. Here, w is one-quarter of the

constant-ψ magnetic island width in the x-direction. The first equation is the generalized
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Ohm’s law, the second ensures fluid continuity, the third is the parallel ion vorticity equation,

the fourth determines parallel ion flow, and the fifth governs electron heat flow. Also,

ζ = 1.71,

ψxx = −1 + β̂ ρ2 J, (19)

and

[A,B] ≡ AxBθ − AθBx, (20)

where θ = k y. In the above equations, ψ = Az Ls/(Bz w
2), J = (1 − µ0 jz Ls/Bz)/(β̂ ρ

2),

φ = −Φ/(Bz w V∗), n = −(Ln/w) (ne − ne 0)/ne 0, T = −(Ln/w) (Te − Te 0)/Te 0, V =

(Ln/Ls)Vz i/V∗, η = (η‖/µ0)/(k V∗ ρ
2
s ), C = β̂ η, κ‖ = (k ρs)

2 (κ‖ e/ne 0)/(k V∗ L
2
s ), µ =

(µ⊥ i/ne 0mi)/(k V∗ ρ
2
s ), κ⊥ = (κ⊥ e/ne 0)/(k V∗ ρ

2
s ), D = β η + κ⊥,16 and χ = 4µ.11 More-

over, Az is the z-component of the magnetic vector potential, jz the z-component of the

electric current density, Φ the electric scalar potential, Vz i the z-component of the ion fluid

velocity, η‖ the parallel (to the magnetic field) plasma resistivity, µ⊥ i the perpendicular ion

viscosity, κ‖ e the parallel electron heat conductivity, and κ⊥ e the perpendicular electron heat

conductivity. The various transport parameters are all assumed to be uniform constants.

Note that ψ(x, θ) is a magnetic flux-function, φ(x, θ)+τ n(x, θ) an ion fluid stream-function,

and φ(x, θ) − n(x, θ) an electron fluid stream-function.

Our system is periodic in the θ direction with period 2π. For the case of a tearing mode,

we expect ψ, J , V to be even in x, and φ, n, T to be odd.4 The boundary conditions at the

edge of the inner region are

ψ → −x2/2 + cos θ, (21)

nx → −1, (22)

Tx → −ηe, (23)

φx →
(
Vp − VEB

V∗

)
, (24)

φxxx, J, V → 0, (25)

as |x| → 0. Here, Vp is the island phase-velocity, VEB the equilibrium E × B velocity (both

in the y-direction), and ηe = Ln/LT .

Finally, asymptotic matching between the solutions in the inner and outer regions yields
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the well-known relation 5

3.29 η−1 d(w/ρs)

dt
= ∆′ ρs − 4 β̂ ρ3

∫ ∞

0

∮
J cos θ

dθ

2π
dx, (26)

where ∆′ is the tearing stability index.4 The first and second terms on the right-hand side of

the above equation parameterize the contributions to the free energy available to drive the

tearing mode which originate from the outer and the inner regions, respectively. Note that

the magnetic island grows and decays on the very slow resistive time-scale, η−1.

G. Constant-ψ Approximation

Suppose that

β̂ ρ2 ≪ 1. (27)

It follows from Eqs. (19), (21), and the easily verified fact that |J | <
∼ O(1), that

ψ(x, θ) ≃ −x2/2 + cos θ. (28)

The above magnetic flux-function maps out a magnetic island, centered on x = 0. The

O-point lies at x = 0 and θ = 0, whereas the X-point lies at x = 0 and θ = π. The magnetic

separatrix corresponds to ψ = −1. Finally, the full width of the separatrix in the x-direction

is 4. Hence, the unnormalized full island width is 4w.

H. Flux-Surface Average Operator

The flux-surface average operator is defined as the annihilator of [A,ψ] for any A(x, θ):

i.e.,

〈[A,ψ]〉 ≡ 0. (29)

It is easily show, from Eq. (28), that

〈f(ψ, θ)〉 =

∮
f(ψ, θ)

|x|
dθ

2π
(30)

outside the magnetic separatrix, and

〈f(s, ψ, θ)〉 =

∫ θ0

−θ0

f(s, ψ, θ) + f(−s, ψ, θ)
2 |x|

dθ

2π
(31)
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inside the separatrix, where s = sgn(x), and x(s, ψ, θ0) = 0. Here, the θ integrals are carried

out at constant ψ. Incidentally, Eq. (26) can be written

dw

dt
∝ ∆′ ρs + 4 β̂ ρ3

∫ −∞

1

〈J cos θ〉 dψ. (32)

I. Primary Ordering Scheme

Our primary ordering scheme depends on the fact that the hot plasmas found in modern-

day tokamaks are characterized by very fast [compared to (k V∗)
−1] transport of heat along

magnetic field-lines, and very slow diffusion of magnetic flux, particles, momentum, and

heat across magnetic flux-surfaces: i.e.,

κ‖ ≫ 1 ≫ C,D, µ, χ, κ⊥, (33)

All other quantities in our model are assumed to be O(1) by comparison with κ‖, C, D, µ,

χ, and κ⊥. Let O(1) quantities be denoted zeroth-order, whilst quantities which are O(C)

are first-order, etc. (This ordering is sometimes referred to as the transport ordering.9,19)

The five fields in our model (φ, J , n, V , and T ) are all expanded in the form

φ = φ(0) + φ(1) + φ(2), (34)

etc., where φ(n) is nth order.

J. Secondary Ordering Scheme

Our secondary ordering scheme depends on the inequality

ǫn ≪ 1, (35)

which holds in conventional tokamak discharges (since Ln is generally of order the minor

radius of the device, whereas Ls is of order the major radius, and the major radius is

much larger than the minor radius in a conventional tokamak). This inequality allows us to

distinguish between two different island regimes. In the sonic regime,

w ∼ ρs
ǫn
, (36)
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which implies that α ∼ 1 and ρ ∼ ǫn ≪ 1. On the other hand, in the hypersonic regime,

w ∼ ρs, (37)

which implies that ρ ∼ 1 and α ∼ ǫn ≪ 1. The main physical distinction between the

sonic and hypersonic regimes is that ion sound waves are able to propagate around island

flux-surfaces sufficiently rapidly to flatten the density profile within the magnetic separatrix

in the former regime, but not in the latter.17 It is convenient to subdivide the sonic regime

into the subsonic regime, characterized by α ≫ 1; the true sonic regime, characterized by

α ∼ 1; and the supersonic regime, characterized by ǫn ≪ α ≪ 1. In the following, it is

assumed that τ , ηe, and γc are all O(1).

III. SONIC ISLANDS

A. Introduction

As we have just mentioned, sonic islands are characterized by the secondary ordering

ρ≪ 1 and α ∼ O(1).

B. Zeroth-Order Terms

Retaining only zeroth-order terms in our primary ordering scheme, the five-field equations

reduce to

0 = [φ(0) − n(0) − ζ T (0), ψ], (38)

0 = [φ(0), n(0)] + [V (0) + ρ2 J (0), ψ] − ρ2 α2 (1 + τ)−1 γc [x, φ
(0) − n(0)], (39)

0 = [φ(0), φ(0)
xx ] + [J (0), ψ] + α2 γc [x, n

(0)]

−τ
2

{
[φ(0)
xx , n

(0)] + [n(0)
xx , φ

(0)] + [φ(0), n(0)]xx
}
, (40)

0 = [φ(0), V (0)] + α2 [n(0) + T (0)/(1 + τ), ψ], (41)

0 =
[
[T (0), ψ], ψ

]
. (42)

It immediately follows from Eq. (42) that

T (0) = T (ψ). (43)
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In other words, the lowest order electron temperature profile is a flux-surface function.

Since T is odd in x, whereas ψ is even, it follows that T = 0 inside the magnetic separatrix.

Hence, the electron temperature profile is flattened within the magnetic separatrix, implying

a complete loss of energy confinement in this region.

It follows from Eq. (38) that

n(0) = φ(0) +H(ψ). (44)

Since φ − n is the electron stream-function, the above expression shows that the electron

fluid is constrained to flow around magnetic flux-surfaces.

Equations (39) and (41) yield

V (0) = α2
{
F (φ(0)) − ψ

}
, (45)

and

J (0) = −
(
H ′ φ(0) + α2 (F − ψ)

ρ2

)
− α2 (1 + τ)−1 γcH

′ x+ J(ψ). (46)

Finally, Eqs. (39) and (40) give

0 = [φ(0), ρ2 φ(0)
xx −H + α2 F ′ (F − ψ) − ρ2 α2 γc x] + ρ2 α2 τ (1 + τ)−1 γc [x,H ]

−ρ2 τ

2

{
[φ(0)
xx , n

(0)] + [n(0)
xx , φ

(0)] + [φ(0), n(0)]xx
}
. (47)

Incidentally, in the above analysis, T (ψ), H(ψ), F (φ(0)), and J(ψ) are, as yet, unknown

functions. As we shall see, these functions are determined by perpendicular transport.

C. Expansion in ρ2

Let us now expand φ(0) in powers of the small parameter ρ2. Thus,

φ(0) = φ0 + ρ2 φ1 +O(ρ4). (48)

We shall also assume that F − ψ ∼ O(ρ2). To lowest order in ρ2, Eq. (47) yields

0 = [φ0, H(ψ)]. (49)

It, therefore, follows that

φ0 = φ0(ψ). (50)
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Hence, the lowest order ion stream-function, (1 + τ)φ0 + τ H , is a flux-surface function.

In other words, the ion fluid is also constrained to flow around magnetic flux-surfaces.

Incidentally, we can assume that 〈φ1〉 = 0, without loss of generality.

Let M(ψ) = dφ0/dψ, and L(ψ) = H ′(ψ) + M(ψ). The y-directed ion and electron fluid

velocities (in the island rest frame) are directly related to these functions: i.e., Vy i/V∗ =

x (M + τ L), and Vy e/V∗ = x (M − L). Since M and L are odd functions of x, whereas

ψ is an even function, it follows that M and L are both constrained to be zero within the

magnetic separatrix. In other words, the ion and electron fluids are both trapped within the

magnetic separatrix, and, thereby, forced to flow at the phase-velocity of the island in this

region—see Fig. 8. Note also that, since n
(0)
x = −xL, the density profile is flattened within

the magnetic separatrix. This implies a complete loss of particle confinement in this region.

Expanding Eq. (47) to next order in ρ2, making use of the easily demonstrated results

F = ψ + ρ2 φ1/M and F ′ = 1/M +O(ρ2), we obtain

φ1 =
−[M (M + τ L)/2]′ x̃2 + α2 (1 + τ)−1 γc (M + τ L) x̃

L−M + α2/M
, (51)

where Ã ≡ A− 〈A〉/〈1〉. Finally, expansion of Eq. (46) in ρ2 yields

J (0) = −(L−M + α2/M)φ1 − α2 (1 + τ)−1 γc (L−M) x̃+ J(ψ)

= [M (M + τ L)/2]′ x̃2 − α2 γc L x̃+ J(ψ) (52)

to lowest order.
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D. First-Order Terms

Collecting terms which are first-order in our primary ordering scheme, the five-field equa-

tions give

0 = [φ(1) − n(1) − ζ T (1), ψ] + ρ4 C J (0), (53)

0 = [φ(1), n(0)] + [φ(0), n(1)] + [V (1) + ρ2 J (1), ψ]

−ρ2 α2 (1 + τ)−1 γc [x, φ
(1) − n(1)] + ρ2Dn(0)

xx , (54)

0 = [φ(1), φ(0)
xx ] + [φ(0), φ(1)

xx ] + [J (1), ψ] + α2 γc [x, n
(1)]

−τ
2

{
[φ(1)
xx , n

(0)] + [φ(0)
xx , n

(1)] + [n(1)
xx , φ

(0)] + [n(0)
xx , φ

(1)]

+[φ(1), n(0)]xx + [φ(0), n(1)]xx
}

+ ρ2 µ (φ(0) + τ n(0))xxxx, (55)

0 = [φ(1), V (0)] + [φ(0), V (1)] + α2 [n(1) + T (1)/(1 + τ), ψ] + ρ2 χV (0)
xx , (56)

0 = ρ−2 κ‖
[
[T (1), ψ], ψ

]
+ (3/2) [φ(0), T (0)] + [V (0) + ζ ρ2 J (0), ψ]. (57)

It immediately follows from Eq. (53) that

〈J (0)〉 = 0. (58)

Hence, Eq. (52) reduces to

J (0) = [M (M + τ L)/2]′ x̃2 − α2 γc L x̃. (59)

Now, Eqs. (57) and (53) imply that

[T (1), ψ] ∼ O(ρ4C), (60)

[φ(1) − n(1), ψ] ∼ O(ρ4C). (61)

So, according to (56),

M [V (1), ψ] = α2 [φ(1), ψ] +O(ρ4 α2C). (62)

Furthermore, it follows from Eq. (55) that [J (1), ψ] ∼ O(ρ2C). Hence, Eq. (54) gives

[φ(1), ψ] = [n(1), ψ] = −ρ2 D

(
M L′ x̃2

M (L−M) + α2

)
+O(ρ4C), (63)

as well as the solubility condition

〈x2〉L′ − L 〈1〉 ≡ d

dψ

(
〈x2〉 dL

dψ

)
= O(ρ2). (64)
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Integrating the above equation, neglecting O(ρ2), and making use of the boundary condition

(22), we obtain

L(ψ) =
1

〈x2〉 (65)

outside the magnetic separatrix.

Finally, the flux-surface average of Eq. (55) yields

0 = 〈[φ(1),M ′ x̃2]〉 + α2 γc 〈[x, φ(1)]〉 +
τ

2

{
〈[n(1),M ′ x̃2]〉 + 〈[φ(1), L′ x̃2〉

}

−τ
2

d

dψ

{
〈x2
(
L [φ(1), ψ] −M [n(1), ψ]

)
ψ
〉
}

+ ρ2 µ
d2

dψ2

{
〈x4〉 (M ′ + τ L′)

}
. (66)

However,

〈[A,B]〉 ≡ − d

dψ
〈[Ã [B,ψ]〉, (67)

〈x2 [A,C]ψ〉 ≡ d

dψ
〈x̃2 [A,C]〉, (68)

〈[A, x]〉 ≡ d

dψ
〈x̃ [A,ψ]〉, (69)

where A, B are general fields, but C = C(ψ). Thus, Eq. (66) can be integrated to give 18

0 =
d

dψ

[
〈x4〉 d (M + τ L)

dψ
+
τ

2
(Dµ−1)

(
M (L−M)L′

M (L−M) + α2

)
〈x̃2 x̃2〉

]
(70)

−(Dµ−1)

(
M L′ [M ′ + τ (L′ +M ′)/2

M (L−M) + α2

)
〈x̃2 x̃2〉 + γc (Dµ−1)

(
α2M L′ 〈x̃ x̃2〉
M (L−M) + α2

)
〈x̃ x̃2〉,

where use has been made of the boundary condition (24). The corrections to the above

equation are O(ρ2).

Note that L(ψ) and M(ψ) are both discontinuous on the island separatrix, being zero

inside the separatrix, and taking the finite values Lsep and Msep, respectively, just out-

side the separatrix. In reality, we expect both singularities to be resolved in a separatrix

boundary layer of thickness O(ρs) ≪ w.19 According to Eq. (65), Lsep takes the value π/4.

Equation (70) can be solved in a two-stage process. First, assuming that

L(ψ) =
π

4

[
1 − exp

(
ψ + 1

δ

)]
(71)

within the separatrix layer, where δ ≪ 1, we integrate Eq. (70) across the layer, and look

for a solution which satisfies M(−1) = 0, and M(ψ) → Msep as (−ψ − 1)/δ → ∞. Next,

we solve Eq. (70) outside the layer, with L(ψ) given by Eq. (65), subject to the boundary
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conditions M(−1) = Msep, and
√
−2ψM → −v∞ as ψ → −∞. The constant v∞ determines

the island phase-velocity, relative to the equilibrium E×B velocity, VEB, via the boundary

condition (24): i.e.,

Vp = VEB + v∞ V∗. (72)

This procedure uniquely determines the island phase-velocity [since a general solution for
√
−2ψM(ψ) varies like

√
−ψ at large |ψ|, which does not satisfy the large-|x| boundary

condition on φ]. (Note that the ion diamagnetic direction is positive, and the electron

diamagnetic direction negative, in this paper.) The final result is independent of the details

of the boundary layer, provided that δ ≪ 1: i.e., provided that the boundary layer is much

thinner than the island.

Once the function M(ψ) has been determined, Eqs. (32) and (59) yield the island width

evolution equation
dw

dt
∝ ∆′ ρs + β̂ ρ3 Jc, (73)

where

Jc =

(
32

3π

)
Msep (Msep + τ Lsep)

+2

∫ −∞

−1

{
[M (M + τ L)/2]′ 〈x̃2 x̃2〉 − α2 γc L 〈x̃ x̃2〉

}
dψ. (74)

Here, the two terms on the right-hand side of the above equation parameterize the con-

tributions to the free energy available to drive the tearing mode which originate from the

boundary layer on the separatrix,20 and the remainder of the inner region,21 respectively.

E. Caveat

The above analysis implicitly assumes that the variation length-scale in the x-direction

is much larger than ρs. Unfortunately, this assumption breaks down in the boundary layer

on the separatrix (whose thickness is of order ρs). The most likely consequence of this

breakdown is that the boundary layer will emit drift-acoustic waves which propagate to

large x, where they are absorbed by the plasma.22 If sufficient momentum is carried off by

these waves then the island phase-velocity may be modified from that predicted by the above

analysis.
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IV. HYPERSONIC ISLANDS

A. Introduction

Hypersonic islands are characterized by the secondary ordering α ≪ 1 and ρ ∼ O(1).

B. Zeroth-Order Terms

Retaining only zeroth-order terms in our primary ordering scheme, the five-field equations

yield Eqs. (38)–(42), which reduce to (see Sect. III B)

T (0) = T (ψ), (75)

n(0) = φ(0) +H(ψ), (76)

V (0) = α2
{
F (φ(0)) − ψ

}
, (77)

J (0) = −ρ−2
{
H ′ φ(0) + α2 F

}
− α2 (1 + τ)−1 γcH

′ x+ J(ψ), (78)

0 = [φ(0), ρ2 φ(0)
xx −H − α2 F ′ ψ − ρ2 α2 γc x] + ρ2 α2 τ (1 + τ)−1 γc [x,H ]

−ρ2 τ

2

{
[φ(0)
xx , n

(0)] + [n(0)
xx , φ

(0)] + [φ(0), n(0)]xx
}
. (79)

C. Expansion in α2

We can expand zeroth-order quantities in the small parameter α2 by writing

T (ψ) = α2 T1(ψ), (80)

H(ψ) = α2H1(ψ), (81)

φ(0) = −x+ α2 φ1, (82)

n(0) = −x+ α2 (φ1 +H1), (83)

F (φ(0)) = F0(x) +O(α2). (84)

Equation (78) yields

J (0) = α2 ρ−2 (H ′
1 x̃− F̃0) + J(ψ) +O(α4), (85)

whereas Eq. (79) reduces to

0 = [x, ρ2 (1 + τ)φ1xx −H1 + F ′
0 cos θ] +O(α2), (86)
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which can be integrated to give

ρ2 (1 + τ)φ1xx = H1 +K(x) − F ′
0 cos θ. (87)

D. First-Order Terms

Retaining only first-order terms in our primary ordering scheme, the five-field equations

yield Eqs. (53)–(57).

It immediately follows from Eq. (53) that

〈J (0)〉 = 0. (88)

Hence, Eq. (85) reduces to

J (0) = α2 ρ−2 (H ′
1 x̃− F̃0), (89)

Equation (57) can be integrated to give

[T (1), ψ] = α2 ρ2 κ−1
‖

{
−(ζ H ′

1 − (3/2)T ′
1) x̃+ (ζ − 1) F̃0

}
, (90)

whereas Eq. (53) yields

[φ(1) − n(1), ψ] = α2 ρ2
(
−
{

(C + ζ2 κ−1
‖ )H ′

1 − (3/2) ζ κ−1
‖ T ′

1

}
x̃

+
{
C + ζ (ζ − 1) κ−1

‖

}
F̃0

)
. (91)

According to Eq. (56),

0 = [V (1), x] + α2 ρ2 χ (F0 − ψ)xx +O(α4C). (92)

It follows that

F0xx = ψxx = −1, (93)

where · · · denotes a θ average at constant x. Since V (and, hence, F0) is an even function

of x, the above equation can be integrated to give

F0 = −1

2
x2. (94)

Hence, we conclude that V0 = −α2 cos θ and V1 ∼ O(α4C).

Equation (54) yields

0 = [x, φ(1) − n(1)] + ρ2 [J (1), ψ] + α2 ρ2 D (H1 + φ1)xx +O(α4D), (95)
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which implies that

0 = 〈[x, φ(1) − n(1)]〉 + α2 ρ2D 〈(H1 + φ1)xx〉. (96)

The above equation can be integrated, with the aid of Eq. (67), to give

α2 〈x2〉H ′
1 + 〈x v〉 = ρ−2D−1 〈x̃ [φ(1) − n(1), ψ]〉 − v0, (97)

where v = −α2 φ1x, and v0 is a constant.

Finally, Eqs. (54) and (55) yield

0 = [(1 + τ) ρ2 φ(1)
xx + φ(1) − n(1), x] + α2 ρ2

{
µ
(
H1 +K + τ ρ2 H1xx

)
xx

−D (φ1 +H1)xx} +O(α4C), (98)

which reduces to

0 = −(Dµ−1) (φ1xx +H1xx) +H1xx +Kxx + τ ρ2 H1xxxx. (99)

This equation can be integrated, subject to the boundary conditions (22) and (25), and then

combined with Eq. (87), to give 23

ρ2
{
(1 + τ) v + τ G

}
xx

= (Dµ−1) (v +G) + (G−G) − α2 cos θ, (100)

where G = α2 xH ′
1.

E. Second-Order Terms

Retaining only second-order terms in our primary ordering scheme, Eq. (18) yields

0 = ρ−2 κ‖
[
[T (2), ψ], ψ

]
+ (3/2) [φ(1), T (0)] + (3/2) [φ(0), T (1)]

+[V (1) + ζ ρ2 J (1), ψ] + ρ2 κ⊥ T
(0)
xx , (101)

which can be flux-surface averaged to give

(3/2) 〈[x, T (1)]〉 − α2 ρ2 κ⊥ 〈T1xx〉. (102)

Integrating the above equation, making use of Eq. (67), and the boundary condition (23),

we obtain

〈x2〉 T ′ = −(3/2) ρ−2 κ−1
⊥ 〈x̃ [T (1), ψ]〉 + ηe. (103)
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Combining the above equation with Eq. (90), we get 14

T ′ =
ηe + (3/2)α2 (κ‖ κ⊥)−1 {ζ ΥH ′

1 + (ζ − 1) Ξ}
Γ

(104)

outside the separatrix, where

Υ = 〈x̃ x̃〉, (105)

Ξ =
1

2
〈x̃ x̃2〉, (106)

Γ = 〈x2〉 + (3/2)2 (κ‖ κ⊥)−1 Υ. (107)

Finally, Eqs. (91), (97), and (104) give

α2H ′
1 = −

{
(〈x v〉 + v0) Γ + α2 Ξ Ω2 − (3/2) ζ ηe (κ‖D)−1 Υ

〈x2〉Γ + Υ Ω1

}
(108)

outside the separatrix, where

Ω1 = ζ2 (κ‖D)−1 〈x2〉 + (C D−1) Γ, (109)

Ω2 = ζ (ζ − 1) (κ‖D)−1 〈x2〉 + (C D−1) Γ. (110)

Incidentally, it is easily demonstrated, from self-consistency arguments, that v0 = −(1 +

τ)−1 α2 ρ−2/2.23

F. Solution in Inner Region

A hypersonic island is characterized by a flattened electron temperature profile inside the

magnetic separatrix [see Eq. (75)], but a non-flattened density profile [see Eq. (83)]. The

y-directed electron and ion fluid velocities (in the island rest frame) are written

Vy e/V∗ = −G, (111)

Vy i/V∗ = (1 + τ) (1 + v) + τ G, (112)

respectively. Here,

G = −|x|
{

(〈x v〉 − (1 + τ)−1 α2 ρ−2/2) Γ + α2 Ξ Ω2 − (3/2) ζ ηe (κ‖D)−1 Υ

〈x2〉Γ + Υ Ω1

}
(113)

outside the separatrix, with G = 0 inside the separatrix. Note, that v,G ∼ O(α2) ≪ 1. It

follows that the electron fluid is trapped within the magnetic separatrix, whilst the ion fluid
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is largely unaffected by the island—see Fig. 17. Moreover, the island phase-velocity lies close

to the equilibrium electron fluid velocity (since Vy e/V∗ is relatively small in the island rest

frame). The function v(x, θ) satisfies

ρ2
{
(1 + τ) v + τ G

}
xx

= (Dµ−1) (v +G) + (G−G) − α2 cos θ. (114)

Here, Υ, Ξ, Γ, Ω1, and Ω2 are defined in Eqs. (105)–(107), (109), and (110), respectively.

The boundary conditions on v are

vx = 0 (115)

at x = 0, and

v → vi + v′i |x| − (1/2) (1 + τ)−1 α2 ρ−2 x2 cos θ (116)

as |x| → ∞. Equations (113)–(116) can be solved via iteration.

Incidentally, it follows from Eq. (113) that

G → −vi − v′i |x|, (117)

nx = −1 − v −G→ −1 + (1/2) (1 + τ)−1 α2 ρ−2 x2 cos θ (118)

as |x| → ∞.

The perturbed temperature profile T (ψ) is zero inside the separatrix, and is specified by

Eq. (104) outside the separatrix.

Finally, the perturbed current in the inner region is given by

J (0) = ρ−2
{
G̃+ (1/2)α2 x̃2

}
. (119)

Note that

J (0) → α2 ρ−2 cos θ (120)

as |x| → ∞. Unfortunately, this implies that the integral
∫ −∞

1
〈J cos θ〉 dψ, in the island

evolution equation (32), is divergent. This unphysical behavior can only be prevented if

there exists a layer—termed the intermediate layer—sandwiched between the inner and

outer regions, in which J (0) decays to zero.23

G. Intermediate Layer

The intermediate layer is much wider than the island. It follows that we can linearize

the five-field equations in this region (since the island is the source of all the nonlinearities
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in our problem 5). Let

φ(x, θ) = −x+ φ̄(x) + φ̃(x) e i θ, (121)

n(x, θ) = −x+ ñ(x) e i θ, (122)

V (x, θ) = Ṽ (x) e i θ, (123)

J(x, θ) = J̃(x) e i θ, (124)

ψ(x, θ) = −1

2
x2 + e i θ, (125)

where all ¯ and ˜ terms are first-order. It is assumed that T = T (ψ) in the intermediate

layer. The absence of n̄(x), V̄ (x), and J̄(x) terms in the above equations is consistent with

the behavior of n, V , and J at the edge of the inner region (see Sect. IVF).

Neglecting transport and curvature terms, linearization of the five-field equations yields

(1 + τ) ρ2 (φ̃xx − v̄xx φ̃) = (v̄ − α2 x2)

(
φ̃− 1

x

)
, (126)

and

J̃ = (1 + τ)
(φ̃xx − v̄xx φ̃)

x
, (127)

where v̄(x) = −φ̄x(x). Equation (126) is solved subject to the boundary conditions

φ̃→ 0 (128)

as x→ 0, and

φ̃→ 1

x
(129)

as |x| → ∞. It follows from Eq. (127) that

J̃ → 0 (130)

as |x| → ∞. Equations (129) and (130) demonstrate that the solution in the intermediate

layer can be matched to the conventional ideal-MHD solution (which is φ̃ = 1/x and J̃ = 0)

at very large |x|.4,5

H. Damping of Drift-Acoustic Waves

Equation (126) is a driven wave equation which describes how electrostatic drift-acoustic

waves 9 are excited by the island in the inner region, and then propagate into the intermediate
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layer.23 In order to uniquely determine the solution in the layer, we need either to adopt an

“outgoing wave” boundary condition at large |x|,24 or to add some form of wave damping to

our model. It is more convenient to do the latter. Linearizing Eq. (16), and retaining the

perpendicular viscosity, we find that

(1 + τ) φ̃xx → (1 + τ) φ̃xx + i (1 + τ) ρ2 µ φ̃xxxx. (131)

However, it is clear from (126) that (1 + τ) ρ2 ∂2/∂x2 → −α2 x2 at large |x|. This suggests

that we should modify Eq. (126), by writing

ρ2 (φ̃xx − v̄xx φ̃) ≃
(

v̄

1 + τ
− α2 x2

1 + τ − iα2 µ x2

)(
φ̃− 1

x

)
, (132)

in order to mimic the damping effect of perpendicular viscosity on drift-acoustic waves at

large |x|.

I. Force Balance

The mean E × B velocity profile in the intermediate layer, v̄(x), is determined from

quasi-linear force balance: i.e.,

0 =
1

2
(1 + τ) Im(φ̃xx φ̃

∗) − 1

2
Im(J̃) + ρ2 µ v̄xx. (133)

The first term on the right-hand side of the above equation represents the mean Reynolds

stress force in the y-direction, the second term the mean j×B force, and the third term the

mean viscous force. Equations (126), (132) and (133) can be combined to give

v̄xx =
ρ−4

2

(1 + τ)α4 x2

(1 + τ)2 + α4 µ2 x4
|1 − x φ̃|2. (134)

This equation is subject to the boundary conditions

v̄ → vi + v′i |x| (135)

as x→ 0, and

v̄ → −1 − v∞ (136)

as |x| → ∞. Equation (134) describes how momentum carried by drift-acoustic waves

radiated by the island is absorbed in the intermediate layer, and modifies the mean velocity

profile there.
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J. Solution in Intermediate Layer

Our final system of equations in the intermediate layer is

ρ2 (φ̃xx − v̄xx φ̃) =

(
v̄

1 + τ
− α2 x2

1 + τ − iα2 µ x2

)(
φ̃− 1

x

)
(137)

and

v̄xx =
ρ−4

2

(1 + τ)α4 x2

(1 + τ)2 + α4 µ2 x4
|1 − x φ̃|2. (138)

The boundary conditions are

φ̃ → 0, (139)

v̄ → vi + v′i |x| (140)

as x→ 0, and

φ̃ → 1

x
, (141)

v̄ → −1 − v∞ (142)

as |x| → 0. The perturbed current is given by

J̃ = (1 + τ)
(φ̃xx − v̄xx φ̃)

x
. (143)

K. Overall Solution

The overall solution to our problem is obtained by generating a solution in the inner

region, as described in Sect. IVF, and then finding a matching solution in the intermediate

layer, as described in Sect. IV J. Note that the boundary conditions uniquely specify the

overall solution [since a general solution for v̄ increases like |x| at large |x|, which does not

satisfy the boundary condition (136)].

The island phase-velocity is determined by the constant v∞ [see Eq. (142)]: i.e.,

Vp = VEB + V∗ v∞. (144)

Finally, the island width evolution equation takes the form

dw

dt
∝ ∆′ ρs + β̂ ρ3 Jc, (145)
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where

Jc =

∫ ∞

0

Kc(x) dx, (146)

with

Kc =





−(2/π)

∮
ρ−2

[
G̃+ (1/2)α2 x̃2

]
cos θ dθ x ≤ xc

−2 Re(J̃) x > xc

. (147)

Here, 1 ≪ xc ≪
√
ρ/α is the boundary between the inner region and the intermediate layer.

V. NUMERICAL RESULTS

A. Sonic Islands

The scheme outlined in Sect. III been implemented numerically. The aim of the calcula-

tion is to determine the island velocity parameter, v∞, and the island stability parameter, Jc,

as functions of the sound-wave parameter, α [see Eq. (13)], the ion to electron temperature

ratio, τ [see Eq. (9)], the ratio of transport coefficients, Dµ−1, and the curvature parameter,

γc [see Eq. (10)]. The island velocity parameter, v∞, determines the island phase-velocity

according to Eq. (72). Thus, v∞ = τ corresponds to an island which propagates with the

equilibrium ion fluid, v∞ = 0 to an island which propagates with the equilibrium E × B

velocity, and v∞ = −1 to an island which propagates with the equilibrium electron fluid.

The island stability parameter, Jc, determines the influence of ion polarization currents 21

flowing in the inner region on island stability according to Eq. (73). Thus, if Jc > 0 then

this influence is destabilizing, whereas if Jc < 0 then it is stabilizing.

Let us, first of all, consider the zero curvature case, γc = 0. Figures 1 and 2 show

the island velocity parameter, v∞, as a function of the sound-wave parameter, α (which is

proportional to the island width), for various values of τ and Dµ−1. It can be seen that

v∞ → τ in the subsonic limit α ≫ 1. In other words, wide islands whose widths satisfy

w ≫ ρs/ǫn propagate with the equilibrium ion fluid.16 Moreover, v∞ becomes less positive as

α is reduced. In other words, narrower islands whose widths satisfy w ∼ ρs/ǫn slip somewhat

with respect to the unperturbed ion fluid in the electron diamagnetic direction.18 It can also

been seen that v∞ ∼ 0 in the supersonic limit α≪ 1. In other words, narrow islands whose

widths satisfy ρs ≪ w ≪ ρs/ǫn propagate close to the unperturbed E × B velocity. Note,
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finally, that the transition from the subsonic to the supersonic limits becomes more abrupt

as Dµ−1 is reduced.

Figures 3 and 4 show the island stability parameter, Jc, as a function of the sound-wave

parameter, α, for various values of τ and Dµ−1. It can be seen that Jc → 0 both in the

subsonic limit, α ≫ 1, and the supersonic limit, α ≪ 1. It follows that ion polarization

currents have a negligible effect on the stability of wide islands whose widths satisfy w ≫
ρs/ǫn, or narrow islands whose widths satisfy ρs ≪ w ≪ ρs/ǫn.

25 On the other hand, Jc peaks

at a negative value when α ∼ 1. In other words, ion polarization currents have a stabilizing

effect on sonic islands whose widths satisfy w ∼ ρs/ǫn.
25 Note that the peak becomes higher

as τ increases, and narrower (in α) as Dµ−1 decreases.

Figure 5 shows the typical ion and electron fluid velocity profiles (in the island rest frame)

across the O-point of a sonic island. It can be seen that the island propagates between the

equilibriun ion and electron fluid velocities (i.e., the velocities as |x| → ∞), but is closer to

the former. Moreover, the velocity of each fluid increases in magnitude as the separatrix is

approached from the outside, but is zero inside the separatrix. The velocity discontinuities

in both fluids across the separatrix are resolved in a boundary layer (not shown) whose width

is of order ρs.

Let us now examine the influence of average magnetic field-line curvature on sonic islands.

It turns out that field-line curvature has a negligible effect on the island phase-velocity. On

the other hand, the effect of field-line curvature on island stability is illustrated in Fig. 6.

It can be seen that the island is destabilized if γc > 0 (i.e., if the field-line curvature

is unfavorable), and stabilized if γc < 0. The influence of field-line curvature on island

stability increases rapidly with increasing island width, being negligible in the supersonic

regime, α≪ 1, and dominant in the subsonic regime, α≫ 1.

B. Hypersonic Islands

The scheme outlined in Sect. IV has been implemented numerically. The aim of the

calculation is to determine the island velocity parameter, v∞ [see Eq. (144)], and the island

stability parameter, Jc [see Eq. (145)], as functions of the remaining free parameters in the

model. We can reduce the number of these parameters by observing that D ≃ κ⊥ when

β ≪ 1, and that κ‖ = 1.63C−1 according to classical parallel transport theory. Hence,
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(κ‖D)−1 = (κ‖ κ⊥)−1 = 0.61 (C D−1). It follows that there are only seven free parameters.

These are the normalized island width, ŵ ≡ ρ−1 = w/ρs, the shear parameter, ǫn = Ln/Ls,

the ion perpendicular viscosity, µ, the particle diffusivity, D, the collisionality, C D−1, the

electron temperature gradient parameter, ηe = Ln/LT , and the ion to electron temperature

ratio, τ = Ti/Te 0.

Reference 23 examines hypersonic island solutions in the limit of low collisionality—i.e.,

C D−1 = 0—and cold ions—i.e., τ = 0. Note, incidentally, that low collisionality hypersonic

island solutions have no dependence on ηe [since ηe only appears in our final equations in

combination with (κ‖D)−1 ∝ C D−1]. The numerically determined dependence of v∞ and

Jc on the four remaining free parameters—ŵ, ǫn, µ, and D—is

v∞ ≃ −1 + 0.27 ŵ3 ǫ 3/2
n D−1 + 0.25 ŵ4 ǫ 2/3

n µ−4/3, (148)

and

Jc = −1.5 ŵ3 ǫ 3/2
n (1 + 0.25 ŵ2D−1). (149)

Moreover, the hypersonic branch of island solutions is found to cease to exist above the

critical island width

ŵmax = 0.9 ǫ−1/6
n D1/3. (150)

Recall, incidentally, that v∞ = −1 corresponds to an island propagating with the equilibrium

electron fluid, whereas v∞ = τ corresponds to an island propagating with the equilibrium

ion fluid.

According to Eq. (148), a hypersonic island has a phase-velocity which lies between the

velocities of the equilibrium ion and electron fluids, but is much closer to the latter. As

the island width increases, the deviation of the phase-velocity from the equilibrium electron

fluid velocity in the ion diamagnetic direction increases rapidly. Furthermore, according to

Eq. (149), a hypersonic island is stabilized by ion polarization currents (curvature currents

have a negligible effect on hypersonic islands). As the island width increases, this effect also

increases rapidly. Finally, it is hypothesized that when the critical island width is exceeded,

and the hypersonic solution branch consequently disappears, the island solution bifurcates to

the supersonic solution branch.26 It remains to determine how the above picture is modified

in the presence of finite collisionality, C D−1, finite electron temperature gradient, ηe, and

finite ion temperature, τ .
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Figures 7 and 8 illustrate the influence of finite collisionality, but zero ηe and τ , on

hypersonic island solutions. In these plots, the island width is increased from zero until

the critical island width at which the solution disappears is reached. It can be seen that

finite collisonality alone has very little effect on either the phase-velocity or the stability of

a hypersonic island.

Figures 9–12 illustrate the effect of finite collisionality and ηe, but zero τ , on hypersonic

island solutions. It can be seen that the island phase-velocity is shifted, relative to that of

the standard solution discussed above, in the presence of non-zero ηe. The shift is in the ion

diamagnetic direction when ηe > 0, and in the electron diamagnetic direction when ηe < 0,

in agreement with Ref. 14. Moreover, the magnitude of the shift is roughly proportional to

the product of the collisionality, C D−1, and |ηe|. It can also be seen that hypersonic islands

which propagate (in the electron diamagnetic direction) faster than the equilibrium electron

fluid are destabilized by ion polarization currents, whereas those which propagate slower than

the equilibrium electron fluid are stabilized. It follows that positive ηe is stabilizing (since it

tends to make hypersonic islands propagate slower), whereas negative ηe is destabilizing.

Figures 13 and 14 illustrate the effect of finite collisionality and ion temperature, but

zero ηe, on hypersonic island solutions. It can be seen that finite ion temperature has

comparatively little effect on hypersonic island solutions (apart from a slight modification

to the critical island width) when ηe = 0.

Figures 15 and 16 illustrate the effect of finite collisionality, ion temperature, and ηe,

on hypersonic island solutions. It can be seen that non-zero τ gives rise to an additional

shift in the island phase-velocity which decays rapidly as the island width increases. The

velocity shift is in the ion diamagnetic direction when ηe > 0, and in the electron diamagnetic

direction when ηe < 0. However, the shift seems to have little effect on island stability.

Finally, Figure 17 shows the typical ion and electron fluid velocity profiles (in the is-

land rest frame) across the O-point of a hypersonic island. It can be seen that the island

propagates between the equilibriun ion and electron fluid velocities (i.e., the velocities as

|x| → ∞), but is closer to the latter. Note that the ion fluid velocity profile is essentially

unaffected by the island, whereas the electron fluid velocity is constrained to be zero inside

the separatrix.
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VI. SUMMARY AND DISCUSSION

We have developed a systematic fluid theory of nonlinear magnetic island dynamics in

conventional low-β, large aspect-ratio, circular cross-section tokamak plasmas. Our analysis

makes use of an extended-MHD model which incorporates diamagnetic flows, ion gyrovis-

cosity, fast parallel electron heat transport, the ion sound wave, the drift-wave, and average

magnetic field-line curvature. The model excludes the compressible Alfvén wave, geodesic

field-line curvature, neoclassical effects, and ion Landau damping. Finally, a collisional clo-

sure is used for plasma dynamics parallel to the magnetic field.

We have found two distinct branches of island solutions—i.e., the“sonic”and“hypersonic”

branches. Both branches are investigated analytically, using suitable ordering schemes, and

in each case the problem is reduced to a relatively simple set of nonlinear differential equa-

tions which can be solved numerically via iteration. The solution determines the island

phase-velocity, relative to the plasma, and the effect of local currents on the island stability.

Sonic islands are relatively wide, flatten both the temperature and density profiles, and tend

to propagate close to the local ion fluid velocity. Hypersonic islands, on the other hand, are

relatively narrow, only flatten the temperature profile, radiate drift-acoustic waves, and tend

to propagate close to the local electron fluid velocity.23 The hypersonic solution branch ceases

to exist above a critical island width which is of order ρs. Under normal circumstances (i.e.,

ηe > 0, Ls > 0), we find that both types of island are stabilized by local ion polarization

currents.

The fact that there exist two branches of island solutions with very different characteristics

was first established via numerical simulation by Ottoviani, et al.26 These researchers also

found that the hypersonic branch ceases to exist above a critical island width, whereas the

sonic branch ceases to exist below a somewhat smaller critical island width, and that the

disappearance of a given solution branch triggers a bifurcation to the other branch. Our

analysis confirms that the hypersonic solution branch ceases to exist above a certain critical

island width. Unfortunately, our ordering scheme precludes us from extending the sonic

solution branch to small island widths (i.e., w ∼ ρs), so we cannot confirm that this branch

ceases to exist below some critical width. Clearly, more work is needed in this area.

The analysis presented in this paper builds on analysis previously presented in Refs. 12,

14, 15, 18, 23, 19, and 12, and will, hopefully, form the foundations of a fully comprehensive
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fluid theory of nonlinear magnetic island dynamics in low-β, large aspect-ratio, circular cross-

section tokamak plasmas. Ideally, this theory will incorporate neoclassical effects, such as

the bootstrap current27 and ion poloidal flow damping,28 will not employ a collisional closure

for parallel dynamics,29 and will take geodesic magnetic field-line curvature into account.30

The ultimate goal of such a theory is to predict the stability of neoclassical tearing modes31

in ITER.32
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FIG. 1: The island velocity parameter, v∞, as a function of α for a sonic island with Dµ−1 = 1.0,

and γc = 0. The solid, short-dashed, long-dashed, and dot–short-dashed curves correspond to

τ = 0.25, 0.5, 0.75, and 1.0, respectively.

FIG. 2: The island velocity parameter, v∞, as a function of α for a sonic island with τ = 0.5,

and γc = 0. The solid, short-dashed, long-dashed, dot–short-dashed, and dot–long-dashed curves

correspond to Dµ−1 = 0.25, 0.5, 1.0, 2.0, and 4.0, respectively.
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FIG. 3: The island stability parameter, Jc, as a function of α for a sonic island with Dµ−1 = 1.0,

and γc = 0. The solid, short-dashed, long-dashed, and dot–short-dashed curves correspond to

τ = 0.25, 0.5, 0.75, and 1.0, respectively.

FIG. 4: The island stability parameter, Jc, as a function of α for a sonic island with τ = 0.5,

and γc = 0. The solid, short-dashed, long-dashed, dot–short-dashed, and dot–long-dashed curves

correspond to Dµ−1 = 0.25, 0.5, 1.0, 2.0, and 4.0, respectively.
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FIG. 5: The y-componenets of the ion (solid) and electron (dashed) fluid velocities (in the island

rest-frame) across O-point of a sonic island with α = 0.5, τ = 0.5, Dµ−1 = 1.0, and γc = 0. The

separatrix lies at x = 2.

FIG. 6: The island stability parameter, Jc, as a function of α for a sonic island with τ = 0.5, and

Dµ−1 = 1.0. The solid, short-dashed, long-dashed, dot–short-dashed, and dot–long-dashed curves

correspond to γc = 0.1, 0.05, 0.0, −0.05, and −0.1, respectively.
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FIG. 7: The island velocity parameter, v∞, as a function of ŵ for a hypersonic island with ǫn = 0.1,

µ = 10−3, D = 5 × 10−4, ηe = 0, and τ = 0. The solid, short-dashed, long-dashed, and dot–short-

dashed curves correspond to CD−1 = 0.0, 1.0, 2.0, and 4.0, respectively.

FIG. 8: The island stability parameter, Jc, as a function of ŵ for a hypersonic island with ǫn = 0.1,

µ = 10−3, D = 5 × 10−4, ηe = 0, and τ = 0. The solid, short-dashed, long-dashed, and dot–short-

dashed curves correspond to CD−1 = 0.0, 1.0, 2.0, and 4.0, respectively.
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FIG. 9: The island velocity parameter, v∞, as a function of ŵ for a hypersonic island with ǫn = 0.1,

µ = 10−3, D = 5×10−4, CD−1 = 0.25, and τ = 0. The solid, short-dashed, long-dashed, dot–short-

dashed, and dot–long-dashed curves correspond to ηe = 1.0, 0.5, 0.0, −0.5, and −1.0, respectively.

FIG. 10: The island velocity parameter, v∞, as a function of ŵ for a hypersonic island with

ǫn = 0.1, µ = 10−3, D = 5× 10−4, C D−1 = 0.50, and τ = 0. The solid, short-dashed, long-dashed,

dot–short-dashed, and dot–long-dashed curves correspond to ηe = 1.0, 0.5, 0.0, −0.5, and −1.0,

respectively.
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FIG. 11: The island stability parameter, Jc, as a function of ŵ for a hypersonic island with ǫn = 0.1,

µ = 10−3, D = 5×10−4, CD−1 = 0.25, and τ = 0. The solid, short-dashed, long-dashed, dot–short-

dashed, and dot–long-dashed curves correspond to ηe = 1.0, 0.5, 0.0, −0.5, and −1.0, respectively.

FIG. 12: The island stability parameter, Jc, as a function of ŵ for a hypersonic island with ǫn = 0.1,

µ = 10−3, D = 5×10−4, C D−1 = 0.5, and τ = 0. The solid, short-dashed, long-dashed, dot–short-

dashed, and dot–long-dashed curves correspond to ηe = 1.0, 0.5, 0.0, −0.5, and −1.0, respectively.
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FIG. 13: The island velocity parameter, v∞, as a function of ŵ for a hypersonic island with

ǫn = 0.1, µ = 10−3, D = 5× 10−4, CD−1 = 0.5, and ηe = 0. The solid, short-dashed, long-dashed,

and dot–short-dashed curves correspond to τ = 0.0, 0.1, 0.2, and 0.5, respectively.

FIG. 14: The island stability parameter, Jc, as a function of ŵ for a hypersonic island with ǫn = 0.1,

µ = 10−3, D = 5× 10−4, C D−1 = 0.5, and ηe = 0. The solid, short-dashed, long-dashed, and dot–

short-dashed curves correspond to τ = 0.0, 0.1, 0.2, and 0.4, respectively.
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FIG. 15: The island velocity parameter, v∞, as a function of ŵ for a hypersonic island with

ǫn = 0.1, µ = 10−3, D = 5 × 10−4, CD−1 = 0.5, and τ = 0.1. The solid, short-dashed, long-

dashed, dot–short-dashed, and dot–long-dashed curves correspond to ηe = −0.2, −0.1, 0.0, 0.1, and

0.2, respectively.

FIG. 16: The island stability parameter, Jc, as a function of ŵ for a hypersonic island with ǫn = 0.1,

µ = 10−3, D = 5 × 10−4, C D−1 = 0.5, and τ = 0.1. The solid, short-dashed, long-dashed,

dot–short-dashed, and dot–long-dashed curves correspond to ηe = −0.2, −0.1, 0.0, 0.1, and 0.2,

respectively.
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FIG. 17: The y-componenets of the ion (solid) and electron (dashed) fluid velocities (in the island

rest-frame) across O-point of a hypersonc island with ŵ = 0.09, ǫn = 0.1, µ = 10−4, D = 5× 10−3,

C D−1 = 0.5, ηe = 1.0, and τ = 0. The separatrix lies at x = 2.


