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1. Introduction

Nonlinear integral equations appear in many applications. For example, they occur in solving several problems arising in
economics, engineering and physics. The most frequently investigated nonlinear integral equations are the Hammerstein
integral equation and its generalization, the Urysohn integral equation (cf. [1–13]),
xðtÞ ¼ gðtÞ þ
Z

I
uðt; s; xðsÞÞds; t 2 I; ð1:1Þ
where I is an interval in R (bounded or not) and g : I ! R, u : I � I � R! R are given functions while x : I ! R is an unknown
function. In the case when I is a bounded interval the theory of Eq. (1.1) is well developed, and we refer to [9,10,14,15] and
references therein for existence results as well as applications to other questions. On the other hand, there are few papers
that consider the case when I is an unbounded interval, see [16–18].

In this paper, we study the problem of existence of monotonic solutions for the functional integral equations of Urysohn
type
xðtÞ ¼ f1ðt; xð/ðtÞÞÞ þ f2 t;
Z 1

0
uðt; s; xð/ðsÞÞÞds

� �
; t 2 Rþ ¼ ½0;1Þ: ð1:2Þ
Throughout f1; f2 : Rþ � R! Rþ, u : Rþ � Rþ � R! Rþ and / : Rþ ! Rþ are functions which satisfy special hypotheses, see
Section 3. Let us recall that the function f ¼ f ðt; xÞ involved in Eq. (1.2) generates the superposition operator F defined by
ðFxÞðtÞ ¼ f ðt; xðtÞÞ; ð1:3Þ
where x ¼ xðtÞ is an arbitrary function defined on Rþ, see [19].
Eq. (1.2) has a rather general form and contains as special cases many functional integral equations, see for example [20–

22]. Also, it generalizes many types of integral equations. For example, in the case f1ðt; yÞ ¼ gðtÞ and f2ðt;vÞ ¼ v we get an
integral equation of Urysohn type studied by the author and others in [18], while in the case f1ðt; yÞ ¼ gðtÞ; f 2ðt;vÞ ¼ v
and /ðtÞ ¼ 1 we get the famous Urysohn integral equation studied by Banaś and Pasławska-Południak in [16].

The aim of this paper is to prove the existence of monotonic solutions of Eq. (1.2) in the space of Lebesgue integrable
functions on an unbounded interval. Our proof depends on a suitable combination of the Darbo fixed point theorem and
. All rights reserved.
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the technique associated with both measures of weak noncompactness and measures of noncompactness in the strong
sense. In fact, our results in this paper extend the technique developed by Banaś and Pasławska-Południak [16] to a more
general equation such as Eq. (1.2) and generalize the result of Darwish in [17].

2. Notation and auxiliary facts

This section is devoted to collecting some definitions and results which will be needed further on.
Let L1ðAXÞ denote the space of Lebesgue integrable functions on the measurable set X with the standard norm
kyk ¼
Z

X
jyðtÞjdt:
Let us assume that I � R is a given interval, bounded or unbounded. A function f ðt; xÞ ¼ f : I � R! R satisfies the Carathéod-
ory conditions if it is measurable in t for any x 2 R and continuous in x for almost all t 2 I. Then, to every function x ¼ xðtÞ
which is measurable on the interval I, we may assign the function ðFxÞðtÞ ¼ f ðt; xðtÞÞ; t 2 I. The function Fx is measurable and
the operator F defined in such a way is called the superposition operator generated by the function f, see [19] and references
therein. The necessary and sufficient condition guaranteeing that the superposition operator F is a self-continuous map pres-
ent in the following theorem. The case when I is a bounded interval was proved by Krasnosel’skii [23], while the case when I
is an unbounded interval was proved by Appell and Zabrejko [19].

Theorem 1. The superposition operator F generated by the function f maps the space L1ðIÞ continuously into itself if and only if
jf ðt; xÞj 6 aðtÞ þ bjxj
for all t 2 I and all x 2 R, where a 2 L1ðIÞ and b P 0 is a constant.
Next, we recall some basic facts concerning measures of noncompactness [24,25]. Let us assume that E is an infinite

dimensional Banach space with norm k � k and zero element h. Denote by ME the family of all nonempty and bounded subsets
of E and by NE; N

W
E its subfamilies consisting of all relatively compact and relatively weakly compact sets, respectively. For a

subset X of R, the symbols X, XW stand for the closure and the weak closure of a set X, respectively. The symbol coX will
denote the convex closed hull (with respect to the norm topology) of a set X. We denote by Bðx; rÞ the ball centered at x
and of radius r. We write Br instead of Bðh; rÞ.

Definition 1. A mapping l : ME ! Rþ is said to be a measure of noncompactness in E if it satisfies the following conditions:

(1) The family kerl ¼ fX 2ME : lðXÞ ¼ 0g is nonempty and kerl � N
W
E .

(2) X � Y ) lðXÞ 6 lðYÞ.
(3) lðXÞ ¼ lðcoXÞ ¼ lðXÞ.
(4) lðkX þ ð1� kÞYÞ 6 klðXÞ þ ð1� kÞ lðYÞ for 0 6 k 6 1.
(5) If Xn 2ME, Xn ¼ Xn; Xnþ1 � Xn for n ¼ 1;2;3; . . . and if limn!1lðXnÞ ¼ 0 then \1n¼1Xn – /.

The family kerl described above is called the kernel of the measure of noncompactness l.

Definition 2. A mapping l : ME ! Rþ is said to be a measure of weak noncompactness in E if it satisfies the following
conditions: (2)–(4) of Definition 1 and the following two conditions:

(1’) The family kerl ¼ fX 2ME : lðXÞ ¼ 0g is nonempty and kerl � N
W
E .

(5’) If Xn 2ME, Xn ¼ XWn ; Xnþ1 � Xn for n ¼ 1;2;3; . . .and if limn!1lðXnÞ ¼ 0 then \1n¼1Xn – /.
Definition 3 [24]. Let X be a bounded subset of E. The Hausdorff measure of noncompactness v is defined by
vðXÞ ¼ inffe > 0 : there is a finite subset Y of E suchthat X � Y þ Beg:

The first important and convenient measure of noncompactness b was defined by De Blasi [26]
bðXÞ ¼ inffe > 0 : there is a weakly compact subset Y of E such that X � Y þ Beg:
The measures of noncompactness v and b have some interesting properties. They play a significant role in nonlinear analysis
and find many applications (cf. [24–27]).

We will make use of the following fixed point theorem due to Darbo [28]. To quote this theorem, we need the following
definition.
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Definition 4. Let M be a nonempty subset of a Banach space E and let P : M ! E be a continuous operator which transforms
bounded sets into bounded ones. We say that P satisfies the Darbo condition (with constant q P 0) with respect to a
measure of noncompactness l if for any bounded subset X of M we have
lðPXÞ 6 qlðXÞ:

If P satisfies the Darbo condition with q < 1 then it is called a contraction operator with respect to l.
Theorem 2 [28]. Let Q be a nonempty, bounded, closed and convex subset of the space E and let
P : Q ! Q
be a continuous mapping which is a contraction with respect to the measure of noncompactness l.
Then P has at least one fixed point in the set Q.
Remark 1 [29]. Theorem 2 remains valid if l is a measure of weak noncompactness and if we assume that P is a weakly
continuous map.

Also, we recall a theorem concerning the compactness in measure of a subset X of L1ðIÞ, see [30].

Theorem 3. Let X be a bounded subset of L1ðIÞ consisting of all functions which are a.e. nondecreasing (or nonincreasing) on the
interval I. Then X is compact in measure.

In what follows, we will work on the space L1ðRþÞ. We recall the formula for a measure of weak noncompactness, see
[16,31]. Let us fix a bounded subset X of L1ðRþÞ and define
cðXÞ ¼ lim
e!0

sup
x2X

sup
Z

X
jxðtÞjdt : X � Rþ; measðXÞ 6 e

� �� �� �
and
dðXÞ ¼ lim
T!1

sup
Z 1

T
jxðtÞjdt : x 2 X

� �� �
:

Put
cðXÞ ¼ cðXÞ þ dðXÞ: ð2:4Þ
Then we have the following results, see [16,31] and references therein.

Theorem 4. The function c is a measure of weak noncompactness in the space L1ðRþÞ such that
bðXÞ 6 cðXÞ 6 2bðXÞ;
where b denotes the De Blasi measure of noncompactness. Moreover, cðBL1ðRþÞÞ ¼ 2.
Theorem 5. Let X be a nonempty, bounded and compact in measure subset of the space L1ðRþÞ. Then
vðXÞ 6 cðXÞ 6 2vðXÞ:
Theorem 6. Let X be a nonempty, bounded and compact in measure subset of the space L1ðRþÞ. If P : X ! L1ðRþÞ is a continuous
map then it is weakly sequentially continuous on X.

By combining all the above established facts (Theorems 3, 5, 6 and 2) we can deduce the following result [16].

Theorem 7. Let Q be a nonempty, bounded, closed and convex and compact in measure subset of the space L1ðRþÞ and let
P : Q ! Q
be a continuous mapping which is a contraction with respect to the measure of weak noncompactness c.
Then P has at least one fixed point in the set Q.
3. Main result

In this section, we will study Eq. (1.2) assuming that the following hypotheses are satisfied:

ðh1Þ The function fiðt; xÞ ¼ fi : Rþ � R! Rþ satisfies the Carathéodory conditions, and there exist a function ai 2 L1ðRþÞ and
a constant bi > 0 such that



M.A. Darwish / Applied Mathematics and Computation 218 (2012) 8800–8805 8803
jfiðt; xÞj 6 aiðtÞ þ bijxj; i ¼ 1;2;
for t 2 Rþ and for x 2 R. Moreover, fiðt; xÞ; i ¼ 1;2, are assumed to be nonincreasing with respect to t and nondecreasing with
respect to x.
ðh2Þ The function uðt; s; xÞ ¼ u : Rþ � Rþ � R! Rþ satisfies the Carathéodory conditions, and there exist a function

a3 2 L1ðRþÞ and a constant b3 > 0 such that
juðt; s; xÞj 6 kðt; sÞ½a3ðtÞ þ b3jxj�
for ðt; sÞ 2 Rþ � Rþ and for x 2 R, where the function kðt; sÞ ¼ k : Rþ � Rþ ! Rþ is measurable such that the linear Fredholm
integral operator
ðKxÞðtÞ ¼
Z 1

0
kðt; sÞxðsÞds
transforms the space L1ðRþÞ into itself and is continuous.
ðh3Þ The function t ! uðt; s; xÞ is a.e. nonincreasing on Rþ for almost all s 2 Rþ and for each x 2 R.
ðh4Þ The function / : Rþ ! Rþ is increasing and absolutely continuous. Moreover, there is a constant M > 0 such that

/0ðtÞP M for almost all t P 0.
ðh5Þ b1 þ b2b3kKk < M.

Remark 2. In ðh2Þ, when we say that the function uðt; s; xÞ ¼ u : Rþ � Rþ � R! Rþ satisfies the Carathéodory conditions, we
mean that the function ðt; sÞ ! uðt; s; xÞ is measurable for any x 2 R and the function x! uðt; s; xÞ is continuous for almost all
ðt; sÞ 2 Rþ � Rþ.

For further purposes let us denote by U the Urysohn integral operator generated by the function u, i.e.,
ðUxÞðtÞ ¼
Z 1

0
uðt; s; xðsÞÞds: ð3:5Þ
Thus Eq. (1.2) takes the form
x ¼ Fx ¼ F1xð/Þ þ F2Uxð/Þ; ð3:6Þ
where F1 and F2 are the superposition operators generated by the functions f1ðt; xÞ and f2ðt; xÞ, respectively.

Remark 3 ([13,16]). Under the hypothesis ðh2Þ the Urysohn integral operator (3.5) maps L1ðRþÞ continuously into itself.
Now, we are in a position to state and prove our main result.

Theorem 8. Let the hypotheses ðh1Þ—ðh5Þ be satisfied. Then Eq. (1.2) has at least one solution x 2 L1ðRþÞ which is a.e.
nonincreasing on Rþ.
Proof. First, observe that for a given x 2 L1ðRþÞ, we have that Fx 2 L1ðRþÞ and also F is continuous in L1ðRþÞ, thanks to our
hypotheses, Remark 3 and Theorem 1. Moreover, by virtue of our hypotheses we get
kFxk 6 kF1xð/Þk þ kF2Uxð/Þk

¼
Z 1

0
f1ðt; xð/ðtÞÞÞj jdt þ

Z 1

0
f2 t;

Z 1

0
uðt; s; xð/ðsÞÞÞds

� �����
����dt

6

Z 1

0
a1ðtÞ þ b1jxð/ðtÞÞj½ �dt þ

Z 1

0
a2ðtÞ þ b2

Z 1

0
uðt; s; xð/ðsÞÞÞds

����
����

� �
dt

6 ka1k þ b1kxð/Þk þ ka2k þ b2

Z 1

0

Z 1

0
kðt; sÞa3ðsÞdsdt þ b2b3

Z 1

0

Z 1

0
kðt; sÞjxð/ðsÞÞjdsdt

¼ ka1k þ b1kxð/Þk þ ka2k þ b2kKa3k þ b2b3kKxð/Þk
6 ka1k þ b1kxð/Þk þ ka2k þ b2kKkka3k þ b2b3kKkkxð/Þk

¼ ka1k þ ka2k þ b2kKkka3k þ b1 þ b2b3kKkð Þ
Z 1

0
jxð/ðtÞÞjdt

6 ka1k þ ka2k þ b2kKkka3k þ b1 þ b2b3kKkð ÞM�1
Z 1

0
jxð/ðtÞÞj/0ðtÞdt

6 ka1k þ ka2k þ b2kKkka3k þ b1 þ b2b3kKkð ÞM�1kxk;
where kKk denotes the norm of the linear Fredholm integral operator mapping L1ðRþÞ into itself. Apart from this the norm
used in the above estimates denotes the norm in L1ðRþÞ.

From the last estimate we deduce that the operator F transforms the ball Br into itself for r ¼ ðka1k þ ka2kþ
b2kKkka3kÞ=½1� ðb1 þ b2b3kKkÞM�1�, thanks to hypothesis ðh5Þ.
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In what follows let us define D to be the subset of the ball Br consisting of all functions which are a.e. positive and
nonincreasing on Rþ. Then the set D is nonempty, bounded, closed and convex, see [30]. Moreover, D is compact in measure,
thanks to Theorem 3.

It is easy to see that the operator F maps the set D into itself, thanks to hypotheses ðh1Þ; ðh3Þ and ðh4Þ.
We now show that the operator F is a contraction with respect to the measure of weak compactness c. For this purpose

take a nonempty subset X of D and fix e > 0. Further, let us take a nonempty subset X of Rþ such that X is measurable and
measðXÞ 6 e. Then for an arbitrary x 2 X and in view of our hypotheses we have
Z
X
jðFxÞðtÞjdt 6

Z
X

a1ðtÞ þ b1jxð/ðtÞÞj½ �dt þ
Z

X
a2ðtÞ þ b2

Z 1

0
uðt; s; xð/ðsÞÞÞds

����
����

� �
dt

6

Z
X

a1ðtÞdt þ b1kxð/ÞkL1ðXÞ þ
Z

X
a2ðtÞdt þ b2

Z
X

Z 1

0
kðt; sÞa3ðsÞdsdt þ b2b3

Z
X

Z 1

0
kðt; sÞjxð/ðsÞÞjdsdt

¼
Z

X
a1ðtÞdt þ b1kxð/ÞkL1ðXÞ þ

Z
X

a2ðtÞdt þ b2kKa3kL1ðXÞ þ b2b3kKxð/ÞkL1ðXÞ

6

Z
X

a1ðtÞdt þ
Z

X
a2ðtÞdt þ b2kKkX

Z
X

a3ðtÞdt þ ðb1 þ b2b3kKkXÞkxð/ÞkL1ðXÞ
where kKkX denotes the norm of the linear Fredholm integral operator mapping L1ðXÞ into itself.
Hence, we have
Z
X
jðFxÞðtÞjdt 6

Z
X

a1ðtÞdt þ
Z

X
a2ðtÞdt þ b2kKk

Z
X

a3ðtÞdtðb1 þ b2b3kKkÞ
Z

X
jxð/ðtÞÞjdt

6

Z
X

a1ðtÞdt þ
Z

X
a2ðtÞdt þ b2kKk

Z
X

a3ðtÞdt þ ðb1 þ b2b3kKkÞM�1
Z

X
jxð/ðtÞÞj/0ðtÞdt

¼
Z

X
a1ðtÞdt þ

Z
X

a2ðtÞdt þ b2kKk
Z

X
a3ðtÞdt þ ðb1 þ b2b3kKkÞM�1

Z
/ðXÞ
jxðvÞjdv;
Now, taking into account the fact that
lim
e!0

sup
Z

X
jaiðtÞjdt : X � Rþ;measðXÞ 6 e

� �� �
¼ 0; i ¼ 1;2;3
and keeping in mind that the function / is assumed to be absolutely continuous, from the last estimate we have
cðFXÞ 6 qcðXÞ; ð3:7Þ
where q ¼ ðb1 þ b2b3kKkÞM�1. Obviously, in view of hypothesis ðh5Þ we have that q < 1.
Next, let us fix an arbitrary number T > 0. Then, taking into account our hypotheses, for an arbitrary function x 2 X we

have

Z 1

T
jðFxÞðtÞjdt6

Z 1

T
a1ðtÞdtþb1

Z 1

T
xð/ðtÞÞj jdtþ

Z 1

T
a2ðtÞdtþb2

Z 1

T

Z t

0
uðt;s;xð/ðsÞÞÞds

����
����dt

6

Z 1

T
a1ðtÞdtþb1

Z 1

T
xð/ðtÞÞj jdtþ

Z 1

T
a2ðtÞdtþb2

Z 1

T

Z 1

0
kðt;sÞa3ðsÞdsdtþb2b3

Z 1

T

Z t

0
kðt;sÞjxð/ðsÞÞjdsdt

¼
Z 1

T
a1ðtÞdtþb1

Z 1

T
xð/ðtÞÞj jdtþ

Z 1

T
a2ðtÞdtþb2kKa3kL1ð½T;1ÞÞ þb2b3kKxð/ÞkL1ð½T;1ÞÞ

6

Z 1

T
a1ðtÞdtþ

Z 1

T
a2ðtÞdtþb2kKk½T;1Þ

Z 1

T
a3ðtÞdtþðb1þb2b3kKk½T;1ÞÞ

Z 1

T
jxð/ðtÞÞjdt

6

Z 1

T
a1ðtÞdtþ

Z 1

T
a2ðtÞdtþb2kKk

Z 1

T
a3ðtÞdtþðb1þb2b3kKkÞM�1

Z 1

T
jxð/ðtÞÞj/0ðtÞdt

6

Z 1

T
a1ðtÞdtþ

Z 1

T
a2ðtÞdtþb2kKk

Z 1

T
a3ðtÞdtþðb1þb2b3kKkÞM�1

Z 1

/ðTÞ
jxðvÞjdv ;
where kKk½T;1Þ denotes the norm of the linear Fredholm integral operator mapping L1ð½T;1ÞÞ into itself. Hence, from the last
estimate we obtain
dðFXÞ 6 qdðXÞ; ð3:8Þ
due to the fact that dðYÞ ¼ 0 for any singleton Y of L1ðRþÞ. From (3.7) and (3.8) and the definition of the measure of noncom-
pactness c given by formula (2.4), we obtain
cðFXÞ 6 qcðXÞ: ð3:9Þ
Now, an application of Theorem 7 with Q ¼ D and P ¼ F implies that the operator F has at least one fixed point in D. This
completes the proof. h
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4. An example

Consider the functional integral equation of Urysohn type
xðtÞ ¼ 2e�t2 þ 1
8

arctan x2ðtÞ þ arctan
Z 1

0
ðt þ sÞe�t s

s2 þ 1
þ 1

8
lnð1þ x2ðsÞÞ

� �
ds

� �2

: ð4:10Þ
In this example, we have that f1ðt; xÞ ¼ e�t2 þ 1
8 arctan x2 and f2ðt; xÞ ¼ e�t2 þ arctan x2 and this function satisfies hypothesis

ðh1Þ with aiðtÞ ¼ e�t2
; ði ¼ 1; 2Þ; b1 ¼ 1

4 and b2 ¼ 2, because of the fact that arctan x2
6 2x for x P 0. Moreover,
uðt; s; xÞ ¼ ðt þ sÞe�t s
s2 þ 1

þ 1
8

lnð1þ x2ðsÞÞ
� �
satisfies hypotheses ðh2Þ and ðh3Þ with kðt; sÞ ¼ ðt þ sÞe�t ; a3ðtÞ ¼ t
t2þ1

and b3 ¼ 1
8, since lnð1þ x2Þ 6 x. Also, kKk ¼ 2ffiffi

e
p , see [32].

We have /ðtÞ ¼ t and so /0ðtÞ ¼ 1. Thus, M = 3/4,
b1 þ b2b3kKk ¼
1
4
þ 1

2
ffiffiffi
e
p 6 M:
Therefore, Theorem 8 guarantees that Eq. (4.10) has a solution x ¼ xðtÞ in the space L1ðRþÞ which is a.e. nonincreasing on Rþ.
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[20] J. Banaś, Z. Knap, Integrable solutions of a functional-integral equation, Revista Mat. Univ. Complutense de Madrid 2 (1989) 31–38.
[21] M.A. Darwish, J. Henderson, Solvability of a functional integral equation under Carathéodory conditions, Commun. Appl. Nonlinear Anal. 16 (1) (2009)

23–36.
[22] G. Emmanuele, Integrable solutions of a functional-integral equation, J. Integral Eq. Appl. 4 (1) (1992) 89–94.
[23] M.A. Krasnosel’skii, On the continuity of the operator FuðxÞ ¼ f ðx;uðxÞÞ, Dokl. Akad. Nauk. SSSR 77 (1951) 185–188 (in Russian).
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