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Abstract. Strain localization and dislocation pattern formation are typical features of plastic defor-
mation in metals and alloys. Glide and climb dislocation motion along with accompanying produc-
tion/annihilation processes of dislocations lead to the occurrence of instabilities of initially uniform
dislocation distributions. These instabilities result into the development of various types of disloca-
tion micro-structures, such as dislocation cells, slip and kink bands, persistent slip bands, labyrinth
structures, etc., depending on the externally applied loading and the intrinsic lattice constraints. The
Walgraef-Aifantis (WA) (Walgraef and Aifanits, J. Appl. Phys., 58, 668, 1985) model is an example
of a reaction-diffusion model of coupled nonlinear equations which describe 0 formation of forest
(immobile) and gliding (mobile) dislocation densities in the presence of cyclic loading. This paper
discuss two versions of the WA model, the first one comprising linear diffusion of the density of
mobile dislocations and the second one, with nonlinear diffusion of said variable. Subsequently, the
paper focus on a finite difference, second order in time Cranck-Nicholson semi-implicit scheme,
with internal iterations at each time step and a spatial splitting using the Stabilizing, Correction
(Christov and Pontes, Mathematical and Computer 0, 35, 87, 2002) for solving the model evolution
equations in two dimensions. The discussion on the WA model and on the numerical scheme was
already presented on a conference paper by the authors (Pontes et al., AIP Conference Proceed-
ings, Vol. 1301 pp. 511-519, 2010). The first results of four simulations, one with linear diffusion
of the mobile dislocations and three with nonlinear diffusion are presented. Several phenomena
were observed in the numerical simulations, like the increase of the fundamental wavelength of the
structure, the increase of the walls height and the decrease of its thickness.
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THE WALGRAEF-AIFANTIS (WA) MODEL

In the spirit of earlier dislocation models derived for example by Ghoniem et al.
(1990) [1] for creep, or by Walgraef and Aifantis (1985 [2], 1986 [3], 1997 [4]), by
Schiller and Walgraef (1988 [5]), and by Kratochvil (1979) [6], for dislocation micro-
structures formation in fatigue, the dislocation population is divided into static disloca-
tions, which may result from work hardening and consist in the nearly immobile disloca-
tions of the “forest”, of sub-grains walls or boundaries, etc., and the mobile dislocations
which glide between these obstacles.

The essential features of the dislocation dynamics in the plastic regime are, on the one
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side, their mobility, dominated by plastic flow, but which also includes thermal diffusion
and climb, and their mutual interaction process, the more important being (Mughrabi et
al., 1979 [7]):

• Multiplication of static dislocations within the forest;
• Static recovery in the forest via static-static annihilation processes;
• Freeing of static dislocations: when the effective stress increases and exceeds some

threshold, it disturbs the local structure of the forest and, in particular, destabilize
dislocation clusters which decompose into mobile dislocations. The freeing of
forest dislocations occurs with a rate β , which depends on the applied stresses and
material parameters;

• Pinning of mobile dislocation by the forest. Effectively, mobile dislocations may be
immobilized by the various dislocation clusters forming the forest. The dynamical
contribution of such processes is of the form G(ρs)ρm, where G(ρs) = gnρn

s is the
pinning rate of a mobile dislocation by a cluster of n static ones. The Walgraef-
Aifantis (WA) model considers n = 2.

The resulting dynamical system may then be written as:

∂ρs

∂ t
= Ds∇2ρs +σ − vsdcρ2

s −βρs + γρ2
s ρm (1)

∂ρm

∂ t
= Dm∇2

xρm +βρs − γρ2
s ρm, (2)

where time is measured in number of cycles of loading, Ds represents the effective diffu-
sion within the forest resulting from the thermal mobility and climb and Dm represents
the effective diffusion resulting from the glide of mobile dislocations between obsta-
cles (Dm ≫ Ds). The coefficient dc is the characteristic length of spontaneous dipole
collapse. β is the rate of dislocation freeing from the forest and is associated with the
de-stabilization of dislocation dipoles or clusters under stress. Numerical dislocation
dynamics simulations show that in BBC crystals, for 0, there is a critical value of ex-
ternal applied stresses above which dislocation dipoles become unstable. This value is
a decreasing function of the distance between dipole slip lines. If the forest may be
considered as an ensemble of dipoles with a mean characteristic width, the 0 stress for
de-stabilization, or freeing, σ f , could be extracted from such simulations. More extended
numerical analysis could include higher order dislocation clusters and provide the de-
pendence of the threshold stress on the forest dislocation 0. The freeing rate should thus
be zero below the freeing threshold, and an increasing function of the applied stress
above it. Hence, β ≈ β0(σa−σ f )

n for σa > σ f , n being a phenomenological parameter.

THE MODIFIED WA MODEL: EFFECT OF GRADIENT TERMS

The approximation of mobile dislocation diffusion is controversial and may be ad-
dressed. To do so, the mobile dislocation density, ρm is divided into two 1 representing
the dislocation gliding in the direction of the Burgers vector (ρ+

m ) and in the opposite
one (ρ−

m ), with ρm = ρ+
m +ρ−

m .
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For crystals with well-developed forest density, and oriented for single slip, we now
write (with vg oriented along the x direction):

∂ρs

∂ t
= Ds∇2ρs +σ − vsdcρ2

s −βρs + γρ2
s ρm (3)

∂ρ+
m

∂ t
= −∇xvgρ+

m +
β
2

ρs − γρ2
s ρ+

m (4)

∂ρ−
m

∂ t
= ∇xvgρ−

m +
β
2

ρs − γρ2
s ρ−

m , (5)

or:

∂ρs

∂ t
= Ds∇2ρs +σ − vsdcρ2

s −βρs + γρ2
s ρm (6)

∂ρm

∂ t
= −∇xvgρm +

β
2

ρs − γρ2
s ρm (7)

∂σ−
m

∂ t
= −∇xvgρm − γρ2

s σm, (8)

where σm = ρ+
m −ρ−

m is the density of geometrically necessary dislocations. This vari-
ables evolves faster than the other two and may be adiabatically eliminated, leading to
the following system, which includes a nonlinear diffusion term in the equation of ρm:

∂ρs

∂ t
= Ds∇2ρs +σ − vsdcρ2

s −βρs + γρ2
s ρm (9)

∂ρm

∂ t
= ∇x

vg

γρ2
s

∇xvgρm +βρs − γρ2
s ρm. (10)

THE NUMERICAL SCHEME FOR SOLVING THE WA MODEL

In order to solve the modified WA model, we use a numerical scheme based on a one
proposed by Christov and Pontes (2002). Equations (9) and (10) are solved numerically
in two-dimensional rectangular domains, through the finite difference method, using a
grid of uniformly spaced points, a second order in time Crank-Nicholson semi-implicit
method with internal iterations at each time step, due to the nonlinear nature of the
implicit terms. The proposed scheme is splitted in two equations using the Stabilizing
Correction scheme (Christov and Pontes, 2002 [8], Yanenko, 1971 [9]). The first half-
step comprises implicit derivatives with respect to x and explicit derivatives with respect
to y. In the second half-step,n the derivatives with respect to y are kept implicit and
those with respect to x are explicit. The splitting scheme is shown to be equivalent to the
original one.
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The target scheme

The target second order in time, Crank-Nicholson semi-implicit scheme is:

ρn+1
s −ρn

s

∆t
= Λn+1/2

x
ρn+1

s +ρn
s

2
+Λn+1/2

y
ρn+1

s +ρn
s

2
+ f n+1/2

1 (11)

ρn+1
m −ρn

m

∆t
= Λn+1/2

2
ρn+1

m +ρn
m

2
+ f n+1/2

2 , (12)

where n is the number of the time step. Upon including the 1/2 factor in the operators

Λn+1/2
x , Λn+1/2

y and Λn+1/2
2 , we obtain:

ρn+1
s −ρn

s

∆t
= Λn+1/2

x
(

ρn+1
s +ρn

s

)

+Λn+1/2
y

(

ρn+1
s +ρn

s

)

+ f n+1/2
1 (13)

ρn+1
m −ρn

m

∆t
= Λn+1/2

2

(

ρn+1
m +ρn

m

)

+ f n+1/2
2 . (14)

The operators Λn+1/2
x , Λn+1/2

y and Λn+1/2
2 and the functions f n+1/2

1 and f n+1/2
2 are

defined as:

Λn+1/2
x =

Ds

2
∂ 2

∂x2 −
1
4

vsdc

(

ρn+1
s +ρn

s

2

)

−
β
4

(15)

Λn+1/2
y =

Ds

2
∂ 2

∂x2 −
1
4

vsdc

(

ρn+1
s +ρn

s

2

)

−
β
4

(16)

f n+1/2
1 = σ +

γ
2

(

ρn+1
s +ρn

s

2

)2
(

ρn+1
m +ρn

m

)

(17)

Λn+1/2
2 =

1
2

∂
∂x

[

vg

γ
[(

ρn+1
s +ρn

s

)

/2
]2

∂
∂x

vg

]

− γ
(

ρn+1
s +ρn

s

2

)2

(18)

f n+1/2
2 = β

(

ρn+1
s +ρn

s

2

)

. (19)

Internal iterations

Since the operators Λn+1/2
x , Λn+1/2

x and Λn+1/2
2 , as well as the functions f n+1/2

1 and

f n+1/2
2 contain terms in the new stage, we do internal iterations at each time step,

according to:

ρn,k+1
s −ρn

s

∆t
= Λn+1/2

x

(

ρn,k+1
s −ρn

s

)

+Λn+1/2
y

(

ρn,k+1
s −ρn

s

)

+ f n+1/2
1 (20)

ρn,k+1
m −ρn

m

∆t
= Λn+1/2

2

(

ρn,k+1
m ρn

m

)

+ f n+1/2
2 . (21)
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where the superscript (n,k +1) identifies the “new” iteration, (n,k) and n stand for the
values obtained in the previous iteration and in the previous time step, respectively. The
operators Λn+1/2

x , Λn+1/2
y , Λn+1/2

2 and the functions f n+1/2
1 and f n+1/2

2 are redefined as:

Λn+1/2
x =

Ds

2
∂ 2

∂x2 −
1
4

vsdcSn+1/2 −
β
4

(22)

Λn+1/2
y =

Ds

2
∂ 2

∂x2 −
1
4

vsdcSn+1/2 −
β
4

(23)

f n+1/2
1 = σ +

γ
2

(

Sn+1/2
)2(

ρn,k
m +ρn

m

)

(24)

Λn+1/2
2 =

∂
∂x

(

vg

2γ
(

Sn+1/2
)2

∂
∂x

vg

)

− γ
(

Sn+1/2
)2

(25)

f n+1/2
2 = βSn+1/2, where: Sn+1/2 =

ρn,k
s +ρn

s

2
. (26)

The iterations proceed until the following criteria is satisfied:

max||ρn,K+1
s −ρn,K

s ||

max||ρn,K
s ||

< δ and
max||ρn,K+1

m −ρn,K
m ||

max||ρn,K
m ||

< δ

in all grid points, for a certain K. Then the last iteration gives the value of the sought

functions in the “new” time step, ρn+1
s

def
= ρn,K+1

s et ρn+1
m

def
= ρn,K+1

s .

The splitting of the ρs equation

The splitting of Eq. (20) is made according to:

ρ̃s−ρn
s

∆t
= Λn+1/2

x ρ̃s +Λn+1/2
y ρn

s + f n+1/2
1 +

(

Λn+1/2
x +Λn+1/2

y

)

ρn
s (27)

ρn,k+1
s − ρ̃s

∆t
= Λn+1/2

y

(

ρn,k+1
s −ρn

s

)

. (28)

In order to show that the splitting represents the original scheme, we rewrite Eqs. (27)
and (28) in the form:
(

E −∆t Λn+1/2
x

)

ρ̃s =
(

E +∆t Λn+1/2
y

)

ρn
s +∆t f n+1/2

1 +
(

∆t Λn+1/2
x +∆t Λn+1/2

y

)

ρn
s(29)

(

E −∆t Λn+1/2
y

)

ρn,k+1
s = ρ̃s −∆t Λn+1/2

y ρn
s , (30)

where E is the unity operator. The intermediate variable ρ̃s is eliminated by applying the

operator
(

E −∆t Λn+1/2
x

)

to the second equation and summing the result to the first one:
(

E −∆t Λn+1/2
x

)(

E −∆t Λn+1/2
y

)

ρn,k+1
s =

(

E +∆t Λn+1/2
y

)

ρn
s − (31)

(

E −∆t Λn+1/2
x

)

∆t Λn+1/2
y ρn

s +∆t f n+1/2
1 +

(

∆t Λn+1/2
x +∆t Λn+1/2

y

)

ρn
s . (32)
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This result may be rewritten as:
(

E +∆t2 Λn+1/2
x Λn+1/2

y

)

= ∆t
(

Λn+1/2
x +Λn+1/2

y

)(

ρn,k+1
s +ρn

s

)

+∆t f n+1/2
1 ,

or either:

(

E +∆t2 Λn+1/2
x Λn+1/2

y

) ρn,k+1
s −ρn

s

∆t
=
(

Λn+1/2
x +Λn+1/2

y

) ρn,k+1
s −ρn

s

2
+ f n+1/2

1 .

(33)
A comparison with Eq. (20) shows that Eq. (33) is actually equivalent to the first one
except by the defined positive operator having a norm greater than one,

B ≡ E +∆t2 Λn+1/2
x Λn+1/2

y = E +O
(

∆t2) ,

which acts on the term
(

ρn,k+1
s −ρn

s

)

/∆t. This means that this operator does not change

the steady state solution. Furthermore, since ||B|| > 1 the 3 scheme is more stable than
the original scheme.

Spatial discretization

The grid is “staggered” and the discretization of the diffusive term of Eq. (10) is made
according to the following formula, which preserves the conservation law implicit in the
divergence:

∆t
∂
∂x

[

vg

γρ2
s

∂
∂x

vgρm

]

≈ ∆t
∂
∂x

[

vg

γ(Sn+1/2)2

∂
∂x

vg
ρn,k+1

m +ρn
m

2

]

.

Upon defining:

Qi, j =
∆t vg

4γ(Sn+1/2
i, j )2

we replace the diffusive term of ρm by:

∆t
2

∂
∂x

[

vg

γρ2
s

∂
∂x

vgρm

]

≈
(

Qi, j +Qi, j+1
) vg

∆x

[

(ρm)i, j+1− (ρm)i, j
]

(34)

−
(

Qi, j−1 +Qi, j
) vg

∆x

[

(ρm)i, j − (ρm)i, j−1
]

= (35)
(

Qi, j−1 +Qi, j
) vg

∆x
(ρm)i, j−1−

(

Qi, j−1 −2Qi, j +Qi, j+1
)

(ρm)i, j + (36)
(

Qi, j +Qi, j+1
)

(ρm)i, j+1. (37)

The diffusive terms of Eq. (9) are written in discrete form by using the usual three
points centered formula, of second order. Neumann boundary conditions are used in
the integration of the WA model, with derivatives in the direction perpendicular to the
walls equal to zero. The algebraic linear systems were solved using a routine with 0
elimination and pivoting, written by one of us (CIC).
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RESULTS

We present the results of four simulations in a box with dimensions 25×5 µm. system
parameters are: vs = 1µmcm1, dc = 2.5−2µm, Ds = 3× 10−3µm2cy−1 (linear case),
vg = 102µmcy−1, γ = 2× 10−2, σ = 250µm−2cy−1. The simulations were run with a
time step of 2.5× 10−3cy. Case #1 refers to system with linear diffusion of ρm, initial
condition consisting of a central stripe with random values of ρs and zero everywhere
else. Cases #2 to 4 refer to systems with nonlinear diffusion of ρm, initial condition con-
sisting of the uniform base state ρ̄m = γ2σ/

(

β 2vsdc
)

and ρs = β/(γρm) and bifurcation
parameter β = 15, 30 and 60 respectively (see Tab. 1). Figs. 1 and 2 present the time
evolution of ρs for the four cases considered. Fig. 3 show the time evolution of the max-
imum of ρs and the computional effort, given by the number of internal iterations per
time step.

TABLE 1. Main data of the four simulations presented

Case Diffusion of ρm Initial Cond. β Grid points Walls

1 linear Vertical band 30 3000×750 12
2 nonlinear random 15 3000×750 15
3 nonlinear random 30 3000×750 12
4 nonlinear random 60 4000×1000 10

Case #1: β = 30

t = 0.00 t = 0.25

t = 1.00 t = 1.50

t = 2.00 t = 5.00

t = 350.0 t = 5286.0

FIGURE 1. Time evolution of Case #1 of dislocation pattern formation in a rectangular stripe with
20×5 µm, starting from a vertical stripe with random distribution of ρs and ρm and linear diffusion of ρm.
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Case #2: β = 15

t = 0.00 t = 0.50

t = 0.75 t = 7.00

t = 300.0 t = 1748.0

Case #3: β = 30

t = 0.00 t = 0.25

t = 3.0 t = 30.0

t = 3900.0 t = 5648.0

Case #4: β = 60

t = 0.00 t = 0.50

t = 3.0 t = 30.0

t = 100.0 t = 248.0

FIGURE 2. Time evolution of Cases #2 to 4 of dislocation pattern formation in a rectangular stripe with
20×5 µm, starting from a random distribution of ρs and ρm and nonlinear diffusion of ρm.
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Case #1: β = 30 – Linear diffusion of ρm

Case #2: β = 15 – Nonlinear diffusion of ρm
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Case #3: β = 30 – Nonlinear diffusion of ρm
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Case #4: β = 60 – Nonlinear diffusion of ρm
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FIGURE 3. Time evolution curves of max(ρs)× t and of the computational effort (number of internal
iterations per step) for the four cases considered.
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DISCUSSION

A number of phenomena emerge from the numerical simulations presented, the main
ones being:

1. The increase of the bifurcation parameter β results in strucuteres with larger wave-
length. The walls height increases and its thickness decreases with β . Thinner walls
required the use of finer numerical meshes, resulting in greater computational effort
(Case #4, with β = 60);

2. The height of the walls decreases as pattern defects are eliminated. The pattern
evolution accelerates at the moments where defects are eliminated, Higher local
crests appear at these moments. The computational effort, measured by the number
of internal iterations at each time step increases (see Fig. 3);

3. Increasing the bifurcation parameter β from 15 to 30 accelerates the pattern for-
mation. Further increasing β to 60 results in longer transients, possibly due to the
disordering effect of higher forcing;

4. The movement of small pieces of dislocation walls along the x direction is enhanced
by the nonlinear diffusion of ρm.

CONCLUSIONS

We presented a finite differences second-order in time scheme for solving reaction-
diffusion equations in two dimensions. Second order was achieved by performing in-
ternal iterations at each time step. The scheme was implemented in a mesoscopic two-
equations model proposed by Walgraef and Aifantis (1985) [2] to model dislocation
dynamics in materials subjected to cyclic loading. Dislocations are grouped in two vari-
ables, the first one consisting of a density of immobile or static dislocations, ρs, (forest
of dislocations). The second group consists of mobile dislocations that move along the
forest of static ones and are grouped in a density ρm. The density of static dislocations
diffuses along both directions, whereas the mobile dislocations present a nonlinear dif-
fusion along one of the directions only. The scheme of Stabilizing Correction was used
for the splitting of the evolution equation of ρs (Yanenko,1971 [9], Christov and Pontes,
2002 [8], Pontes et al., 2010 [10]).

Several phenomena were observed in the numerical simulations, like the increase
of the fundamental wavelength of the structure, the increase of the walls height and
the decrease of its thickness. More complete results and discussion will be given in a
forthcoming paper.
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