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ABSTRACT 

In accordance with the product families, process 
platforms have been recognized as a promising tool for 
companies to configure optimal, yet similar, production 
processes for producing different products. This paper tackles 
process platform formation from large volumes of production 
data available in companies’ production systems. A data 
mining methodology based on text mining and tree matching 
is developed for the formation of process platforms. A case 
study of high variety production of vibration motors for 
mobile phones is reported to prove the feasibility and potential 
of forming process platforms using text mining and tree 
matching. 

1 INTRODUCTION 
One of the pressing needs faced by manufacturing companies 
nowadays is to produce quickly a high variety of customized 
products at low costs. The linchpin for companies to achieve 
efficiency in the resulting high variety production, thus 
surviving lies in their ability to production as stable as 
possible. Stable production can only be achieved by taking 
advantages of commonality and similarity inherent in various 
production processes when fulfilling individual products. 
Process platforms [1] have been recognized as a promising 
tool for companies to obtain and further maintain stable high 
variety production through configuring optimal, yet similar, 
production processes for producing new products while 
considering their existing manufacturing capabilities. 

The authors provided a rigorous definition of process 
platforms along with the basic constructs and functionalities. 
However, they did not discuss further how to form process 
platforms in current manufacturing environment, where large 
volumes of production data are generated. This paper, thus, 
discusses process platform formation with existing production 
data in companies’ production systems. 
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Reusing proven knowledge implicitly in existing production 
data suggests itself as a natural technique to facilitate the 
handling of production process changes and tradeoffs between 
design variations and process changes. Data mining excels in 
discovering previously unknown and potentially useful 
patterns of information, i.e., knowledge, from past [2]. 
Towards this end, this chapter introduces a data mining 
methodology to solve the problems in forming process 
platforms. To meet the challenges, specific data mining 
techniques, including text mining and tree matching, are 
adopted. 

2 METHODOLOGY 
While a product family refers to a set of individual products, 
performing a basic function, with a common product structure, 
a process platform is a set of production processes, assuming a 
common routing structure, to produce the set of individual 
products in a family. In accordance with a product family and 
the corresponding process family, a generic routing structure 
is fundamental to a process platform [1]. Hence, the generic 
routing structure is common to all individual production 
processes in the process family. Thus the problem of process 
platform formation can be converted to that of generic routing 
identification from large volumes of production data available 
in companies’ production systems. 

The data mining methodology consists of three consecutive 
parts, as shown in Figure 1. In the first part, the similarity of 
existing routings is measured. Based on the similarity measure 
results, in the second part, the similar routings are clustered 
into same families using a fuzzy clustering procedure. In the 
last part, the generic routings are formed for the corresponding 
families using a tree unification procedure developed in this 
research.  
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Figure 1. Overview of data mining methodology. 

A routing consists of a number of product items, operations, 
and operations precedence relationships. Thus, the similarity 
of two routings involves two types: operations similarity 
(involving item similarity) and precedence similarity. In 
practice, a routing is represented by a tree precedence graph, 
in which nodes represent operations and arcs indicate the 
precedence relationships between two connected operations. 
Thus, measuring routing similarity can be decomposed into 
measuring node content similarity and tree structure similarity, 
which correspond to operations similarity and precedence 
similarity. Since node content similarity and tree structure 
similarity are two independent similarity measures, the 
Euclidian distance measure is adopted in this research to 
compute routing similarity, as shown in Figure 1. In this 
research, the methodology is applied to the basic 
representation trees: binary trees, as shown in Figure 2.   
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Figure 2. A binary tree representation of a routing. 

Besides numerical data, operations are described by 
categorical data, e.g., specific shapes, materials, pertaining to 
product and process characteristics. To avoid the 
subjectiveness and imprecision associated with routings due to 
the categorical data, fuzzy clustering is adopted in this 
research to group similar routings into same families. The 
netting graph method [3] is incorporated in routing fuzzy 
clustering as well. In the last part, a procedure has been 
developed to identify the generic routings for the 
corresponding families obtained in the second part. It is 
accomplished through unifying other trees with an initial tree, 
i.e., the seed tree, one by one in a process family. Section 3 
presents Part 1: Routing similarity measure; Section 4: 
Generic routing identification discusses Parts 2 and 3: Routing 
clustering and unification together.     
 
3 ROUTING SIMILARITY MEASURE 
Let { }P1 ROU,,ROU L=Ω  represent a set of existing routings; 

rsS  for the similarity between two routings, rROU  and sROU ; 
NC
rsS  for node content similarity; and  TS

rsS  for tree structure 
similarity.  
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3.1 Node Content Similarity Measure 
Node content similarity measures the degree of approximation 
of two routings in terms of their operations descriptions. To 
cope with the textual data, the text mining technique is 
employed. For a set of routings, there are a number of 
operation types (nodes), { }

NjO , from the instances of which 
each individual routing is constituted. Some routings may not 
assume all these operations types.  

Corresponding to a P  number of routings, each operation type 
assume a maximal number of P specific variants. Let jO

rsS  be 
the similarity of two operations variants, *

jrO  and *
jsO , 

P,,1s,r L=∀  and sr ≠ , corresponding two routings, rROU  
and sROU , respectively. Each operation variant is described 
by materials, { }M

O j
Φ , the product, { }P

O j
Φ , and resources, { }

jOR . 

Accordingly, the operation similarity measure, jO
rsS , consists 

of three elements, namely material similarity, jM
rsS , product 

similarity, jP
rsS , and resource similarity, jR

rsS . 

3.1.1  Material similarity measure 
The materials of an operation, jO , are a set of components, be 
they are a type of raw materials, intermediate parts, and/or 
subassemblies, i.e., { }j

M
jk

M
O K,,1k|Co

j
L=∀=Φ . For a labeled 

binary tree, there are at most two material components, i.e., 
2K j = . Therefore,  jM

rsS  is calculated based on he similarity 
of all their material components. Since some components may 
be more important than others for an operation, jM

rsS  is 
computed as a weighted sum of individual material component 
similarity. The weight of each component, j

M
jk K,1kw L=∀ , 

indicates the relative importance of { }
jK

M
jkCo and 1w

jK

1k

M
jk =∑

=

. In 

practice, the weights are determined based on domain 
knowledge. 

Two types of nodes are involved in an ROU  tree: leaf nodes 
(noted as l-nodes) and intermediate nodes (referred to as i-
nodes). Each l-node represents a machining or assembly 
operation that consumes at least one primitive component to 
produce a compound component. Each i-node indicates an 
assembly operation that produces a subassembly or end 
product. The materials of an i-node are all compound 
components, i.e., the subassemblies or intermediate parts. For 
example in Figure 2, operations M1, M2, M3 and A4 are l-
nodes, whilst operations A1, A2 and A3 are i-nodes. 

For an l-node, the corresponding operation takes at least one 
primitive component as input materials. If an operation is 
represented by an i-node, its material components are all 
compound components. Accordingly, the similarity of two 
component variants, *M

jkrCo  and *M
jksCo , is computed differently 

under two situations: (1) M
jkCo  is a primitive component; and 

(2) M
jkCo  is a compound component.  

Text mining is adopted to compute similarity of primitive 
components. The final result is a number of primitive 
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component similarity matrices, each of which is for primitive 
components of same types. Based on primitive component 
similarity matrices, similarity of compound components is 
computed using bipartite matching, as shown in Figure 3. 
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Figure 3. Text mining and bipartite matching for 

computing material similarity. 

Procedure of calculating similarity of primitive components 
(1) Prepare data files. Operations nodes are sorted by 
primitive and compound components, which are saved 
separately in two text files. One contains the descriptions of all 
primitive components. The other documents the contents of all 
compound components.  

(2) Encode semantics. By following practice, a component is 
described by a list of attribute values with respect to 
descriptive fields. The basic attribute field is the name or ID of 
the component type. Figure 4 shows an example of attribute 
descriptions for a specific bracket b variant, called bb. Two 
types of attributes can be distinguished: nominal and 
numerical. Different with norminal attribute values, a specific 
numerical value alone cannot suggest which attribute field it 
pertains to. For example, “10mm” can indicate an instance of 
“length” or “width”. Therefore, rather than by listing single 
values, numerical attributes are described using attribute-value 
pairs, for example, “weight0.08g” in Figure 4. 

Component Description

BRACKET A, SQUARE, BLACK, WEIGHT0.08g

Component Description

BRACKET A, SQUARE, BLACK, WEIGHT0.08g  
Figure 4. Description of a “bb” variant. 

(3) Extract keywords. Text mining analysis is applied to each 
component file. The result is a list of extracted significant 
words or phrases. The keywords are generated as separated 
records in three forms. Single words and word combinations 
constitute phrases, representing the values of nominal 
attributes. Word-number pairs are related to numerical 
attribute fields.  

(4) Derive occurrence frequencies. All extracted keywords are 
cataloged according to their corresponding attribute fields. 
The occurrence of each attribute is counted by the actual 
values assumed. Assume a total number of Q attributes, 
{ }Q,,1q|a k

q L=∀ , are used to describe a component M
jkCo . 

Dividing the number of occurrence by the total number of 
records in the text file, { }P,,1i|a *k

qi L=∀ , the occurrence 
frequency, k

qf , of the attribute k
qa  is determined by the count 
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of active instances, k
qc , and the total number of records, i.e., 

the number of P .   

(5) Prioritize attribute fields. To consider an attribute’s 
different contributions in different components, the relative 
importance of attributes in relation to occurrence frequencies 
is introduced. The relative importance of these attributes is 
indicated by their weights as follows: 

∑
=

= Q

1q

k
q

k
qk

q

f

f
w , 

(1) 

where k
qw  denotes the weight of the attribute, 1w

Q

1q

k
q =∑

=

.  

(6) Determine scales for nominal values. To compare nominal 
values, a semantic scale is necessary in assessing the 
corresponding attribute type. Usually a number between 0 and 
1 is assigned for a specific nominal value, whereby 0 
represents no information content and 1 indicates the maximal 
amount of information content. For example, the semantic 
scale for attribute “color” may be established by assigning 0.2, 
0.3, 0.4 and 0.6 for “yellow”, “green” “red” and “blue”, 
respectively. Usually such scales are determined a priori based 
on domain knowledge. If no domain experts are available, 
then simply use 1 for exactly the same nominal values and 0 
for different ones, regardless of their proximity. With 
quantification of nominal attributes, both nominal and 
numerical values can be processed in the same manner, 
despite of their origins.  

(7) Compare attributes for their similarity.  For an attribute k
qa , 

the similarity of its instances is determined by comparing their 
difference (i.e., dissimilarity) in attribute values, as shown in 
Figure 3. [ ]1,0S

k
qa

rs ∈  denotes the similarity of two attribute 

values, *k
qra  and *k

qsa . 

(8) Calculate similarity degree. The similarity of two 
primitive component variants, 

M
jkCo

rsS , is calculated as a 
weighted sum of similarity measures of all their attributes, as 
shown in Figure 3. 1S0

M
jkCo

rs ≤≤  and Q,,1qw k
q L=∀  is 

computed based on Eq. (1). 

(9) Construct component similarity matrices. Repeat steps (7)-
(8) for all the instances of this component type recorded in the 
data file. Then a PP ×  matrix, [ ] PP

Co
rs

M
jkS × , is constructed to 

present pairwise similarity measures for this primitive 
component type. Enumerating all the primitive components, a 
number of such PP ×  matrices are constructed in accordance 
with a total number of iPrK  primitive component types 
contained in the data file. 

Procedure of computing similarity of compound components 
Each i-node operation, jO , enacts a subtree for producing a 
compound component, P

jCo , from primitive components, 
{ }

jK
M
jkCo . To find the accurate similarity between subtrees, 

bipartite matching [4] is applied through deriving compound 
component similarity based on the similarity of primitive 
components. Further considering that different primitive 
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D

components may contribute differently to the compound 
component, weighted bipartite matching is adopted by 
introducing different weights to the child nodes. Thus the end 
result is a weighted sum, as shown in Figure 3. 1S0

P
jCo

rs ≤≤  
suggests the similarity of two compound components of the 

same type, *P
jrCo  and *P

jsCo , 1w
jK

1k

M
jk =∑

=

 indicate the relative 

importance of { }
jK

M
jkCo and can be determined by, e.g., domain 

experts, and ( )M
jg

M
jk Co,Co

rsS  denotes the similarity of a paired child 

nodes, *M
jkrCo  and *M

jgsCo . 

Since the similarity of compound components depends on the 
similarity of the material components, be they are primitive 
components or compound components. Computing similarity 
of compound component similarity should be carried out in a 
bottom-up approach along with product structures. In other 
words, only the similarity of components at lower levels has 
been obtained, can the similarity of components at higher 
levels be computed. Same as the result of measuring primitive 
component similarity, a total number of N compound 
component similarity matrices, [ ] PP

Co
rs

P
jS × , are constructed.  

3.1.2 Product similarity measure 
Each product component, P

j
P
O Co

j
=Φ , is a type of compound 

components. Thus, the number of N compound component 
similarity matrices simplifies measuring similarity of same 
type product components. Similarity of product components is 
obtained from the corresponding compound component 
similarity matrices. As a result, a product similarity matrix, 
[ ] PP

P
rs

jS × , can be constructed for each product component type. 
By enumerating all the product components contained in the 
compound data file, a total number of N product similarity 
matrices are constructed. 

3.1.3 Resource similarity measure 
The resource description, jR , of each operation, jO , includes 
three attributes: workcenter, jW , cycle time, jT , and setup, 

jS . While jW  and jS  are nominal attributes, jT  is of the 
numerical type. Text mining is conducted in a similar manner 
as that of primitive components. Resource descriptions of all 
operations (both l-nodes and i-nodes) are cataloged in a 
separate text file. Then text mining is carried out with respect 
to the three attribute fields and thus similarity measures in 
terms of workcenter ( jW

rsS ), cycle time ( jT
rsS ) and setup ( jS

rsS ) 
are derived as follows: 

{ } { }P,,1i|WminP,,1i|Wmax
WW

1S *
ji

*
ji

*
js

*
jrW

rs
j

LL =∀−=∀

−
−= , (2) 

{ } { }P,,1i|TminP,,1i|Tmax
TT

1S *
ji

*
ji

*
js

*
jrT

rs
j

LL =∀−=∀

−
−= , (3) 

{ } { }P,,1i|SminP,,1i|Smax
SS

1S *
ji

*
ji

*
js

*
jrS

rs
j

LL =∀−=∀

−
−= , (4) 

where [ ]1,0S,S,S jjj S
rs

T
rs

W
rs ∈ , *

jiW , *
jiT  and *

jiS  stand for the 
specific values of workcenter, cycle time and setup, 
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respectively. Accordingly, the resource similarity measure of 
two operation variants, jR

rsS , is calculated as a weighted sum 
of similarity measures regarding all their attributes as follows: 

jjjjjjj S
rs

ST
rs

TW
rs

WR
rs SwSwSwS ++= , (5) 

where 1S0 jR
rs ≤≤ , 1www jjj STW =++ , and jWw , jTw  and jSw  

denote the relative importance of workcenter, cycle time and 
setup attributes, respectively. 

By enumerating all instances of resource description, jR , a 

resource similarity matrix, [ ] PP
R
rs

jS × , is constructed to present 
pairwise resource comparisons of all variants of operation jO . 
Similarly, a total number of N resource similarity matrices are 
constructed for all the operations, { }

PN
*
jkO

×
. 

3.1.4 Operation & node content similarity measures 
With material similarity, jM

rsS , product similarity, jP
rsS , and 

resource similarity, jR
rsS , the operation similarity is computed, 

as shown in Figure 5. Enumerate the above operation 
similarity calculation for all operations variants of all 
operations types. Then present pairwise similarity of same 
types of operations variants in same matrices. A total number 
of N operations similarity matrices are constructed. 

Operation Similarity
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Figure 5. Measuring operation similarity and node 

content similarity. 
The node content similarity between two routings is computed 
as the sum of their operations similarity, as shown in Figure 5. 

Enumerate the above node content similarity calculation for 
all the ROUs  in the routing set and obtain the pairwise 
similarity of node content of all routings. 

3.1.5 Normalized node content similarity matrix 
Since 1S,S,S0 jjj R

rs
P
rs

M
rs ≤≤ , jO

rsS  and NC
rsS  may not suggest a 

relative measure ranging from 0 to 1. They need to be 
normalized to achieve a consistent comparison. This research 
adopts the most common approach: max-min method [5] to 
convert the node content similarity to a relative magnitude 
between 0 and 1. 

NC
rsS  and 'NC

rsS  denotes the original and normalized node 
content similarity between rROU  and sROU , respectively. 
4 Copyright © 2007 by ASME 
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Enumerate above normalization for all the ROUs  and then 
present the result in the form of an ROU  node content 
similarity matrix, [ ] PP

'NC
rsS × . Each matrix element indicates the 

node content similarity of two routing variants corresponding 
to row and column, respectively. 

3.2 TREE STRUCTURE SIMILARITY MEASURE 
Tree matching technique is applied to measure tree structure 
similarity, which measures the degree of commonality of two 
routings in terms of their operations precedence. Figure 6 
shows the procedure of measuring tree structure similarity 
using tree matching.  
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Figure 6. Measuring tree structure similarity. 

(1) Determine a base ROU. Each ROU  is a partial order, and 
shus may possess a number of alternative representation trees. 
The similarity of two ROUs  may vary if different 
representation trees of them are used for the comparison. It is 
thus necessary to make decision based on pairwise 
comparisons of all possible representation trees of two ROUs . 
Owing to the symmetric property of distance measure and 
cyclic representation of a partial order [6], the pairwise 
comparisons can be simplified to merely compare an arbitrary 
tree of one ROU  (referred to as a base ROU ) with all 
representation trees of the other ROUs . To reduce the total 
number of pairwise comparisons among ROUs , the ROU with 
the most representation trees should be selected as the base 
ROU . The number of representation trees of an ROU is given 
as N2 , where N  is the number of nodes with two child nodes.  

(2) Generate representation trees. For a number of routings, 
{ }P,,1r|ROU r L=∀ , each of the first ( )1P −  routings serves as 
a base ROU for comparison of tree structure similarity with its 
immediate next ROU . Thus a total number of ( ) 21PP −×  
pairwise comparisons are needed. Except for the 
ROU selected to be the first base ROU , all the rest ROUs  are 
compared with their corresponding base ROUs . Thus, all 
corresponding representation trees need to be generated for 
each of these ( )1P −  ROUs . 

(3) Establish a tree edit graph. To overcome the disadvantage 
of traditional tree transformation using tree editing operations, 
the tree edit graph [7] is adopted in this research to obtain 
dissimilarity, and thus similarity of two trees. 
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(4) Find the shortest path for distance measure. In a tree edit 
graph, there are many paths from the top-left corner to the 
bottom-right corner. Each such a path suggests a possible way 
of transforming one tree to another, which carries different 
costs as well. The distance between two trees should be 
measured according to the shortest path that requires 
minimum number of arcs and thus fewest editing operations. 
The distance measure between every two trees is determined, 
as shown in Figure 6. *A  is the total number of valid arcs in 
the shortest path and C  is a constant indicating unit cost value 
associated with each operation, regardless of its type.  

Repeat the above procedures for comparing all the 
representation trees for one ROU with the base ROU . The 
distance measure between this ROU and the base ROU is 
determined by the minimum distance among all distance 
measures between its representation trees and the base ROU . 
By enumerating all the ( )1P −  ROUs  in the given set, their 
tree structure distances from the base ROU are reckoned in the 
same manner.  

(5) Normalize distance data. The above distance measures are 
all absolute values instead of relative magnitude. For 
consistent comparison, they need to be normalized. The max-
min method is adopted to convert the absolute distance 
measure of each ROU pair to a dimensionless value ranging 
between 0 and 1, as shown in Figure 6. TS

rsD  and 'TS
rsD  denotes 

the absolute and normalized distance measures between rROU  
and sROU , respectively. 

(6) Calculate tree structure similarity. According to the 
normalized distance measure, the similarity can be calculated. 

(7) Construct an ROU structure similarity matrix. Calculate 
similarity values for all the ROUs  in the routing data set. Then 
present all pairwise similarity measures in a PP ×  matrix, 
[ ] PP

TS
rsS × . Each matrix element indicates the structure similarity 

of two ROUs  corresponding to row and column, respectively. 

3.3 ROU SIMILARITY MEASURE 
As node content similarity and tree structure similarity are two 
independent measures, the overall ROU similarity is obtained 
by an Euclidian distance, as shown in Figure 1. 

Repeat the above routing similarity calculation for all ROUs  
in the routing set and obtain the pairwise similarity of all 
ROUs . The normalization is applied to obtain the normalized 
routing similarity, rsS  such that 1S0 rs ≤≤ , as follows: 

{ }
{ } { }P,,1s,rSminP,,1s,rSmax

P,,1s,rSminS
S

'
rs

'
rs

'
rs

'
rs

rs
LL

L

=∀−=∀

=∀−
= , (6) 

Repeat the above normalization for all ROUs . Then present 
pairwise routing similarity in a PP ×  matrix, [ ] PPrsS × . Each 
matrix element indicates the normalized similarity of two 
ROUs  corresponding to row and column, respectively.  
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4 GROU IDNETIFICATION 
4.1 ROU CLUSTERING 
ROU clustering aims to group similar routings into clusters. 
Hence, an ROU cluster is a collection of routings that are 
similar to one another within the same cluster yet dissimilar to 
the routings in other clusters. Considering the complex data 
types, e.g., textual data, involved in routings, this research 
adopts a fuzzy clustering approach by taking its advantage of 
handling subjectiveness and impression [8].  

Procedure of ROU clustering 
(1) Define a fuzzy compatible matrix. A fuzzy compatible 
matrix, R , is defined as similarity measures for a given set 
Ω of ROUs . The R  is constructed in a matrix form, that is, 

[ ] PPrsSR ×= , where 1S0 rs ≤≤  suggests a pair-wise relationship 
(similarity grade) between any two ROU instances. In R , it 
holds true that 1Srr =  suggesting that R  is reflexive. Also 
true is srrs SS =  suggesting that R  is symmetrical. Therefore, 
the fuzzy compatible matrix R  is identical to routing 
similarity matrix obtained previously.  

(2) Construct a fuzzy equivalence matrix. A fuzzy equivalence 
matrix is defined for Ω  with transitive closure of a fuzzy 
compatible matrix [8]. To convert a compatible matrix to an 
equivalence matrix, the max-min composition [9] is adopted.  

(3) Determine a λ-cut of the equivalence matrix. The λ-cut is a 
crisp set, λR , that contains all the elements of Ω , such that 
the similarity grade of R  is no less than λ , that is, 

[ ] PPrsR ×= τλ , (7) 

where         [ ]1,0S,
Sif0
Sif1

rs
rs

rs
rs ∈





<
≥

=
λ
λ

τ , (8) 

Then each λ-cut is an equivalence matrix representing the 
presence of similarity among routings to the degree λ .  

(4) Identify ROU clusters. A netting graph method [3] is 
applied to identify partitions of routing instances with respect 
to a given equivalence matrix. 

4.2 ROU UNIFICATION 
ROU unification is to unify all members of an ROU  cluster 
into a generic routing, GROU . The major elements of a 
GROU include a set of master routing elements, such as 
operations and precedence, and a set of selective routing 
elements. The structure of a GROU , G , is referred to as a 
generic tree and is developed through a tree growing process, 
from the sub-general tree structures, referred to as basic trees, 
{ }ZzT , within the ROU  cluster. The formation of a 
GROU involves four major steps, including assorting basic 
arouting elements, identifying master and selective routing 
elements, forming basic trees, and tree growing, as discussed 
below.  

4.2.1 Basic routing elements 
The first step of routing unification is to breakdown individual 
routings into operations and precedence elements. For each 
member of an ROU cluster, { }PM,,1r|ROUROU rr ≤=∀∈ L , 
the nodes (operations) and arcs (precedence) of the 
corresponding ROU tree are assorted and categorized by l-
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nodes or i-nodes. This results in a l-node set, an i-node set, a l-
node arc set, and an i-node arc set, corresponding to l-node 
type { } LNNjLN , i-node type { } INNjIN , l-node arc type { } LNNjLA , 
and i-node arc type { }

1Nj INIA
−

, respectively, where 
NNN INLN =+ , Λ∈∀ jj IN,LN , { } { } ∅=∩ jj INLN , 

f∈∀ jj IA,LA , and { } { } ∅=∩ jj IALA .  

4.2.2 Master and selective routing elements 
The second step is to generalize each individual routing 
element with regard to its original type. This is achieved by 
replacing the specific name or ID of each specific node or arc 
with the general name or ID of the operation or precedence 
class that it belongs to. As a result, each particular routing 
element is labeled with its class identification. And in turn 
each operation or precedence class assumes a certain number 
of occurrences in terms of the number of times individual 
routing elements are generalized into this class. Such an 
occurrence count performs as a commonality index revealing 
to what extent each routing element is reused among 
individual members of an ROU family.  

Given an ROU cluster, if the occurrence count of a precedence 
class reaches the maximal number of instances of this class 
contained in the cluster, i.e., it means that all individual 
routings in the cluster employ this precedence class. 
Therefore, this precedence class along with the related 
operation classes suggest themselves to be the master routing 
elements, i.e., the master precedence and operation classes, 
respectively. Or else, the related operation and precedence 
classes are defined as selective operation and precedence 
classes, respectively, as not all individual variants assume 
them. In this way, all basic routing elements are grouped into 
either master or selective routing elements. 

4.2.3 Basic tree structures 
The third step deals with the generalization of basic trees, each 
of which is common to several members in an ROU family. 
Therefore, a basic tree refers to the common tree structure 
assumed by certain routing variants. A number of MZ ≤  basic 
tree structures, { }ZzT , are identified from M  member trees of 
an ROU family.  

To track commonality of a basic tree with respect to its 
represented routing variants, each arc of the basic tree is 
assigned a weight indicating the degree of repetition of this arc 
among ZM z ≤  routings. Initially, the value of such a weight 
is set to be the same as the occurrence count of each arc, 
regardless it is a master or selective precedence. In accordance 
with the assortment of basic routing elements, a basic tree is 
specified by a 4-tuple, denoted as: 

( )AANN
z I,L,I,LT = , (9) 

where ( )z
N TL , ( )z

N TI , ( )z
A TL , and ( )z

A TI  are sets of basic 
routing elements, encompassing all l-node classes, i-node 
classes, l-node arc classes and i-node arc classes contained in 

zT , respectively.  

4.2.4 Tree growing 
The fourth step aims to form the generic tree by pasting all 
basic trees one by one. Tree growing starts with the selection 
of a seed, i.e., an initial generic tree, 1G . Among basic trees, 
6 Copyright © 2007 by ASME 

ms of Use: http://www.asme.org/about-asme/terms-of-use



Do
{ }ZzT , the one holding a longest path and possesses the 
maximal number of i-nodes is recognized as the seed. Such a 
comprehensive tree encompasses most production conditions 
occurring among the process family members. The initial 
generic tree starts to grow by unifying with the other 1Z −  
basic trees one by one, that is, 

i1ii TGG U−= , (10) 
where iG  is a growing tree. After all basic trees are unified, 
the growing tree reaches its final form, ZG , namely, the tree 
structure of  the GROU .    

Since the structure of a GROU  includes all operations 
occurred in the ROU  cluster, both ( )GLN  and ( )GI N  are 
simply union of all node sets contained in basic trees. 
However, ( )GLA  and ( )GI A  do not work with simple union 
operations, because a tree structure has to be maintained 
throughout the tree growing process.  

If an l-node arc exists in iT  but not in 1iG − , this arc is of 
selective type, i.e., S

ijLa . Such selective arcs, { } LNS
iN

S
ijLa , are 

pasted to 1iG −  only when their associated operations, i.e., 
selective l-nodes, { } LNS

iN
S
ijLn , do not exist in 1iG −  at the same 

time. Except this situation, to include a selective l-node arc of 
iT , ( )i

AS
ij TLLa ∈ , into 1iG −  or to put it in ASA  depends on the 

result of comparing its weight, 
S
ijLa

jW , with that, ( )
S

j1iLa
jW − , of the 

corresponding arc in 1iG − . Whichever assuming higher weight 
should be included, as a higher weight means more common a 
selective arc is used. Such a weight results from the sum of the 
occurrence count of this arc in all member trees and the 
recorded weight of the same arc in ASA , if it is not empty. 
Likewise a selective i-node arc, ( )i

AS
ij TLIa ∈ , does not exist in 

1iG − . Only when the associated parent i-node, ( )i
NS

ij TIPIn ∈ , 
and child i-nodes, ( )i

NS
ij TICIn ∈ ., do not exist in 1iG −  at the 

same time can this i-node arc be added to 1iG − . Otherwise, 
evaluation of its weight is needed. In essence, arc unification 
aims to combine the arc sets of iT  and 1iG −  while removing 
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those less common arcs. 

Each arc conveys information regarding two operations and 
the order of their execution. Tree growing is thus performed 
based on the search and evaluation of arcs. Any change to an 
l-node will propagate upwards in the routing tree till to the 
root node, thus causing changes to all relevant i-nodes and 
affecting the tree structure as well. Therefore in tree growing, 
l-node arcs are treated first and then i-node arcs. Moreover, 
tree growing operates on master l-node arcs and master i-node 
arcs first, and then selective l-node arcs and selective i-node 
arcs. 

For the master l-node and i-node arc sets of iT , M
ijLa  and M

ijIa , 

add their weights, 
M
ijLa

jW  and 
M
ijIa

jW , in 1iG −  by the 
corresponding weight values in iT . For the selective l-node arc 
set, S

ijLa  of iT , if they can be found in iG , then increase their 

weights 
S
ijIa

jW  in iG  by the corresponding weight values in iT . 

For the selective i-node arcs of iT , increase their weights in 

1iG −  by the weight values in iT  if they can be found in 1iG − ,. 

Upon completion of the tree growing process, the formed 
GROU  consists of a generic tree structure and an additional 
arc set. Due to the presence of selective arcs in the generic 
tree, the GROU is by no means the union of all member trees. 
Addition and removal of certain arcs according to their 
weights guarantee that the resulted generic structure is the 
most common to individual routings in an ROU  family. 

5 CASE STUDY 
The proposed data mining methodology has been applied to 
high variety production of vibration motors for mobile phones 
in an electronics company. Due to the many design changes in 
mobile phones, vibration motors in the company are typically 
customized. The company has been struggling to produce 
quickly the diverse motors at low costs. However handling the 
frequent production changeovers, most of which are caused by 
improper routings planned subjectively by production 
engineers, becomes the company’s major headache. 
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Figure 7. Two routing representation trees. 
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5.1 ROUTING SIMILARITY MEASURE 
The production data of 30 routing variants for producing 30 
motor variants has been used to test the methodology. Figure 7 
shows two routing binary representation trees. In each routing 
tree, the nodes represent specific operations. The label of each 
node indicates the ID of the operation concerned. For 
example, “FmA2” represents a particular assembly operation 
for producing the final motor product, and “StM3” denotes a 
specific variant of shaft machining operation.  

The SPSS software package (www.spss.com) has been 
adopted for text analysis. Three attributes are used to describe 
the characteristics of each operation: the material, product, and 
resource types. In preparing data files for text mining, raw 
materials are described as material components of machining 
operations. An operation description data file is obtained by 
enumerating all the operations contained in the 30 routings. 
Assorting all primitive and compound components for each 
operation, this data file is separated into two text files, one 
containing all primitive components and the other containing 
compound components. Then these two files are input into 
SPSS for text analysis. 

Figure 8 shows the results of text analysis. For illustrative 
simplicity, a type of primitive component: bracket b (referred 
to as “bb”) is used as an example. The result includes the 
extracted keywords, i.e., attribute values describing “bb” 
variants, and their respective occurrence counts.   
Based on extracted information, the relevant attributes are 
identified and their weights are calculated. For the set of 
attributes identified, shape, color and material are of nominal 
type whilst weight and thickness are numerical ones. To 
quantify each nominal attribute, semantic scales are assigned 
for its specific instances based on domain knowledge. Based 
on established semantic scales, attribute similarity measures 
are calculated. Based on the results of attribute similarity, 
similarity measure of component “bb” among 30 routing 
variants is derived. The result is presented in a matrix form.  

In the same way, the similarity matrices of other primitive 
components are constructed. Based on the primitive 

Figure 9. Routing simi
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component similarity matrices, the similarity of compound 
component, and further the similarity matrices of compound 
components of same types, is obtained. The similarity 
matrices of compound components provide the similarity of 
product components. Resource similarity measure proceeds 
with text analysis in a similar way. At last, the resource 
similarity matrix for “Bracket Assembly” operation is 
obtained.  

Compiling results of component and resource similarity 
measures, operation similarity is derived. Similarly, similarity 
matrices of all operations types involved in the 30 routings are 
obtained. Finally, the normalized node content similarity 
measures are calculated. Tree structure similarity of 30 
routings is measure by following the developed procedure and 
the result of pairwise comparison is obtained. Finally, 
compiling node content similarity and tree structure similarity, 
the normalized pairwise similarity measures of 30 routings are 
obtained, as given in Figure 9. 
 

larity matrix of 30 routings. 

SHAPE

MATERIAL

COLOR

SHAPE

MATERIAL

COLOR

 
Figure 8. Text mining result: extracted keywords and 

occurrence count. 
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5.2 ROU CLUSTERING AND UNIFICATION 
By its property, the routing similarity matrix itself  is a fuzzy 
compatible matrix. Applying the max-min composition, a 
fuzzy equivalence matrix is obtained. Based on domain 
knowledge on clustering, a threshold level of 0.85 is decided. 
Accordingly the λ-cut matrix is obtained. Subsequently, the 
netted graph is developed, based on which the ROU clusters 
are derived. Table 1 gives the result of ROU clustering with 
four ROU clusters identified. For each ROU cluster, one 
GROU is formed by tree growing. For example, routing 
cluster “RC1” contains 9 member trees (R1, R3, R10, R13, 
R14, R17, R20, R22 and R25). The tree structures of these 9 
routings are unified as a generic tree. Figure 10 presents the 
identified GROU for “RC1”, which is represented using the 
unified modeling language. 

Table 1. Result of routing fuzzy clustering. 
ROU Cluster ROU Variants 

RC1 R1, R3, R10, R13, R14, R17, R20, R22, R25 
RC2 R2, R4, R5, R6, R7, R8, R9, R11, R16, R18 
RC3 R23, R26, R27, R28, R29, R30 
RC4 R12, R15, R19, R21, R24 

6 CONCLUSIONS 
A generic routing essentially performs as a process platform to 
support the fulfillment of product families. It contributes to the 
utilization of commonality underlying process variations. The 
formation of generic routings coincides with the wisdom of 
knowledge reuse and economy of repetition. Generating 
generic routings based on knowledge discovery from past data 
avails to maintain the integrity of existing product and process 
platforms, as well as the continuity of the infrastructure and 
core competencies, hence leveraging existing design and 
manufacturing investments. The application of data mining, 
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Figure 10. Formed GROU for r
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ore specifically text mining and tree matching, opens 
pportunities for incorporating experts’ experiences into the 
rojection of production planning patterns from historical 
ata, thereby enhancing the ability to explore and utilize 
omain knowledge more effectively. 
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