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ABSTRACT

In accordance with the product families, process
platforms have been recognized as a promising tool for
companies to configure optimal, yet similar, production
processes for producing different products. This paper tackles
process platform formation from large volumes of production
data available in companies production systems. A data
mining methodology based on text mining and tree matching
is developed for the formation of process platforms. A case
study of high variety production of vibration motors for
mobile phones is reported to prove the feasibility and potential
of forming process platforms using text mining and tree
matching.

1 INTRODUCTION

One of the pressing needs faced by manufacturing companies
nowadays is to produce quickly a high variety of customized
products at low costs. The linchpin for companies to achieve
efficiency in the resulting high variety production, thus
surviving lies in their ability to production as stable as
possible. Stable production can only be achieved by taking
advantages of commonality and similarity inherent in various
production processes when fulfilling individua products.
Process platforms [1] have been recognized as a promising
tool for companies to obtain and further maintain stable high
variety production through configuring optimal, yet similar,
production processes for producing new products while
considering their existing manufacturing capabilities.

The authors provided a rigorous definition of process
platforms along with the basic constructs and functionalities.
However, they did not discuss further how to form process
platforms in current manufacturing environment, where large
volumes of production data are generated. This paper, thus,
discusses process platform formation with existing production
datain companies production systems.
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Reusing proven knowledge implicitly in existing production
data suggests itself as a natural technique to facilitate the
handling of production process changes and tradeoffs between
design variations and process changes. Data mining excels in
discovering previously unknown and potentially useful
patterns of information, i.e, knowledge, from past [2].
Towards this end, this chapter introduces a data mining
methodology to solve the problems in forming process
platforms. To meet the challenges, specific data mining
techniques, including text mining and tree matching, are
adopted.

2 METHODOLOGY

While a product family refers to a set of individual products,
performing a basic function, with a common product structure,
aprocess platform is a set of production processes, assuming a
common routing structure, to produce the set of individual
products in a family. In accordance with a product family and
the corresponding process family, a generic routing structure
is fundamental to a process platform [1]. Hence, the generic
routing structure is common to al individua production
processes in the process family. Thus the problem of process
platform formation can be converted to that of generic routing
identification from large volumes of production data available
in companies production systems.

The data mining methodology consists of three consecutive
parts, as shown in Figure 1. In the first part, the similarity of
existing routings is measured. Based on the similarity measure
results, in the second part, the similar routings are clustered
into same families using a fuzzy clustering procedure. In the
last part, the generic routings are formed for the corresponding
families using a tree unification procedure developed in this
research.
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Figure 1. Overview of data mining methodology.

A routing consists of a number of product items, operations,
and operations precedence relationships. Thus, the similarity
of two routings involves two types. operations similarity
(involving item similarity) and precedence similarity. In
practice, a routing is represented by a tree precedence graph,
in which nodes represent operations and arcs indicate the
precedence relationships between two connected operations.
Thus, measuring routing similarity can be decomposed into
measuring node content similarity and tree structure similarity,
which correspond to operations similarity and precedence
similarity. Since node content similarity and tree structure
similarity are two independent similarity measures, the
Euclidian distance measure is adopted in this research to
compute routing similarity, as shown in Figure 1. In this
research, the methodology is applied to the basic
representation trees: binary trees, as shown in Figure 2.
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Figure 2. A binary tree representation of a routing.

Besides numerica data, operations are described by
categorical data, e.g., specific shapes, materials, pertaining to
product and process characteristicss. To avoid the
subjectiveness and imprecision associated with routings due to
the categorical data, fuzzy clustering is adopted in this
research to group similar routings into same families. The
netting graph method [3] is incorporated in routing fuzzy
clustering as well. In the last part, a procedure has been
developed to identify the generic routings for the
corresponding families obtained in the second part. It is
accomplished through unifying other trees with an initia tree,
i.e., the seed tree, one by one in a process family. Section 3
presents Part 1. Routing similarity measure; Section 4:
Generic routing identification discusses Parts 2 and 3: Routing
clustering and unification together.

3  ROUTING SIMILARITY MEASURE

Let w={ROU, L_,ROU,} represent a set of existing routings;
S,. for the similarity between two routings, ROU, and ROU_;
Sy¢ for node content similarity; and S7° for tree structure
similarity.

3.1 Node Content Similarity Measure

Node content similarity measures the degree of approximation
of two routings in terms of their operations descriptions. To
cope with the textua data, the text mining technique is
employed. For a set of routings, there are a number of
operation types (nodes), {0, } , from the instances of which
each individual routing is constituted. Some routings may not
assume al these operations types.

Corresponding to a P number of routings, each operation type
assume a maximal number of P specific variants. Let S be
the similarity of two operations variants, O, and O,
"r,s=1L,P and r? <, corresponding two routings, ROU,
and ROU._, respectively. Each operation variant is described
by materials, {F '}, the product, {F ¢ }, and resources, {R, }.

Accordingly, the operation similarity measure, S2, consists

rs

of three dlements, namely material similarity, S"', product

rs

similarity, S”, and resource similarity, S .

3.1.1 Material similarity measure
The materials of an operation, O, , are a set of components, be

they are a type of raw materias, intermediate parts, and/or
subassemblies, i.e, FY ={co} |"k=1L K }. For a labeled
binary tree, there are at most two material components, i.e.,
K, =2. Therefore, S is calculated based on he similarity
of al their material components. Since some components may
be more important than others for an operation, S is
computed as aweighted sum of individual material component
similarity. The weight of each component, wj“ﬁ|" k=1LK,,

Kl
indicates the rel ative importance of {Cofﬁ}K and g w! =1.1n
! k=1
practice, the weights are determined based on domain
knowledge.

Two types of nodes are involved in an ROU tree: leaf nodes
(noted as |-nodes) and intermediate nodes (referred to as i-
nodes). Each I-node represents a machining or assembly
operation that consumes &t least one primitive component to
produce a compound component. Each i-node indicates an
assembly operation that produces a subassembly or end
product. The materials of an i-node are al compound
components, i.e., the subassemblies or intermediate parts. For
example in Figure 2, operations M1, M2, M3 and A4 are |-
nodes, whilst operations A1, A2 and A3 are i-nodes.

For an I-node, the corresponding operation takes at least one
primitive component as input materias. If an operation is
represented by an i-node, its materiad components are al
compound components. Accordingly, the similarity of two

component variants, Coj“ﬁr’ and CoJ.MkS* , is computed differently
under two situations: (1) Coj; is a primitive component; and
(2) Coj, isacompound component.

Text mining is adopted to compute similarity of primitive
components. The final result is a number of primitive
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component similarity matrices, each of which is for primitive
components of same types. Based on primitive component
similarity matrices, similarity of compound components is
computed using bipartite matching, as shown in Figure 3.

. l\ﬂniﬁg_ = Primitive

Primitive Component Similarity Component
8 [ e imilarity Matrix
s."=aws!

Data File Preparation

Semantics Encoding

],

Compound Component Similarity

%
_— i oset- Z(W?Q m{sigcu‘. o;uy‘vk‘g:“_&})

Py

i Numerical
Nominal

Bipartite Matching l

Quantification

—
Compound
Component

Similarity Matrix

ls7).

‘ Occurrence Frequencies{f“‘}g‘
I
Prioritization {w;},

Figure 3. Text mining and bipartite matching for
computing material similarity.
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Procedure of calculating similarity of primitive components
(1) Prepare data files. Operations nodes are sorted by
primitive and compound components, which are saved
separately in two text files. One contains the descriptions of all
primitive components. The other documents the contents of all
compound components.

(2) Encode semantics. By following practice, a component is
described by a list of attribute values with respect to
descriptive fields. The basic attribute field is the name or ID of
the component type. Figure 4 shows an example of attribute
descriptions for a specific bracket b variant, called bb. Two
types of attributes can be distinguished: nomina and
numerical. Different with normina attribute values, a specific
numerical value alone cannot suggest which attribute field it
pertains to. For example, “10mm” can indicate an instance of
“length” or “width”. Therefore, rather than by listing single
values, numerical attributes are described using attribute-value
pairs, for example, “weight0.08g” in Figure 4.

Component Description

BRACKET A, SQUARE, BLACK, WEIGHTO0.08g

Figure 4. Description of a “bb” variant.

(3) Extract keywords. Text mining analysis is applied to each
component file. The result is a list of extracted significant
words or phrases. The keywords are generated as separated
records in three forms. Single words and word combinations
congtitute phrases, representing the values of nomina
attributes.  Word-number pairs are related to numerical
attribute fields.

(4) Derive occurrence frequencies. All extracted keywords are
cataloged according to their corresponding attribute fields.
The occurrence of each attribute is counted by the actual
values assumed. Assume a total number of Q attributes,

{a¥1"q=1L,Q}, are used to describe a component Co’ .
Dividing the number of occurrence by the total number of
records in the text file, {a;* ["i :1,L,P}, the occurrence

frequency, f;, of the attribute a; is determined by the count

of active instances, c;, and the total number of records, i.e.,
the number of P.

(5) Prioritize attribute fields. To consider an attribute's
different contributions in different components, the relative
importance of attributes in relation to occurrence frequencies
is introduced. The relative importance of these attributes is
indicated by their weights as follows:

£

o M

-

q=

Q
where w/ denotes the weight of the attribute, § w = 1.

q=1
(6) Determine scales for nominal values. To compare nominal
values, a semantic scale iS necessary in assessing the
corresponding attribute type. Usually a number between 0 and
1 is assigned for a specific nominal value, whereby O
represents no information content and 1 indicates the maximal
amount of information content. For example, the semantic
scale for attribute “color” may be established by assigning 0.2,
0.3, 0.4 and 0.6 for “yellow”, “green” “red” and “blue’,
respectively. Usually such scales are determined a priori based
on domain knowledge. If no domain experts are available,
then simply use 1 for exactly the same nominal values and O
for different ones, regardless of their proximity. With
quantification of nomina attributes, both nominal and
numerical values can be processed in the same manner,
despite of their origins.

(7) Compare attributes for their similarity. For an attribute a;,

the similarity of itsinstances is determined by comparing their
difference (i.e., dissimilarity) in attribute values, as shown in

Figure 3. S* 1 [0,1] denotes the similarity of two attribute
values, ¥’ and a .

(8) Calculate similarity degree. The similarity of two
primitive component variants, st"m , is calculated as a
weighted sum of similarity measures of al their attributes, as
shown in Figure 3. 0£SY* £1 and w|'gq=1L.,Q is
computed based on Eq. (1).

(9) Construct component similarity matrices. Repeat steps (7)-
(8) for all the instances of this component type recorded in the
data file. Then a P* P matrix, lsf:m JP,P, is constructed to
present pairwise similarity measures for this primitive
component type. Enumerating all the primitive components, a

number of such P~ P matrices are constructed in accordance

with a tota number of K™' primitive component types
contained in the datafile.

Procedure of computing similarity of compound components
Each i-node operation, O,, enacts a subtree for producing a

compound component, Co, from primitive components,
{Coj“ﬁ}K . To find the accurate similarity between subtrees,

bipartite matching [4] is applied through deriving compound
component similarity based on the similarity of primitive
components. Further considering that different primitive
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components may contribute differently to the compound
component, weighted bipartite matching is adopted by
introducing different weights to the child nodes. Thus the end

result is a weighted sum, as shown in Figure 3. 0£S> £1
suggests the similarity of two compound components of the

KI
same type, Co” and Cof, , § w!! =1 indicate the relative

k=1

importance of {Coi“ﬂ }K and can be determined by, e.g., domain

experts, and S,(°°'M* (c0})

S

denotes the similarity of a paired child

nodes, Co"" and Co, .
Since the similarity of compound components depends on the
similarity of the material components, be they are primitive
components or compound components. Computing similarity
of compound component similarity should be carried out in a
bottom-up approach along with product structures. In other
words, only the similarity of components at lower levels has
been obtained, can the similarity of components at higher
levels be computed. Same as the result of measuring primitive
component similarity, a tota number of N compound

component similarity matrices, [S“‘p JP, -, are constructed.

rs

3.1.2 Product similarity measure
Each product component, F 5 =Cof, is a type of compound

components. Thus, the number of N compound component
similarity matrices simplifies measuring similarity of same
type product components. Similarity of product componentsis
obtained from the corresponding compound component
similarity matrices. As a result, a product similarity matrix,

[S,:‘ JP, »» €an be constructed for each product component type.

By enumerating &l the product components contained in the
compound data file, a tota number of N product similarity
matrices are constructed.

3.1.3 Resource similarity measure
The resource description, R, , of each operation, O, , includes

three attributes. workcenter, W, , cycle time, T;, and setup,
S,. While w, and S, are nomina attributes, T, is of the

numerical type. Text mining is conducted in a similar manner
as that of primitive components. Resource descriptions of all
operations (both I-nodes and i-nodes) are cataloged in a
separate text file. Then text mining is carried out with respect
to the three attribute fields and thus similarity measures in

terms of workcenter (S% ), cycle time (S7) and setup (S? )
are derived asfollows:
W, |\Nj’r B VVJ;

S N e L) mnw s @

g =1 T, T @
° mex(T; |" i =1L,Pf- min{T; |"i =1L P}’

Sy =1- |S’” - S 4
° mex(S, |"i =1L ,Pf- miniS, |"i =1L,Pf’

where s%,st,s¥1 (0,1, w,, T, and S, stand for the
specific values of workcenter, cycle time and setup,

respectively. Accordingly, the resource similarity measure of
two operation variants, S7 , is calculated as a weighted sum
of similarity measures regarding all their attributes as follows:
ST =w"S¥ +w"ST +wSY, (5
where 0£SY £1, W' +w" +w® =1, and w", w" and w®
denote the relative importance of workcenter, cycle time and
setup attributes, respectively.
By enumerating all instances of resource description, R;, a
resource similarity matrix, [Sfj JP, -, IS constructed to present
pairwise resource comparisons of all variants of operation O, .
Similarly, atotal number of N resource similarity matrices are
constructed for all the operations, {0}, . .

3.14 Operation & node content similarity measures
With material similarity, S!', product similarity, S?, and

rs 1

resource similarity, S°, the operation similarity is computed,
as shown in Figure 5. Enumerate the above operation
similarity calculation for all operations variants of all
operations types. Then present pairwise similarity of same
types of operations variants in same matrices. A total number
of N operations similarity matrices are constructed.

Operation
—>| Similarity Matrix

st

Operation Similarity

SY =S80 +Sl+s?

Material
Similarity Matrix

[Srzl ]P' P

] E
Product

Node Content

Similarity Matrix Node Content

Similarity Matrix

[SH] [ v SimiI;ritz/
;prpyr' E Srs ]PxP S::c =§135‘

—
Resource —
Similarity Matrix Normalization

[S,Z ]w . i E SEC _ Se- m'n{S,ﬁc\Vr,s = 1,L,P}
1
1

~ max{SFrr 5= 1L P}-min{§F s =1L 7}

Figure 5. Measuring operation similarity and node
content similarity.

The node content similarity between two routings is computed
as the sum of their operations similarity, as shown in Figure 5.

Enumerate the above node content similarity calculation for
al the ROUs in the routing set and obtain the pairwise
similarity of node content of all routings.

3.15 Normalized node content similarity matrix

Since 0£S!,S7,SV£1, So and S may not suggest a
relative measure ranging from O to 1. They need to be
normalized to achieve a consistent comparison. This research
adopts the most common approach: max-min method [5] to
convert the node content similarity to a relative magnitude
between 0 and 1.

" and S denotes the original and normaized node
content similarity between ROU, and ROU _, respectively.
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Enumerate above normalization for al the ROUs and then
present the result in the form of an ROU node content

similarity matrix, l e JP,P. Each matrix element indicates the

node content similarity of two routing variants corresponding
to row and column, respectively.

3.2 TREE STRUCTURE SIMILARITY MEASURE

Tree matching technique is applied to measure tree structure
similarity, which measures the degree of commonality of two
routings in terms of their operations precedence. Figure 6
shows the procedure of measuring tree structure similarity
using tree matching.

Tree Matching

Tree Structure
Similarity Matrix

|s™],..

Tree Structure
Number of Similarity

Representation Trees TS _ TS
P oM Ss =1- Drs

Base Routing

l Normalization

. TS i TS| _
|Representatlon Trees | D™ = Dy —mn{D, \Vr,S—l,L,P}
s

~ max{DSvr s= 1L Pf- mnDSvr s=1,L Pf
Trees Edit Graph

1 i
Distance of Two Distance of Distances of Ever,
Representation Trees | - .
P TS — A Two Routings Paired Trees
D =AC

Figure 6. Measuring tree structure similarity.

(1) Determine a base ROU. Each ROU is a partid order, and
shus may possess a number of alternative representation trees.
The similarity of two ROUs may vary if different
representation trees of them are used for the comparison. It is
thus necessary to make decision based on pairwise
comparisons of al possible representation trees of two ROUs.
Owing to the symmetric property of distance measure and
cyclic representation of a partia order [6], the pairwise
comparisons can be simplified to merely compare an arbitrary
tree of one ROU (referred to as a base ROU ) with all
representation trees of the other ROUs. To reduce the total
number of pairwise comparisons among ROUs, the ROU with
the most representation trees should be selected as the base
ROU . The number of representation trees of an ROU is given
as 2", where N isthe number of nodes with two child nodes.

(2) Generate representation trees. For a number of routings,
{rROU, |" r =1,L,P}, each of the first (P- 1) routings serves as
abase ROU for comparison of tree structure similarity with its
immediate next ROU . Thus a total number of P (P- 1)/2

pairwise comparisons are needed. Except for the
ROU selected to be the first base ROU , dl therest ROUs are
compared with their corresponding base ROUs. Thus, dl
corresponding representation trees need to be generated for
each of these (P- 1) ROUSs.

(3) Establish a tree edit graph. To overcome the disadvantage
of traditional tree transformation using tree editing operations,
the tree edit graph [7] is adopted in this research to obtain
dissimilarity, and thus similarity of two trees.

(4) Find the shortest path for distance measure. In atree edit
graph, there are many paths from the top-left corner to the
bottom-right corner. Each such a path suggests a possible way
of transforming one tree to ancther, which carries different
costs as well. The distance between two trees should be
measured according to the shortest path that requires
minimum number of arcs and thus fewest editing operations.
The distance measure between every two trees is determined,
as shown in Figure 6. A’ is the total number of valid arcs in
the shortest path and C is a constant indicating unit cost value
associ ated with each operation, regardless of its type.

Repeat the above procedures for comparing &l the
representation trees for one ROU with the base ROU . The
distance measure between this ROU and the base ROU is
determined by the minimum distance among al distance
measures between its representation trees and the base ROU .
By enumerating all the (P- 1) ROUs in the given set, their
tree structure distances from the base ROU are reckoned in the
same manner.

(5) Normalize distance data. The above distance measures are
al absolute values instead of relative magnitude. For
consistent comparison, they need to be normalized. The max-
min method is adopted to convert the absolute distance
measure of each ROU pair to a dimensionless value ranging

between 0 and 1, as shown in Figure 6. D'° and D' denotes
the absolute and normalized distance measures between ROU,
and ROU,_, respectively.

(6) Calculate tree structure similarity. According to the
normalized distance measure, the similarity can be calculated.

(7) Construct an ROU structure similarity matrix. Calculate
similarity values for all the ROUs in the routing data set. Then
present al pairwise similarity measures in a P° P matrix,
[Sfjjp, » - Each matrix element indicates the structure similarity
of two ROUs corresponding to row and column, respectively.

3.3 ROU SIMILARITY MEASURE

As node content similarity and tree structure similarity are two
independent measures, the overall ROU similarity is obtained
by an Euclidian distance, as shown in Figure 1.

Repeat the above routing similarity calculation for al ROUs
in the routing set and obtain the pairwise similarity of all
ROUs. The normalization is applied to obtain the normalized
routing similarity, S, suchthat 0£ S £1, asfollows:

S, - min{S,|" r,s=1,L,P}
"r,s=1L,Pf- mn|S,.|"r,s=1L,P}’

S.= -

* I'TB>({SI’S
Repeat the above normalization for all ROUs. Then present
pairwise routing similarity in a P P matrix, [S.],,. Each
matrix element indicates the normalized similarity of two
ROUs corresponding to row and column, respectively.

(6)

5 Copyright © 2007 by ASME



4  GROU IDNETIFICATION

4.1 ROU CLUSTERING

ROU clustering aims to group similar routings into clusters.
Hence, an ROU cluster is a collection of routings that are
similar to one another within the same cluster yet dissimilar to
the routings in other clusters. Considering the complex data
types, e.g., textua data, involved in routings, this research
adopts a fuzzy clustering approach by taking its advantage of
handling subjectiveness and impression [8].

Procedure of ROU clustering

(1) Define a fuzzy compatible matrix. A fuzzy compatible
matrix, R, is defined as similarity measures for a given set
Wof ROUs. The R is constructed in a matrix form, that is,
R=[S.]. ., where 0£S_ £1 suggests a pair-wise relationship
(similarity grade) between any two ROU instances. In R, it
holds true that S, =1 suggesting that R is reflexive. Also
trueis S, =S, suggesting that R is symmetrical. Therefore,
the fuzzy compatible matrix R is identica to routing
similarity matrix obtained previously.

(2) Construct a fuzzy equivalence matrix. A fuzzy equivalence
matrix is defined for W with transitive closure of a fuzzy
compatible matrix [8]. To convert a compatible matrix to an
equivalence matrix, the max-min composition [9] is adopted.

(3) Determine a A-cut of the equivalence matrix. The A-cut isa
crisp set, R, that contains al the elements of W, such that

the similarity grade of R isnolessthan | | thatis,

Ri :[trs]P’P’ (7)
i1 ifse
where trs‘}o its, <1 s.T 4], (8)

Then each A-cut is an equivalence matrix representing the
presence of similarity among routingsto the degree | .

(4) Identify ROU clusters. A netting graph method [3] is
applied to identify partitions of routing instances with respect
to agiven equivalence matrix.

4.2 ROU UNIFICATION

ROU unification is to unify all members of an ROU cluster
into a generic routing, GROU . The mgor elements of a
GROU include a set of master routing elements, such as
operations and precedence, and a set of selective routing
elements. The structure of a GROU , G, is referred to as a
generic tree and is developed through a tree growing process,
from the sub-general tree structures, referred to as basic trees,
{r.},, within the RoOU cluster. The formation of a

GROU involves four maor steps, including assorting basic
arouting elements, identifying master and selective routing
elements, forming basic trees, and tree growing, as discussed
below.

42.1 Basic routing elements

Thefirst step of routing unification is to breakdown individual
routings into operations and precedence elements. For each
member of an ROU cluster, ROU, T {ROU, |"r =1,L_,M £ P},

the nodes (operations) and arcs (precedence) of the
corresponding ROU tree are assorted and categorized by |-

nodes or i-nodes. This resultsin al-node set, an i-node set, a l-
node arc set, and an i-node arc set, corresponding to I-node
type {LN,}, .., i-node type {IN,} ., I-node arc type {LA} .,

and i-node arc type {IAf . , respectively, where
N +N™=N, "LN,,IN T L, LN feiiNg f= 2,
LA IATF, and {LA [C{IA }=£.

422 Master and selective routing elements

The second step is to generalize each individua routing
element with regard to its origina type. This is achieved by
replacing the specific name or ID of each specific node or arc
with the general name or ID of the operation or precedence
class that it belongs to. As a result, each particular routing
element is labeled with its class identification. And in turn
each operation or precedence class assumes a certain number
of occurrences in terms of the number of times individual
routing elements are generaized into this class. Such an
occurrence count performs as a commonality index revealing
to what extent each routing element is reused among
individual members of an ROU family.

Given an ROU cluster, if the occurrence count of aprecedence
class reaches the maxima number of instances of this class
contained in the cluster, i.e, it means that all individual
routings in the cluster employ this precedence class.
Therefore, this precedence class along with the related
operation classes suggest themselves to be the master routing
elements, i.e., the master precedence and operation classes,
respectively. Or else, the related operation and precedence
classes are defined as selective operation and precedence
classes, respectively, as not al individual variants assume
them. In this way, al basic routing elements are grouped into
either master or selective routing elements.

4.2.3 Basic tree structures

The third step deals with the generalization of basic trees, each
of which is common to several members in an ROU family.
Therefore, a basic tree refers to the common tree structure
assumed by certain routing variants. A number of Z £M basic
tree structures, {T,},, are identified from M member trees of

an ROU family.

To track commonality of a basic tree with respect to its
represented routing variants, each arc of the basic tree is
assigned aweight indicating the degree of repetition of thisarc
among M, £Z routings. Initially, the value of such a weight
is set to be the same as the occurrence count of each arc,
regardlessit isamaster or selective precedence. In accordance
with the assortment of basic routing elements, a basic tree is
specified by a4-tuple, denoted as:

T, =L, 000, 9)
where L"(T,), 1M(T,), LA(T,), and 14(T,) are sets of basic
routing elements, encompassing al I-node classes, i-node
classes, I-node arc classes and i-node arc classes contained in
T,, respectively.

42.4 Tree growing

The fourth step aims to form the generic tree by pasting all
basic trees one by one. Tree growing starts with the selection
of a seed, i.e, an initia generic tree, G,. Among basic trees,
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{r,},, the one holding a longest path and possesses the
maximal number of i-nodes is recognized as the seed. Such a
comprehensive tree encompasses most production conditions
occurring among the process family members. The initia
generic tree starts to grow by unifying with the other z- 1
basic trees one by one, that is,

G =G_,UT, (10)
where G, is a growing tree. After all basic trees are unified,
the growing tree reaches its fina form, G,, namely, the tree

structure of the GROU .

Since the structure of a GROU includes all operations
occurred in the ROU cluster, both LV(G) and 1"(G) are
simply union of al node sets contained in basic trees.
However, L*(G) and 1%(G) do not work with simple union
operations, because a tree structure has to be maintained
throughout the tree growing process.

If an I-node arc exists in T, but not in G, _,, this arc is of
selective type, i.e, La;. Such selective arcs, {LaﬂS}N‘M, are
pasted to G,, only when their associated operations, i.e,
selective [-nodes, {Ln”s}Nws, do not exist in G, , at the same
time. Except this situati oh, to include a selective I-node arc of
T, La’l L(T), into G_, or to putitin A, depends on the
result of comparing its weight, W', with that, W, of the
corresponding arcin G, , . Whichever assuming higher weight
should be included, as a higher weight means more common a
selective arc is used. Such aweight results from the sum of the

occurrence count of this arc in al member trees and the
recorded weight of the same arc in A, if it is not empty.

Likewise a selective i-node arc, 1aS1 L*(T,), does not exist in
G., - Only when the associated parent i-node, PInST 1(T,),
and child i-nodes, CIn$1 1™(T)., do not exist in G_, a the
same time can this i-node arc be added to G, ,. Otherwise,

evaluation of its weight is needed. In essence, arc unification
aims to combine the arc sets of T, and G, while removing

those |ess common arcs.

Each arc conveys information regarding two operations and
the order of their execution. Tree growing is thus performed
based on the search and evauation of arcs. Any change to an
I-node will propagate upwards in the routing tree till to the
root node, thus causing changes to all relevant i-nodes and
affecting the tree structure as well. Therefore in tree growing,
[-node arcs are treated first and then i-node arcs. Moreover,
tree growing operates on master |-node arcs and master i-node
arcs first, and then selective |-node arcs and selective i-node
arcs.

For the master |-node and i-node arc sets of T;, La)' and la,

add their weights, W™ and W, in G, by the
corresponding weight valuesin T, . For the selective I-node arc
set, Laj of T, if they can be found in G,, then increase their

weights Wl'e“s in G, by the corresponding weight valuesin T, .

For the selective i-node arcs of T, increase their weights in

G, , by theweight valuesin T, if they can befoundin G, ..

Upon completion of the tree growing process, the formed
GROU consists of a generic tree structure and an additional
arc set. Due to the presence of selective arcs in the generic
tree, the GROU is by no means the union of all member trees.
Addition and remova of certain arcs according to their
weights guarantee that the resulted generic structure is the
most common to individua routingsinan ROU family.

5 CASE STUDY

The proposed data mining methodology has been applied to
high variety production of vibration motors for mobile phones
in an electronics company. Due to the many design changesin
mobile phones, vibration motors in the company are typically
customized. The company has been struggling to produce
quickly the diverse motors at low costs. However handling the
frequent production changeovers, most of which are caused by
improper routings planned subjectively by production
engineers, becomes the company’ s major headache.
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Figure 7. Two routing representation trees.
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Figure 9. Routing similarity matrix of 30 routings.

5.1 ROUTING SIMILARITY MEASURE

The production data of 30 routing variants for producing 30
motor variants has been used to test the methodology. Figure 7
shows two routing binary representation trees. In each routing
tree, the nodes represent specific operations. The label of each
node indicates the ID of the operation concerned. For
example, “FmA2” represents a particular assembly operation
for producing the fina motor product, and “StM3” denotes a
specific variant of shaft machining operation.

The SPSS software package (www.spss.com) has been
adopted for text analysis. Three attributes are used to describe
the characteristics of each operation: the materia, product, and
resource types. In preparing data files for text mining, raw
materials are described as materia components of machining
operations. An operation description data file is obtained by
enumerating all the operations contained in the 30 routings.
Assorting al primitive and compound components for each
operation, this data file is separated into two text files, one
containing all primitive components and the other containing
compound components. Then these two files are input into
SPSS for text analysis.

Figure 8 shows the results of text analysis. For illustrative
simplicity, atype of primitive component: bracket b (referred
to as “bb”) is used as an example. The result includes the
extracted keywords, i.e., attribute values describing “bb”
variants, and their respective occurrence counts.

Based on extracted information, the relevant attributes are
identified and their weights are calculated. For the set of
attributes identified, shape, color and material are of nominal
type whilst weight and thickness are numerical ones. To
quantify each nominal attribute, semantic scales are assigned
for its specific instances based on domain knowledge. Based
on established semantic scales, attribute similarity measures
are calculated. Based on the results of atribute similarity,
similarity measure of component “bb” among 30 routing
variantsis derived. The result is presented in a matrix form.

In the same way, the similarity matrices of other primitive
components are constructed. Based on the primitive

component similarity matrices, the similarity of compound
component, and further the similarity matrices of compound
components of same types, is obtained. The similarity
matrices of compound components provide the similarity of
product components. Resource similarity measure proceeds
with text analysis in a similar way. At last, the resource
similarity matrix for “Bracket Assembly” operation is
obtained.

Compiling results of component and resource similarity
measures, operation similarity is derived. Similarly, similarity
matrices of al operations typesinvolved in the 30 routings are
obtained. Finally, the normalized node content similarity
measures are caculated. Tree structure similarity of 30
routings is measure by following the devel oped procedure and
the result of pairwise comparison is obtained. Finaly,
compiling node content similarity and tree structure similarity,
the normalized pairwise similarity measures of 30 routings are
obtained, asgivenin Figure 9.
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Figure 8. Text mining result: extracted keywords and
occurrence count.
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Figure 10. Formed GROU for routing cluster “RC1”".

5.2 ROU CLUSTERING AND UNIFICATION

By its property, the routing similarity matrix itself is afuzzy
compatible matrix. Applying the max-min composition, a
fuzzy equivalence matrix is obtained. Based on domain
knowledge on clustering, a threshold level of 0.85 is decided.
Accordingly the A-cut matrix is obtained. Subsequently, the
netted graph is developed, based on which the ROU clusters
are derived. Table 1 gives the result of ROU clustering with
four ROU clusters identified. For each ROU cluster, one
GROU is formed by tree growing. For example, routing
cluster “RC1” contains 9 member trees (R1, R3, R10, R13,
R14, R17, R20, R22 and R25). The tree structures of these 9
routings are unified as a generic tree. Figure 10 presents the
identified GROU for “RC1”, which is represented using the
unified modeling language.

Table 1. Result of routing fuzzy clustering.
ROU Cluster ~ ROU Variants

RC1 R1, R3, R10, R13, R14, R17, R20, R22, R25
RC2 R2, R4, R5, R6, R7, R8, R9, R11, R16, R18
RC3 R23, R26, R27, R28, R29, R30

RC4 R12, R15, R19, R21, R24

6 CONCLUSIONS

A generic routing essentially performs as a process platform to
support the fulfillment of product families. It contributes to the
utilization of commonality underlying process variations. The
formation of generic routings coincides with the wisdom of
knowledge reuse and economy of repetition. Generating
generic routings based on knowledge discovery from past data
avails to maintain the integrity of existing product and process
platforms, as well as the continuity of the infrastructure and
core competencies, hence leveraging existing design and
manufacturing investments. The application of data mining,

more specifically text mining and tree matching, opens
opportunities for incorporating experts experiences into the
projection of production planning patterns from historical
data, thereby enhancing the ability to explore and utilize
domain knowledge more effectively.
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