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Abstract— This paper proposes two observer-based FDI
strategies for nonlinear systems represented by a particular
class of multiple model using heterogeneous submodels. The
structure of this interesting multiple model is firstly presented in
order to design two kinds of state observers. The first observer,
known as proportional observer (PO), is an extension of the
classic Luenberger observer, in this way, it can be used to
obtain an estimation of the system state. The second proposed
observer, known as proportional-integral observer (PIO),makes
it possible the simultaneous state and unknown input (e.g.
a fault) estimation of the system under investigation. The
convergence towards zero of the estimation errors providedby
these observers is investigated with the help of the Lyapunov
method. The P observer as well as the PI observer are employed
in a FDI strategy in order to accomplish the detection, the
localisation and eventually the estimation of sensor faults acting
on the system. These two strategies are finally validated in
simulation by considering a simplified model of a bioreactor.

I. I NTRODUCTION

Nowadays,fault detection and isolation(FDI) is increas-
ingly integrated in many real-world applications to provide
fault symptoms which can be used to take appropriate deci-
sions when the expected behaviour of the monitored system
is abnormal. Several techniques can be used to cope with
the FDI problem, among them observer-based techniques are
largely recognised [5], [14]. Observers are employed in a FDI
framework to provide an estimation of the interesting signals
to be monitored e.g. the outputs, the faults, etc. The FDI of
the system is carried out by testing the time-evolution of
someresidual signalsprovided by the observer. In theory,
a residual signal is null when the system behaviour is
according to the expected behaviour in the normal operating
conditions.

Accurate mathematical models, in the whole operating
range of the system, are often necessary to accomplished
the FDI. However the observer design becomes extremely
arduous and even impossible when the used model is too
complex. Indeed, the observer design complexity is strongly
related to the choice of the model structure (linear or
nonlinear) used in the modelling stage. Hence, an interesting
issue is to propose state estimation techniques based on
nonlinear models able to capture complex nonlinear dynamic
behaviours with asimple mathematical structure to reduce
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the observer design complexity. Besides, the use of appro-
priated black-box identification techniques must be possible
in order to obtain the parameters of such models in an
experimental manner [16]. Themultiple model[10] is among
this interesting category of nonlinear models.

Multiple model approach [10] is an appropriate tool for
modelling a large class complex nonlinear systems using
a mathematical model which can be used for analysis,
controller and observer design. The basis of the multiple
model approach is the decomposition of the operating space
of the system into a finite number ofoperating zones.
Hence, the dynamic behaviour of the system inside each
operating zone can be modelled using a simplesubmodel, for
example a linear model. The contribution of each submodel
is quantified thanks to aweighting function. Finally, the
approximation of the system behaviour is performed by
taking into consideration the respective contributions ofthe
submodels via an interpolation strategy.

The interpolation of the submodels can be operated us-
ing many architectures [7], two main architectures can be
distinguished among them. In the first architecture,Takagi-
Sugeno multiple model, the set of the used submodels shares
the same state space and consequently the submodels are
homogeneous. In the second one,heterogeneoussubmodel
can be used because each submodel has its own state
space eventually of different dimension. Many contributions
concern the analysis, the control and the state estimation
of systems modelled by the first multiple model [1], [4],
[10], [17]. Concerning the heterogeneous multiple model, it
is already employed for dealing with the identification [11],
[19] and/or control [8], [9]. However, much less studies are
devoted to the state estimation and the FDI of nonlinear
systems represented by this kind of model [11], [12], [18].

Heterogeneous multiple models are successfully exploited
in [18] in order to design an observer-based FDI strategy
(Neuro-Fuzzy Decoupling Fault Detection SchemeNFDFDS)
for nonlinear systems. Interesting results are obtained inthis
way but the theoretical analyse of the state estimation error
is not truly proposed in this work and the proof of the
convergence towards zero of the estimation error is missing.

In this work, a procedure to design two kinds of observers,
proportional observer (P0) and proportional-integral observer
(PIO), is respectively proposed in sections III and IV. A
theoretical proof of the state estimation error convergence
towards zero is given using the Lyapunov method under
LMI conditions [2]. Finally, in section V, two FDI strategies
based on these two observers are proposed and validated in
simulation by considering a simplified model of a bioreactor.
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Notations : The following notations will be used all along
this paper. P>0 (P< 0) denotes a positive (negative) definite
matrix P; XT denotes the transpose of matrix X, I is the iden-
tity matrix of appropriate dimension and diag{A1, ...,An}
stands for a block-diagonal matrix with the matrices Ai on
the main diagonal. Finally, we shall simply writeµi(ξ (t)) =
µi(t).

II. ON THE HETEROGENEOUS MULTIPLE MODEL

The multiple model strategy is based on the basic idea that
complex dynamic behaviours can be accurately represented
with the help of an interpolation of simple submodels. In this
paper, heterogeneous multiple model will be employed [7].
The state space representation of this multiple model is:

xi(t +1) = Aixi(t)+Biu(t), (1a)

yi(t) = Cixi(t), (1b)

y(t) = ∑L
i=1 µi(ξ (t))yi(t), (1c)

whereL is the number of the submodels,xi ∈R
ni andyi ∈R

p

are respectively the state vector and the output of theith

submodel;u ∈ R
m is the input andy ∈ R

p the measured
output. The matricesAi ∈ R

ni×ni , Bi ∈ R
ni×m, Ci ∈ R

p×ni

are known and appropriately dimensioned.
The complete partition of the operating space of the system

is performed using adecision variableξ (t) that is assumed
to be known and real-time available (e.g. the inputs and/or
exogenous signals). Notice that the contribution of each
submodel is quantified by the weighting functionsµi(ξ (t))
that satisfy the following convex sum constraints:

∑L
i=1 µi(ξ (t)) = 1 and 0≤ µi(ξ (t))≤ 1, ∀i = 1...L, ∀t. (2)

It should be remarked that each submodel has its own
state space because the blending between the submodels is
performed through a weighted sum of the submodel outputs
(see equation (1c)). Consequently, the dimension of the state
vectorxi of each submodel can be different and a homoge-
neous description of the dynamic behaviour of the system,
inside each operating zone, is avoided in this way. Indeed, the
submodel complexity can be well adapted according to the
complexity of the system in each operating region. Hence,
the number of the parameters needed to provide an accurate
representation of the system under investigation can be re-
duced with the help of heterogeneous submodels. Therefore,
this structure is well adapted for modelling strongly nonlinear
systems whose structure varies with the operating regime, for
example, when the complexity of the dynamic behaviour is
not uniform in the operating range.

Remark 1: The outputsyi(t) of each submodel must be
considered asintermediary modelling signalsonly used in
order to provide a representation of the nonlinear system.
Hence, they cannot be employed for driving an observer
because they are not physically available and consequently
no measurement is possible. Only the global outputy(t) of
the multiple model can be used for this purpose.

III. PROPORTIONAL OBSERVER DESIGN(PO)

Recently, the observer design procedure of a proportional
observer based on the heterogeneous multiple model has
been proposed in [11], [12]. This observer takes the following
architecture :

x̂i(t +1) = Ai x̂i(t)+Biu(t)+Ki(y(t)− ŷ(t)), (3a)

ŷi(t) = Ci x̂i(t), (3b)

ŷ(t) = ∑L
i=1 µi(t)ŷi(t), (3c)

where x̂i ∈ R
ni is the estimated state vector of theith

submodel,y(t) the multiple model output vector, ˆy(t) the
estimated output vector provided by the observer andKi ∈
R

ni×p the ith observer gain to be determined.
The use of the augmented state vector:

x̂(t) =
[

x̂1
T(t) · · · x̂i

T(t) · · · x̂L
T(t)

]T
∈R

n, n=∑L
i=1ni

enables to rewrite the observer equations (3) under the
following compact form:

x̂(t +1) = Ãx̂+ B̃u(t)+ K̃(y(t)− ŷ(t)), (4a)

ŷ(t) = C̃(t)x̂, (4b)

where
Ã = diag{A1, · · · ,An} ∈ R

n×n, (5a)

B̃ = [BT
1 , · · · ,B

T
n ]

T ∈ R
n×m, (5b)

C̃(t) = [µ1(t)C1, · · · ,µL(t)CL] ∈R
p×n, (5c)

K̃ = [KT
1 , · · · ,K

T
L ]

T ∈ R
n×p. (5d)

The observer gainK̃ must be determined to ensure for
example the exponential convergence towards zero of the
state estimation error:

e(t) = x(t)− x̂(t). (6)

The time-evolution of the state estimation error (6) is given
by:

e(t +1) = Aobs(t)e(t) (7)

whereAobs(t) is defined by

Aobs(t) = Ã− K̃C̃(t). (8)

The equation (7) is easily obtained by considering the time-
evolution of the equation (6) and using the augmented
equations of the multiple model and the observer (4).

Remark 2: The time-varying matrixC̃(t) in (7) can be
rewritten, using the weighting functions properties (2), as
the following weighted sum of constant matrices:

C̃(t) = ∑L
i=1 µi(t)C̃i , (9)

whereC̃i is a constant block matrix given by:

C̃i =
[

0 · · · Ci · · · 0
]

, (10)

such that the termCi is found on theith block column ofC̃i .
Notice that the individual design of each observer related

to each submodel, using for example standard linear tech-
niques, cannot be used to obtain the global observer (4)
related to the multiple model. Indeed, the convergence of



the state estimation error (6) is not guaranteed in this manner
because the interpolation of the submodel outputs is not taken
into consideration in the observer design. The interpolation of
the submodel outputs for any initial conditions of the system
x(0) and the observer ˆx(0) must be taken into account in the
global observer design procedure. Therefore, the observer
design is carried out from equation (7) using the Lyapunov
method. The following theorem proposessufficient condi-
tionsensuring the exponential convergence of the estimation
error (6).

Theorem 1: The state estimation error (6) between the
multiple model (1) and the PO (3) converges exponentially
towards zero if there exists a symmetric, positive definite
matrix P ∈ R

n×n and a matrixG ∈ R
n×p solution of the

constrained LMI problem:
[

(1−2α)P ÃTP−C̃T
i GT

PÃ−GC̃i P

]

> 0, i = 1, · · · ,L , (11)

for a given decay rate 0< α < 0.5. The observer gain is
obtained byK̃ = P−1G.
Proof. This theorem is obtained by considering a quadratic
Lyapunov function:

V(e(t)) = eT(t)Pe(t), P> 0, P= PT . (12)

The exponential convergence of the estimation error is guar-
anteed by [2] :

∃P= PT > 0, α > 0 : ∆V(e(t))+2αV(e(t))< 0, (13)

where∆V(e(t)) =V(e(t +1))−V(e(t)) and whereα is the
decay rateto ensure the convergence velocity. By using (12),
the inequality (13) becomes:

eT(t +1)Pe(t+1)− (1−2α)V(e(t))< 0, (14)

which can be rewritten as follows considering (7):

eT(t)
{

AT
obs(t)PAobs(t)− (1−2α)P

}

e(t)< 0, (15)

Finally, the LMIs in theorem (1) are obtained using the well-
known Schur complement [2], considering remark 2 and the
weighting functions properties given by (2). �

Let us notice that adequate eigenvalues placement of the
observer can be obtained by an appropriate choice of the
decay rateα in theorem 1. For example, the asymptotic
convergence of the estimation error (6) is obtained by con-
sideringα = 0.

IV. PROPORTIONAL-INTEGRAL OBSERVER DESIGN(PIO)

In this section, unknown inputs (UI) acting on the system
are considered. UI can be used, for example, to take into
consideration faults acting on the system. The heterogeneous
multiple model, already defined by (1), is modified as follows
to take into account the unknown inputη(t) acting on the
system:

xi(t +1) = Aixi(t)+Biu(t)+Diη(t) , (16a)

yi(t) = Cixi(t) , (16b)

y(t) = ∑L
i=1 µi(t)yi(t)+Vη(t) , (16c)

wherexi ∈R
ni andyi ∈R

p are respectively the state and the
output of theith submodel,u ∈ R

m is the measured input,
η ∈R

q the unknown input,y∈R
p the measured output. The

matricesAi ∈ R
ni×ni , Bi ∈ R

ni×m, Di ∈ R
ni×l , Ci ∈ R

p×ni

andV ∈R
p×l are known. The additional matricesDi andV

represent respectively the impact of the UI on the state and
on the output e.g. a sensor or actuator fault (see section V).

The simultaneous state and UI estimation is obtained with
the help of a proportional-integral observer [3], [15] given
by:

x̂i(t +1) = Ai x̂i(t)+Biu(t)+Diη̂(t) (17a)

+Ki(y(t)− ŷ(t)),

η̂(t +1) = η̂(t)+KI (y(t)− ŷ(t)), (17b)

ŷi(t) = Ci x̂i(t), (17c)

ŷ(t) = ∑L
i=1 µi(t)ŷi(t)+Vη̂(t), (17d)

wherex̂i is the state estimation of theith submodel, ˆy(t) the
system output estimation provided by the observer,η̂(t) the
UI estimation. The observer gainsKi ∈R

ni×p andKI ∈R
q×p

must be determined. This observer can be considered as a
particular UI observer.

Notice that the use of the two gainsKi and KI is at the
origin of the “proportional-integral” terminology. Indeed, the
Ki gains ensure a proportional correction according to the
output estimation errory(t)− ŷ(t). On the other hand, theKI

gain provides a correction in the integral loop given by the
equation (17b). The UI estimation is then provided thanks
to this integral action when the UI is a constant signal [3],
[15].

Assumption 1: The unknown inputη(t) is assumed as
constant signal:η(t +1) = η(t).

The gainsKi and KI of the PI observer are designed in
order to ensure that the state estimation error:

e(t) = x(t)− x̂(t) (18)

and the unknown input estimation error

ε(t) = η(t)− η̂(t) (19)

converge exponentially towards zero.
The time-evolution of the state estimation error (18) is

given by:

e(t +1) = (Ã− K̃C̃(t))e(t)+ (D̃− K̃V)ε(t), (20)

whereÃ, K̃, C̃(t) are already defined in (5) and where

D̃ = [DT
1 , · · · ,D

T
L ]

T ∈ R
n×l . (21)

The equation (20) is obtained by considering the both multi-
ple model and PIO augmented equations. The time-evolution
of the UI estimation error (19) is given by:

ε(t +1) = η(t +1)− η̂(t)−KI (y(t)− ŷ(t)) (22)

which can be simplified as follows:

ε(t +1) = ε(t)−KIC̃(t)e(t)−KIVε(t) (23)



according to the assumption 1 (i.e.η(t + 1)− η(t) = 0).
Finally, equations (20) and (23) can be gathered as follows:

[

e(t +1)
ε(t +1)

]

=

[

Ã− K̃C̃(t) D̃− K̃V
−KIC̃(t) I −KIV

][

e(t)
ε(t)

]

(24)

which can be rewritten as

ea(t +1) = (Aa−KaCa(t))ea(t), (25)

where

ea(t) =

[

e(t)
ε(t)

]

, Aa =

[

Ã D̃
0 I

]

, Ka =

[

K̃
KI

]

, (26)

Ca(t) =
[

C̃(t) V
]

.

The following theorem proposessufficient conditionsto
ensure the exponential convergence of the estimation error
given by the PIO (17).

Theorem 2: The state estimation error between the mul-
tiple model (16) and the PIO (17) converges exponentially
towards zero if there exists a symmetric, positive definite
matrix P∈R

(n+p)×(n+p) and a matrixG∈R
(n+p)×p solution

of the constrained LMI problem:
[

(1−2α)P AT
a P−C̄T

i GT

PAa−GC̄i P

]

> 0, i = 1, · · · ,L , (27)

where
C̄i =

[

C̃i V
]

(28)

for a decay rate given by 0< α < 0.5. The observer gain is
given byKa = P−1G.
Sketch of the proof. Notice the similarities between the
estimation error (25) and the estimation error provided by
the PO previously proposed (7). Hence, LMI conditions (27)
are obtained in a similar way by consideringAa, Ka and
Ca(t) instead ofA, K andC(t). �

Remark that the PIO offers some robustness degree with
respect to UI varying slowly in the time i.e.η1(t + 1) ≈
η1(t) (see section V-D). Besides, the PIO principle can be
generalised to the multi-integral case to take into account
polynomial unknown inputs as recently sugested in [13].

V. OBSERVER-BASED FDI STRATEGIES

Two FDI strategies, based on the two P and PI observers,
are proposed in the following sections. The sensor fault
indicator signals provided by these FDI strategies are tested
using a simplified bioreactor model.

A. Bioreactor model presentation

A bioreactor may refer to any device or system that
supports a biologically active environment. The term refers
to a bioreactor vessel in which runs a bio-chemical reaction.
A biological reaction that normally involves three kinds
of variables: biomass (e.g. micro-organisms), substrate (e.g.
carbon sources in the diet) and the biomass production (e.g.
enzymes).

The dynamic behaviour of a continuous bioreactor homo-
geneously mixed (completely mixed) and limited by a single

substrate, reaction of typeS(t) → X(t), can be described
using the following nonlinear model [6]:

Ṡ(t) = D(t)(Sin(t)−S(t))− kr(t), (29a)

Ẋ(t) = −D(t)X(t)+ r(t), (29b)

whereS(t) andX(t) are respectively the concentration of the
carbon substrate rateS(t) and the biomass rateX(t), where
D(t)> 0 is the dilution rate,k a coefficient of productivity,
Sin(t) is the rate of substrate feed concentration andr(t) the
reaction velocity (i.e. the biomass production). The reaction
velocity rater(t) can be characterised by the expression:

r(t) = µmaxS(t)X(t)/(Ks+S(t)) , (30)

whereµmax andKs are two constant which represent respec-
tively the maximum specific growth rate and a saturation
constant. The parameters used in the simulation areµmax=
0.33h−1, Ks = 5gl−1, k = 20. The rate of substrate feed
concentration is considered constantSin = 20gl−1 and the di-
lution rate inside the range of variationD∈

[

0.0 0.22
]

h−1.
It can be noted that the considered bioreactor presents a
nonlinear dynamic behaviour in this operating range.

B. Multiple model representation of the bioreactor

The goal of this section is to represent the dynamic
behaviour of the bioreactor (29) with the help of a hetero-
geneous multiple model (1) in an experimental manner. Two
sequences of pseudo-measures of the carbon substrate rate
S(t) and the biomass rateX(t) are available to accomplished
the identification and the validation tasks. These measures
are generated by considering the dilution rate as a piecewise
input signal with random amplitude and duration.

The decision variableξ (t) is here the input signalu(t).
This arbitrary choice is easily justified on the basis that the
input signal drives the system through the different operating
points i.e. the operating modes. The operating space of
the bioreactor is decomposed into two operating regions
according to the static characteristic of the bioreactor outputs.
The associated weighting function of each operating region
is obtained from the normalisation of Gaussian functions:

µi(ξ (t)) = ωi(ξ (t))/∑L
j=1 ω j(ξ (t)), (31)

ωi(ξ (t)) = exp
(

−(ξ (t)− ci)
2/σ2

)

, (32)

wherec1 = 0.02, c2 = 0.20 andσ = 0.247. The parameters
of the submodels are identified according to the identification
procedure proposed in [11].

As can be see from figure 1, the identified multiple
model (namelyM.M.) provides a good representation of the
global nonlinear behaviour of the bioreactor (namelyBio). It
should however be noted that a small discrepancy between
the dynamic behaviour of the bioreactor and the multiple
model appears in the transitional phases. Indeed, the multiple
model fails to fully follow the transient behaviour of the
system. However, this representation with a reduced number
of sub-models (it only has two submodels) can be used
with success for the FDI purpose as shown in the following
sections. Remark that the multiple model representation of



the bioreactor, obtained in this section, is only used in order
to design appropriated PO and PIO. These observers are
however driven by the inputs/outputs of the bioreactor (29).
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Fig. 1. Time-evolution of the carbon substrate rateS(t) (left) and biomass
rate X(t) (right)

C. Residual signal generation using P observers

The residual fault generation based on observers is ac-
complished through the estimation of system outputs using
measurable signals and the model of the system. The FDI
procedure is performed by analysing the time-evolution of
the residual signals obtained by the comparison between
the measured outputs and the estimated outputs [5], [14].
In theory, the residual signals (i.e. the estimation error)is
null under normal operating conditions of the system. The
residual signal structuring, in order to generated appropriated
fault indicators, can be obtained by replacing the use of only
one observer by the use of a bank of observers where each
observer is driven by a partial set of the available signals.
The well knownDedicated Observer Scheme(DOS) [5], [14]
can be employed in order to obtain structured residual signals
for sensor faults isolation and detection. In this case, theith

observer is driven by all inputs and theith output of the
system.

Here, only sensor faults acting on the bioreactor outputs,
S(t) = y1(t) and X(t) = y2(t), are considered. They are
respectively notedη1(t) andη2(t). The DOS strategy related
to the sensor fault problem of the bioreactor is accomplished
with the help of three PO: the first observer (PO1) is driven
by the input and the first outputy1, the second observer
(PO2) by the input and the second outputy2(t) and the
third observer (PO3) by the input and the two outputsy=
[y1 y2]

T . In the sequel,r i, j is the fault indicator signals
obtained from the error between theith output of the system
and theith output estimated by thejth observer. The isolation
of a sensor faultηi is performed via an incidence matrix
which takes into account the time-evolutions of the residual
signals according to the sensor faults acting on the system
(see table I). In this matrix, a “1” element indicates that
the residual signalr i, j is sensitive to the faultδi while a
“0” element indicates that the residual signalr i, j does not
respond to the faultδi . Finally, the symbol “?” indicates that
no decision can be taken only based on this residual.

The incidence matrix is built according to the following
discussion [12]:

1) The outputy1 is corrupted by a sensor faultη1 6= 0
but the outputy2 is free of fault η2 = 0. The state

estimation performed by the PO1 is then corrupted and
the direction of the residual signalsr i,1 are unknown
due to the non linearity of the observer and since
compensation phenomena which can appear. Hence,
the value of residual signalsr i,1 may remains null in
presence of faults. Therefore, “?” element indicates
that no decision can be taken.

2) On the other hand, the state estimation performed by
the PO2 is correctly performed because this observer
is driven by the outputy2 free of fault. Therefore, the
residual signalr1,2 is undoubtedly sensitive to a fault
η1 (“1” element is used) whereasr2,2 is not sensitive
to this same fault (“0” element is used). Hence, this
configuration will be exploited to conclude about the
presence of a fault on the outputy1.

3) The PO3 is simultaneously driven by the two outputs
and consequently the state estimation is corrupted (“?”
element is used).

The second line of the incidence matrix can be built in a
similar way.

PO1 PO2 PO3
r1,1 r2,1 r1,2 r2,2 r1,3 r2,3

η1 ? ? 1 0 ? ?
η2 0 1 ? ? ? ?

TABLE I

INCIDENCE MATRIX

The considered faults acting on the system outputs of the
bioreactor (29) are step signals of amplitude equal to 10%
of the maximal amplitude of each output. The sensor fault
η1 appears on the outputy1(t) at t = 1880 and vanishes at
t = 2380. The sensor faultη2, acting on the outputy2(t),
appears att = 625 and vanishes att = 1240. The FDI tasks
are accomplished by monitoring the residual signalsr i,1 and
r i,2 according to the incidence matrix I.
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Fig. 2. Time-evolution of residual signalsr i, j

The figure 2 shows the time-evolution of the residual
signals obtained from the DOS strategy. During the absence
of faults (t < 625 ort > 2500) the residual signals are statis-
tically null. In the time-interval 625≤ t ≤ 1240, the residual
signalsr1,1 and r2,1 are according to the fault signatureη2



on the outputy2. This information is also verified by the
residual signals generated by the two observers. During the
time-interval 1880≤ t ≤ 2380 , the residual signalsr1,2 and
r2,2 are according to the fault signatureη1 on the output
y1. Notice however that the isolation of sensor faults acting
simultaneously on the outputs becomes impossible. In order
to avoid this problem, the PIO proposed in section IV can
be used for residual signal generation.

D. Residual signal generation using PI observers

Unknown input observers are employed as an alternative
of PO to generate structured fault signals. Indeed, the PIO
previously proposed is a particular class of unknown input
observer which makes it possible the simultaneously state
and output estimations. Hence, the unknown input estimation
provided by this observer can be directly used as a residual
signal, i.e. sensor fault indicator, because the sensor faults
are considered as unknown inputs to be estimated.

Here, the matrices̃D and V used to take into account
the impact of the faults on the states and on the outputs
respectively are given:̃D = 0(4×2) and V = diag{1,1}
because only sensor faults are considered.
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Fig. 3. Comparison between sensor faultsηi and their estimated̂ηi

The figure 3 shows the injected sensor faultsηi (dashed
line) acting on the bioreactor outputs and their estimates
η̂i (plain line). Remark that the time-evolution of the es-
timated faultsη̂i are according to the time-evolution of the
sensor faults. Hence, the sensor fault isolation can be well
accomplished even if simultaneous sensor faults appear in
the outputs att = 620. The sensor faults estimated in this
manner can then be considered in a FDI as fault indicators
(i.e. residual signals). The FDI task (detection, isolation and
identification) can then be carried out according to the time-
evolution of the unknown input estimation provided by the
PIO. Let us notice that the proposed PIO is able to provided
fault estimation of time-varying faults. Indeed, the considered
fault η1(t) is not truly constant but varying slowly in the
time.

VI. CONCLUSION

This paper shows how observers for nonlinear systems rep-
resented by heterogeneous multiple models can be designed
and employed in a FDI strategy. The state estimation problem
is tacked with the help of two kinds of observers: propor-
tional and proportional-integral observers The PO provides
the state estimation of the system under investigation. The
PIO makes it possible the simultaneous state and unknown
input estimations, in this way this observer is an unknown

input observer. Sufficient conditions, under LMI form, are
established to ensure the exponential convergence of the
estimation errors. We have shown how the two proposed
observers can be exploited in a FDI framework of nonlinear
systems. Two FDI strategies are proposed for detection,
isolation and identification. The first strategy uses the well-
known principle of a bank of observers where each observer
is devoted to a particular fault. The second one takes directly
into account the fault estimation provided by the proposed
unknown input PIO. They are validated through a simulation
example of a bioreactor.
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