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Abstract 

The unavoidability of metastable behaviour in digital circuit-components like flip
flops, arbiters and synchronisers is based on the assumption that the point represent
ing such systems in phase space follows a trajectory which depends continuously on 
initial conditions. The validity of this assumption is well-established for existing im
plementations, and claimed for all implementations that are possible according to the 
classical laws of physics. In this paper we argue that the validity of the continuity 
assumption for quantum mechanical systems is an open question. 
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1 Introduction 

Metastable behaviour occurs in digital circuits when the voltage level in some part of the 
circuit remains undefined for an indefinite period of time. During this time the voltage level 
is somewhere in between the ranges corresponding to the logical 1- and O-values. These 
ranges form so called stable states of a flip-flop or any other bistable digital circuit, i.e. an 
external force is needed to drive the system from a high voltage value (corresponding to a 
logical 1) to a low voltage value (corresponding to a logical 0) or vice versa, but internal 
forces (like thermal fluctuations of the atoms and electrons) cannot achieve this. 

When a bistable system is driven from one stable state to another, its corresponding 
point in phase space crosses a region of indecision where it can stay forever if the driving 
force is switched off instantaneously after entering this region, until noise causes the system 
to leave the region of indecision. Outside this region the phase point will move to one of 
the stable states and stay there as long as the driving force remains switched off. One may 
argue that the probability that the driving force is switched off exactly at the moment that 
the phase point enters the region of indecision is zero, but if it is switched off a little later 
or earlier, the time that the phase point needs to reach one of the stable states will become 
infinite (in the absence of noise) when this deviation in switch-off time approaches zero. 
There is thus a finite probability that the voltage level remains undefined for an arbitrary 
finite period of time after the external driving force has been switched off. This is due to 
the fact that the phase point's position in phase space depends continuously on time and 
on its initial position. So if the driving force is switched off a little later or earlier, the 
phase point's initial position is close to the region of indecision and must therefore remain 
close to that region for a time which becomes longer the closer the initial position was to 
the region of indecision. We say that a bistable system has metastable behaviour if the 
time needed to reach one of the stable states is unbounded or infinite when the driving 
force is zero. 

Actually, the continuous dependence of the phase point's position on time and initial 
position is a fundamental assumption. No proof from first principles is known, but it 
is generally accepted by most physicists for all physical systems whose evolution in time 
can be represented by a phase point's trajectory in phase space. Also when one looks in 
an arbitrary textbook on ordinary differential equations, the first theorems one finds are 
on existence and uniqueness of solutions and on their continuous dependence on initial 
conditions. This is closely related to the well-posedness criterion in mathematical physics: 
if a system is modelled by a set of differential equations which does not have a unique 
solution that depends continuously on initial (or boundary) conditions, it is said that the 
problem is not well-posed. 

The formal proof that this well-posedness criterion makes metastable behaviour in dig
ital systems unavoidable was first given by Hurtado [Hur75] and subsequently generalised 
by Marino [MarS1] and by Kleeman and Cantoni [KCS7]. The question remains however, 
whether this well-posed ness criterion is indeed universally valid for all physical systems, as 
claimed by Marino. If this criterion applies and the region of indecision has an equilibrium 
point, it follows that this point cannot be reached in a finite time (in the absence of noise), 
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because other trajectories outside this region will eventually approach one of the stable 
states. This asymptotical approach of an unstable equilibrium point is well known in the 
description of phase transitions in physical systems at their critical point as critical slow
ing down. During the last decade (external) noise induced transitions have drawn much 
attention from physicists. Such transitions are described by so called stochastic differential 
equations, for which the meaning of the well-posedness criterion is entirely different. The 
switching of an optical gate forms an interesting example of such a noise induced transition. 
Horsthemke [HL84) describes a large class of these transitions that all exhibit critical slow
ing down. He also mentions a notable exception: the Verhulst model. In this model one 
of the boundaries of the state space coincides with an equilibrium point. Furthermore, in 
1986 Doering proved that the stochastic Landau equation does not exhibit critical slowing 
down [Doe86). Unfortunately this does not apply to the switching of an optical gate, so 
the optical digital circuits under development now will also show metastable behaviour. 
Nevertheless, the critical slowing down can be compensated in part by the application of 
noise as described by Lugiato et al. [LBMP89). Whether it can be completely avoided in 
an as yet unknown new type of optical gate based on the Verhulst model or the stochastic 
Landau equation, is an open question. 

In this paper we don't investigate this question any further. Our main objective is to 
show what type of violation of the well-posedness criterion is sufficient to avoid metastable 
behaviour and to discuss its physical plausibility. The formal proof by Hurtado will not 
be repeated here, but illustrated by a stepwise transformation of a digital circuit imple
mentation with metastable behaviour into one without metastable behaviour. Of course 
after each step the implementations become more abstract, since concrete implementations 
without metastable behaviour are not known. At the same time this transformation pro
vides a motivation for the type of violation of the well-posedness criterion we finally arrive 
at. 

First we describe a concrete digital circuit displaying metastable behaviour. Then we 
show how threshold voltages of transistors should be modified in order to avoid metastable 
behaviour. Then we show that also the relation between voltage and current of a tran
sistor in its saturated state should be modified. After that we show that application of 
the well-posedness criterion implies the elimination of the metastable point from phase 
space, but not the elimination of metastable behaviour. This is because trajectories on 
different sides of the region of indecision (a line in our case) do not diverge into different 
regions of phase space, so that the system cannot resolve to one stable state or the other. 
Subsequently we show how this deficiency can be remedied by changing a parameter in 
the model. Metastable behaviour is still not eliminated, however, on account of the con
tinuous dependence of a phase point's trajectory on initial conditions. Next we argue that 
branching of the former region of indecision into two different trajectories, each going to 
a different stable state, is sufficient to eliminate metastable behaviour, if the continuity 
assumption is relaxed to what we call semicontinuity. We then give a very simplified model 
of a flip-flop, where the stable states are holes separated by a hill. A transition takes place 
when a ball rolls from one hole over the hill to the other one. Metastable behaviour is 
characterised by the ball staying on top of the hill. We show how for certain shapes of the 
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hill metastable behaviour can be eliminated if semicontinuity is assumed. Whether such 
hill shapes actually exist in nature, is of course the big question. We briefly discuss a recent 
article from the physics literature (about "terminal chaos") that affirms this hypothesis, 
but do not speculate on its plausibility. Finally we discuss some possibilities of bistable 
quantum mechanical systems without metastable behaviour, using the quantum potential 
approach. To date only numerical evidence for branching trajectories exists, however. We 
therefore conclude that the claim of Marino, Kleeman, Cantoni and others that no physical 
bistable system without metastable behaviour can exist is unwarranted, and should rather 
be considered as an open question. 

2 The mousetrap 

We start with a simple digital circuit displaying metastable behaviour. It consists of two p
and three n-transistors. One of the n-transistors can be used to drive the circuit from one 
stable state to the other. Initially the voltage at point X is high and at point W low (see 

r-_____________ ~v, 

I. 

-
L-_~-------------__+v. 

Figure 1: The mousetrap circuit. 

fig. i). Also the gate-voltage of the drive-transistor is initially low. If this voltage becomes 
high then after some time the voltage at point X becomes low and at point W high. After X 
and W have become stable it doesn't matter anymore whether the drive-transistor's gate
voltage remains high or becomes low again. If it becomes low again before X and W have 
stabilised two things can happen depending on the time that the drive-transistor's gate
voltage remains high. If this voltage remains high only for a short period then X becomes 
high again and W low. If on the other hand the gate-voltage remains high long enough 
then X becomes low and W high. So the circuit can only make a single transition from 
one stable state to the other, hence its name "mousetrap" (due to Charles E. Molnar who 
did much pioneering work in the exploration of metastable behaviour in digital circuits). 
We are particularly interested in the case where the gate-voltage remains high for a critical 
period such that X and W can remain unstable arbitrarily long. The voltages at X and W 
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as a function of time are described by the following set of differential equations when the 
drive transistor is non-conducting: 

dVw Iw px· Ix 
= ---

dt Cw Cx 
dVx Ix pw ·Iw 

(1) = ---
dt Cx Cw 

where Vx and Vw are the voltages at points X and W respectively, Ix and Iw are currents, 
Cx and Cw capacitances and px and pw are coupling parameters with numerical values 
between 0 and 1. At equilibrium we have Iw = Ix = O. The state of the circuit is 
completely specified by Vx and Vw (the source- and drain-voltages Vy and V. are assumed 
to be constant) when the drive-transistor is non-conducting, so in this case we have a 
2-dimensional phase space spanned by Vx and Vw. In this phase space there are three 
equilibrium points. Two of them correspond to the stable states with Vx high and Vw low 
or the other way round, whereas the third equilibrium point is unstable. In the vicinity 
of this third point the relation between currents and voltages is quadratic, because the 
conducting transistors are there in a so called saturated state: 

(2) 

where v,p and v'n denote threshold voltages of the p- and n-transistors respectively, Vy and 
V, are the source and ground voltage respectively and Bp and Bn are (transistor dependent) 
constants. In general we have Bp < 0 and Bn > o. The capacitances Cw and Cx and the 
coupling parameters pw and p x are related by two other capacitances C, and C2 according 
to 

Cw C1 + PWC2 

Cx = C2 + PXCI (3) 

but the background of all these relations will be irrelevant in the sequel. Next we want to 
calculate the unstable equilibrium point, given some specific numbers. Suppose V. = 5 and 
V. = O(volts), v,p = -v'n = -1 and Bp = -iBn. Equilibrium is defined by Vw = Vx = 0, 
where "." denotes differentiation with respect to time. Since Pw < 1 and Px < 1 and 
Cw > 0 and C x > 0 it follows from equations 1 that at equilibrium we must have Iw = 
Ix = 0, as remarked before. To find the unstable equilibrium point we need equations 2. 
This yields 

Iw = 0 

Ix = 0 

= {2} 
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= 

1 ( 2 1 ( )2 ?lBp Vx -4) +?lBn Vx -1 =0 

121 2 
?lBp(Vw - 4) + ?lBn(VW - 1) = 0 

{calculus} 

1 ) 2 1 
?l(Bp + Bn Vx - (4Bp + Bn)Vx + SBp + ?lBn = 0 

1 ) 2 1 
?l(Bp + Bn Vw - (4Bp + Bn)Vw + SBp + ?lBn = 0 

{Bp = -tBn} 
3 2 3 
SBnVx - ?lBn = 0 

3 2 3 
gBnVw - ?lBn = 0 

{calculus} 

V; = 4 and V~ = 4 

{conducting transistors in saturated state} 

Vx = Vw = 2 

In order to linearise differential equations 1 in the neighbourhood of this unstable equilib
rium point, we first rewrite the currents Iw and Ix: 

Iw ~Bn[4(Vx - 2) + (Vx - 2)2] 

Ix = ~Bn[4(Vw - 2) + (Vw - 2)2] 

So neglecting the quadratic terms in the neighbourhood of Vx = Vw = 2 gives: 

Using this approximation we may write equations I in matrix form as: 

( 
(Vw:- 2) ) = -~Bn (pxlCx I/Cw) ( (Vw - 2) ) 
(Vx - 2) 2 I/Cx Pw ICw (Vx - 2) 

(4) 

(5) 

(6) 

This may be written in shorthand form as ;i;. = M;£, where ;£ stands for the vector 

( i~: :=;i ) and M for the matrix given above. The general solution of this equation is 

easily written down in terms of the eigenvalues A-and A + of M and their corresponding 
eigenvectors §.- and §.+ respectively: 

(7) 

5 



if -,£(0) = x-f- + X+f+. The eigenvalues are given by 

r = -~B . [-b+.jb2-4C] 
2 n 2 

,+ = 3 [-b- .jb2 -4C] 
" -'iBn· 2 

where 
b = _ (Px + pw) 

Cx Cw 

and 
1 

C = . (pxpw - 1) 
CxCw 

Since Cx,Cw,Bn > 0 and 0 < px,pw < 1 we have ,\- < 0 and ,\+ 

f- = ( :~ ) and f+ = ( :~ ), then the components are related by: 

e+ -
2 -

(8) 

> o. If we write 

(9) 

We may choose f- to lie in the first quadrant and f+ in the fourth. If we do so then for 
all values of -,£(0) within the operational range of the circuit x- must be chosen negative. 
If we choose x+ = € (€ > 0) then in Vw - Vx-space the phase point first moves slowly 
in the direction of the equilibrium point (Vw, Vx ) = (2,2) and then in the direction of 
the new stable state (Vw , Vx ) = (5,0) (provided € is small enough), whereas if we choose 
x+ = -€ it moves after passing the equilibrium point in the direction of the initial stable 
state (Vw, Vx ) = (0,5). The smaller € is chosen, the longer the phase point stays in the 
vicinity of the equilibrium point. If we choose x+ = 0 then the phase point approaches the 
equilibrium point asymptotically. The linearised differential equation can only describe the 
phase point's trajectory in the vicinity of the equilibrium point. The important property of 
the asymptotic approach of the equilibrium point (which causes the metastable behaviour) 
remains valid for the nonlinear equations 1, however. Since apart from the case x+ = 0 
all trajectories eventually leave the neighbourhood of the unstable equilibrium point, this 
point is called a metastable equilibrium point. In the next sections we will see how it can 
be eliminated from phase space. 

3 Changing some constants 

Looking at equation 7 we see that the origin (0,0) is always an equilibrium point, no 
matter what the eigenvalues are. If the initial position of the phase point is close enough 
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to the origin, it may take an arbitrarily long time to leave the neighbourhood of the 
origin (if ever). Our first objective therefore is to exclude any behaviour as described by 
equation 7. To this end we must eliminate the possibility of linearisation of equations 1. 
Such a linearisation is always possible when at equilibrium the two terms depending on B. 
and Bn in the expressions for Iw and Ix (see equations 2) cancel each other but are non
zero themselves. If they are both zero in the equilibrium point then the relation between 
current and voltage becomes purely quadratic in its neighbourhood and can no longer be 
linearised. This can easily be established by changing the constants Vy , V" VIp and Vln in 
such a way that Vy + VI. = V% + Vln = A, where A is a new constant. Equations 2 now 
read: 

Iw 
1 , 

= 2(B. + Bn)(Vx - A) 

Ix ~(Bp + Bn)(Vw - A)' (10) 

If we further suppose (for simplicity) that Cx = Cw = C (C > 0) and pw = px = P 
(0 < P < 1) and if we rename ~(Bp + Bn) = B (B > 0) and Vw - A = wand Vx - A = x, 
then equations 1 may be rewritten as 

dw 

dt 
dx 

dt 

B 
= __ (x' + pw') 

C 
B 

--(w' + px2
) 

C 
(ll) 

Dividing one equation by the other we find the differential equation that describes the 
majority of the possible trajectories in w - x-space: 

dw 

dx 
x2 + pw' 
w' + px2 

(12) 

This equation is not defined in the point (w,x) = (0,0) which is an (unstable) equilibrium 
point of (11) and therefore also a possible trajectory. The half-line x = w for w > ° is 
another possible trajectory. A phase point on this trajectory moves towards the origin, 
but never reaches it, since the time T needed to reach the origin starting from a point 
(w, x) = (wo, wo) with Wo > ° is given by: 

10 dw C (WfJ dw 
T = Wo --;;; = B(l + p) 10 w 2 = 00 

(13) 

A similar argument applies to the half-line x = w for w < 0: a phase point on this trajectory 
moves away from the origin, but the time needed to leave an infinitesimal neighbourhood 
of the origin is again infinite. A detailed analysis shows that the other trajectories run 
all from the first quadrant to the third on either one or the other side of the line x = w, 
bending around the origin in either the second or the fourth quadrant. Does a phase 
point moving along one of these other trajectories always pass the origin in a bounded 
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time, i.e. is the time that the phase point's projection on the w-axis needs to travel from 
say +a to -a (0 < a < 00) bounded? The answer turns out to be no: for trajectories 
running arbitrarily close to the line x = w the time needed to pass the origin may become 
arbitrarily large. This is because the right-hand sides of equations 11 satisfy the so called 
Lipschitz-condition. This is best explained by writing (11) in vector form: 

( tV) B ( x
2 + pw

2 
) • . . = -C 2 2 = {definItIOn J}f(t,w,x) x w+px -- (14) 

The components of f are continuous functions of t, wand x and partially differentiable 

with respect to w an~ x, so 1 is also (locally) Lipschitz-continuous in ( : ), i.e. for all t, 

( : ) and ( ; ) there is a constant L( w, x) such that 

Il(t,w,x)-i.(t,w,x)1 ~L(w,x)'I(:) - (;)1 (15) 

where we have chosen as vector norm: 

I( ~)I = lal max Ibl 

Since 1 is continuous in t and Lipschitz-continuous in ( : ) one of the main theorems in 

the theory of ordinary differential equations tells us that for each initial position (w(O), x(O)) 
of a phase point it's present position (w(t),x(t)) is uniquely determined and depends 
continuously on the initial position, i.e. for each t and fJ > 0 there is an f such that 

I( w(t) - w(t) )1 ( w(O)) . I( w(O) - w(O) )1 x(t) _ x(t) < fJ for all x(O) wIth x(O) _ x(O) < f. So the closer a phase 

point's initial position is to the line x = w (in the first quadrant), the longer it will take 
to pass the origin, because on that line the phase point would never reach the origin but 
only approach it asymptotically. So the origin still is a metastable point in spite of the 
modified relation between current and voltage. In the next section we describe a further 
modification of this relation. 

4 Changing the technology 

We now consider a not yet invented technology in which the relation between current and 
voltage of a transistor in it's "saturated state" is described by (maintaining the analogy 
with the previous discussion as much as possible): 

Iw = Blxla 

1)( = Blwla 
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where a > 0. For a = 2 we retain the previous case. The equations of motion now read: 

(17) 

To get rid of the minus-sign we introduce new variables x := -x and y := -w. We also 
abbreviate the right-hand sides by introducing the functions p and q: 

(18) 

A phase point on the line y = x in the third quadrant now moves towards the origin along 
this line, whereas in the first quadrant it moves away from it. A simple calculation shows 
that for a :::: 1 the origin cannot be reached in a finite time, whereas for ° < a < 1 it can. 
In the former case p and q are Lipschitz-continuous everywhere and the time needed to pass 
the origin along a trajectory close to the line y = x is again unbounded, but in the latter 
case p and q are Lipschitz-continuous everywhere except in the origin. If now the phase 
point reaches the origin along the line y = x, many things can happen: it can stay in the 
origin (which still is an equilibrium point), it may continue to move along the line y = x 
in the first quadrant or it may wait an arbitrary time in the origin before continuing its 
journey. How do we determine the time needed to pass the origin close to the line y = x? 
Is in fact that line the only trajectory that intersects the origin? We will later prove that 
it is and that all the other trajectories run on either one or the other side of this line from 
the third quadrant to the first, bending around the origin in either the second or the fourth 
quadrant. We conjecture that the closer a phase point's trajectory runs to the line y = x, 
the closer it's time needed to pass the origin between point P and point Q approximates 
the time a phase point needs to move along the line y = x from the projection of P to the 
projection of Q on that line, provided that it doesn't stop or wait a while in the origin. In 
order to prove this conjecture we may without loss of generality take P = (a, -a), where ° < a < 1. For Q we take the intersection of the line y = -x + 2 with the trajectory 
through P (there can be only one such trajectory on account of the Lipschitz-continuity 
outside the origin). If we put Q = (b,y(b)) then we have b > 1 and ° < y(b) < 1, which 
follows from the proof that will be given later on (see also fig.2). We could also have taken 
P = (x( -b), -b) and Q = (a, -a), but that would basically give the same proof, only 
with the roles of x and y interchanged. The case P = (-a, a) (or Q = (-a, a)) also goes 
similarly. The points P = (a, -a) and Q = (b, y(b)) have the property that their projection 
on the line y = x is given by (O,O) and (1,1) respectively. If a phase point moves from 
(0,0) to (1, 1) along the line y = x without stopping in the origin, it's coordinates x{t) and 
y{t) are invertible functions of time, i.e. t(x) and t(y) are well defined and if t(O) = ° then 
x> ° if t{x) > ° and x < ° if t(x) < ° (in our example we also have t(x) = t(y) for x = y). 

9 



In that case (for 0 < Q < 1) the time needed to move from (0,0) to (1,1) is given by: 

T(O) = 1'(1) dt = fl dx = t dx = fl dy 
'(0) Jo x Jo p(x, x) Jo q(y, y) 

By a similar argument the time needed to move from P to Q is given by: 

T(a) = 1b dx jY(b) dy 
a p(x,ly(x)l) - -a q(x(y),lyl) 

Our conjecture can now be formulated as: 

limT(a) = T(O) 
alO 

First we calculate an underbound for T(a): 

T(a) 

= {definition T( a)} 

1
b dx 

a p(x,ly(x)l) 
> {b > I} 

11 dx 

a p(x,ly(x)1) 
> {ly(x)1 < x, see proof later on} 

[I dx 
Ja p(x,x) 

= {definition T(O) } 

T(O) _ f" dx 
Jo p(x,x) 

(19) 

T(O) and the last integral do not exist for Q 2 1: if Q 2 1 we can infer from the last 
inequality that T(a) --> 00 if a 10. 

Next we calculate an upperbound for T(a) (for 0 < Q < 1): 

T(a) 

= {definition T(a)} 

f
Y(b) dy 

-a q(x(y),lyl) 
{ calculus} 

f
o dy fy(b) dy 

-a q(x(y),-y) + Jo q(x(y),y) 
< { first term: x(y) 2 a and 'I := -y; second term: x(y) > y and y(b) < 1 } 
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fa d,., ,. dy 

io q(a,,.,) + io q(y,y) 
< {a ~,." q(y,y) = p(y,y) and definition T(O)} 

1,a d,., 
T(O) + ( ) oq,.",., 

= {q(,.",.,)=p(,.",.,)} 

1,a d,., 
T(O) + ( ) 

o p,.",., 

Combining upper- and lower bound yields: 

IT(a) - T(O)l::; fa t ) Jo p x, X 

=} { integral exists for 0 < Ct < 1 } 

limT(a) = T(O) 
alO 

which concludes our proof. 
We still have to prove that there are no other trajectories through the origin than the 

line y = x. We may write the functions p and q as 

p(lxl,lyl) = pJ(lxl) + J(lyl) 

q(lxl,lyl) = J(lxl) + pJ(lyl) (20) 

where J : [0,00) -> [0,00) is monotonically increasing and locally Lipschitz-continuous on 
(0,00). Using J, all trajectories except the origin are determined by 

dy 
(pJ(lxlJ + J(ivl)) dx = J(lxl) + pJ(lylJ (21) 

We are interested in the behaviour of * on the line y = x - 2a. For x = a one can easily 
verify that * = 1, whereas for x > a we claim: * > 1. Introducing the abbreviations 

L = pJ(x) + J(lx - 2al) 
R = J(x) + pJ(lx - 2al) 

we can write our claim as L < R for x > a. We prove this first for a < x < 2a: 

L<R 
= { definition Land R } 

pJ(x) + J(2a - x) < J(x) + pJ(2a - x) 

= {calcul us } 

(p - l)J(x) < (p -1)J(2a - x) 

= {O<p<l} 
J(2a - x) < J(x) 

{ J monotonically increasing} 

h'ue 
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For x ~ 2a we have: 

L<R 

{ definition L and R } 

pf(x) + f(x - 2a) < f(x) + pf(x - 2a) 

{ calculus} 

(p -l)f(x) < (p -l)f(x - 2a) 

{O<p<l} 
f(x - 2a) < f(x) 

{ f monotonically increasing } 

true 

Similarly for x < a one can prove 0 < ;l; < I. Since the argument is valid for any value 
of a > 0, it follows that the trajectory through (a, -a) must lie entirely between the lines 
y = x and y = x - 2a; the trajectory cannot intersect the line y = x outside the origin 
since f is locally Lipschitz-continuous on (0,00) and it can also not intersect the origin 
on account of the behaviour of ;l;. Similarly, the trajectory through (-a, a) lies entirely 
between the lines y = x + 2a and y = x (see fig.2). For the trajectory through (a, -a) 
we observe that ly(x)1 < x for x > a. We have chosen a < 1 to ensure y(b) > 0: in that 
case the trajectory intersects the line y = -x + 2 in a point (b, y(b)) not only with b> 1 
and y(b) < 1 (because y(x) < x), but also with y(b) > 0 because the lines y = -x + 2 
and y = x - 2a intersect in (a + 1, -a + 1), -a + 1 > 0 for a < 1 and on the trajectory 
y( x) ~ x - 2a holds. We could also have chosen a different intersection point Q with 
projection (c, c) on y = x for some c > 0 by scaling a and b correspondingly. It wouldn't 
change the conclusion that the phase point always passes the origin in a finite time (for 
a < 1) between P and Q which approaches the time to move from (0,0) to (c, c) if P 
approaches the origin, provided that the phase point on the line y = x doesn't wait in the 
origin. 

Theoretically the origin is still an equilibrium point of the equations of motion. If we 
impose the well-posedness criterion however, which implies that the phase point's coordi
nates x(t) and y(t) shall vary continuously with the initial values x(O) and y(O), waiting 
in the origin is forbidden because limalo T(a) = T(O). The origin is therefore no longer a 
metastable point, but only a point where :i: = if = 0 for a single moment in time. Nev
ertheless, if we look at fig.2 we see that the trajectories run parallel to the line y = x 
asymptotically, so they cannot diverge to different stable points in phase space if they pass 
the origin nearby. In the next section we will see how this can be changed as well. 

5 Changing a parameter 

Looking again at the derivation of L < R for x > a, we see that the hint p < 1 plays a 
crucial role; had it been p > 1 then we would have found L > R or (equivalently) ;l; < 1 
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Figure 2: Phase portrait for 0 < p < 1. 

for x > a. Since L > 0 and R > 0 we also have 0 < ~. For x = a we would have 
~ = 1 as before and for x < a we would have found ~ > 1. Reflection of this trajectory 
with respect to the line y = x would give a new trajectory as before, leading to a phase 
portrait as sketched in fig.3. As one can see in that figure, now the trajectories diverge 
from the line y = x. So let us suppose p > 1. It can be proven again (for 0 < C! < 1) 
that limajo T(a) = T(O), so imposing the well-posedness criterion leads to elimination of 
the metastable point in the origin as before. Can we now say that metastable behaviour 
has been eliminated as well? Unfortunately not. The well-posedness criterion implies that 
trajectories depend continuously on initial conditions, so for a 1 0 the trajectory through 
(a, -a) (or through (-a, a)) will run almost parallel to the line y = x. It may therefore 
take an arbitrary long time for a phase point moving along such a trajectory to bend away 
from the line y = x and reach a stable point, so metastable behaviour is still possible. Note 
that the equations of motion are only supposed to hold in the neighbourhood of the origin, 
but extending the locally valid phase portrait of fig.3 to the entire phase space cannot 
prevent metastable behaviour unless a new stable point is introduced (which is undesirable 
as it leads to unreliable switching of the circuit) or if trajectories are allowed to have sharp 
corners or to intersect (which is forbidden). As mentioned in the introduction the formal 
proof that the well-posedncss criterion makes metastable behaviour unavoidable can be 
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Figure 3: Phase portrait for p > 1. 

found in [Hur75], [MarS1] or [KCS7]. 
Metastability can therefore only be eliminated if the well-posedness criterion is somehow 

violated. An obvious violation is to introduce a branch point somewhere on the line 
y = x: if a phase point moving along this line reaches the branch point it can either 
turn right or left (see fig.4), moving to one stable point or the other. Metastability is 

y 

x 

y=x 

Figure 4: A branch point on the line y = x. 

eliminated if the branch point can be reached in a finite time (otherwise this point would 
be called a bifurcation point). Trajectories can now no longer depend continuously on 
initial conditions: at best we can have the trajectory through (-a, a) running very closely 
to the line y = x and the left branch and the trajectory through (a, -a) runnmg very 

14 



closely to the line y = x and the right branch for a 1 o. In the next section we give an 
example of a (perhaps non-physical) system with such a branching trajectory and show 
how metastability is eliminated under the assumption of semi-continuity. 

6 Particle on the hill 

An example of a bistable system is a particle with mass m which can move from one hole 
to another by passing a hill in between. The holes are supposed to have some trapping 
device to prevent the particle's escape from a hole, unless some external force is applied. In 
the example of the mousetrap circuit we were only interested in the region of phase space 
where transistors were in their saturated state (which included the metastable point), here 
we are only interested in the particle's behaviour on the hill between the two holes, in 
particular near the top. 

Suppose the hill is described by the function 

y(x) = Yo -Ixo - xl" (22) 

where Yo = xo, Xo > 0 and c< > 1 (see fig.5). The particle's x- and y-coordinates are 

, 

. 
YO - - - - - - -1- - - - - - - - - - - -;.;-"'-_--;-___ 

xo , 

Figure 5: Particle on the hill. 

functions of time that satisfy Newton's equations of motion: mx = Rx and my = Ry 
(the dots denote differentiation with respect to time), where Rx and Ry are the x- and 
y-components of the total force Ii acting on the particle. Ii is the vector-sum of the 
gravitational force m§ and the normal force N: 

(23) 
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This yields for the components of R: Rx = Nx and Ry = Ny - mg. The components of N 
are related by: 

Ny 1 
Nx = - Y'(x) (24) 

except in the top where Nx = O. The prime denotes differentiation with respect to x. 
When Ny < 0 the normal force points inside the hill, which is actually impossible for a 
particle on a hill because in that case the gravitational force is not strong enough to keep 
the particle on the hill. For a particle moving along a cable (or curtain rail) with the same 
shape it is very well possible though. Here we do not bother about such details, since we 
are only interested in the equations of motion. We derive: 

= 

= 

= 

y 

{ definition} 
d 
dt (y( x( t))) 

{ calculus} 

y'(x)·:i: 

{ calculus} 

y = y"(X)· (:i:)2 + y'(x)· X 

{ my = Ny - mg} 
mY"(X). (:i:)2 + y'(x). mx = Ny - mg 

{ define p = m:i: and Ny = -pjy'(x)} 
2 

y"(X). y'(x)· ~ + (y'(X))2. P = -p - mgy'(x) 
m 

{ calculus} 

p = -[1 + (y'(X))2t'· (yll(X)': + mg) . y'(x) 

We represent the particle on the hill by a phase point (x(t),p(t)) whose trajectory is 
described by the following equations: 

p 
x = 

m 

p -[1+ (y'(x))2t' . (: . y"(X) + mg) . y'(x) (25) 

Using these equations one can prove that 

2 :m . [1 + (y'(X))2] + mgy(x) 

is a constant function of time (usually called the total energy). Suppose x(O) = O. It can 
be easily verified -using conservation of total energy- that if p~~) . [1 + (y'(O))2] = mgyo 
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and p > 0 then at the top of the hill p = o. The condition p > 0 is only to assure that 
the particle is moving from the origin to the top ~f the hill; for p < 0 we have a similar 
relation, but then for a particle moving backwards from the top to the origin. The time T 
needed to reach the top such that at the top p = 0 holds can be calculated as follows. For 
all x, 0 ::::: x ::::: xo, we have (using again conservation of energy): 

p2 
2m· [1 + (y'(x))2] + mgy(x) = mgyo 

= { calculus} 
2 2m 

p = 1 + (Y'(X))2 . mg(yo - y(x)) 

~ {p > O} 
,-------
2g(yo - y(x)) . 

p=m 1+(Y'(x))2 =mx 

~ { definition T and calculus} 

l
XO dx lXO 

T= -.= dx ° x 0 

,-------
1 + (Y'(x))2 

2g(yo - y( x)) 

Substitution of (22) in this expression for T shows that for Q 2: 2 the top will never be 
reached (i.e. T = (0), whereas for 1 < Q < 2 it will be reached in a finite time. If we 
choose p < 0 in the derivation above, we find that T is also the time needed to move from 
the top backwards to the origin when initially p = 0 and since the hill is symmetric around 
x = xo, T is also the time needed to move from x = Xo to x = 2xo or vice versa for the 
same initial condition p = o. For 1 < Q < 2 we may therefore conclude that the phase 
point needs a time 2T to move from x = 0 to x = 2xo if its trajectory intersects the point 
(xo,O), provided that the particle doesn't spend time waiting on top of the hill, since in 
that case x is not only zero at a single moment in time but zero during some consecutive 
time-interval so that the time-integral cannot be transformed into a space-integral such as 
appears in the expression for T. 

For Q 2: 2 we have the same metastable behaviour as before, whereas for 1 < Q < 2 
something completely new happens. The point (xo,O) in phase space still is an equilibrium 
point of the equations of motion (25) where the phase point can stay for an arbitrary time 
before moving on (due to violation of the Lipschitz-condition), but now it is also a branch 
point where an incoming trajectory representing a particle climbing the hill splits into a 
trajectory representing a particle rolling off the hill on the other side as where it came from 
and a trajectory representing a particle rolling backwards. The resulting phase portrait 
is shown in fig.6. Note that in this phase portrait we have actually assumed q < Q < 2 
(so that for the upper trajectory * = 0 in x = xo), since otherwise Rx would be non-zero 

at the top of the hill (* = 00 for 1 < Q < 1 ~ and 0 < * < 00 for Q = 1 ~ in x = Xo if 
p(xo) > 0), which is unphysical. 

In order to remove the equilibrium solution (xo, 0) we can now no longer impose the well
posedness criterion; at best we can have the upper trajectory approximating the incoming 
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Figure 6: Phase portrait for 1 ~ < a < 2. 

trajectory and the outgoing upper branch and the lower trajectory approximating the 
incoming trajectory and the outgoing lower branch. These approximations can become 
arbitrarily close if we impose a new type of continuity condition, which we shall refer to as 
semi-continuity, for the reason given above. If we suppose for 0 :::: c < Xo 

2 

;m . [1 + (y'(X))2] + mgy(x) = mg(yo ± c) (26) 

then in case of the +-sign the particle needs a time T+( c) to reach the top, given by 

T+(c) = r o dx 1 + (Y'(X))2 
Jo 2g(yo+c-y(x)) 

(27) 

and in case of the --sign the particle needs a time T-(c) to reach Xo - cifc', given by 

_ loxo-cJ/o 1 + (Y'(x))2 
T (c) = dx 

o 2g(yo - c - y(x)) 
(28) 

(after this time the particle moves back to the origin). Note that T+(O) = T-(O) = T. 
If we restrict ourselves to solutions (x(t),p(t)) of (25) with x(O) = 0, the semi-continuity 
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condition may be formulated for every t ::::: 0 as follows: 

(\If: f > 0: (36: 6 > 0 : (\I(x(O), p(O)): x(O) = 01\0 < p(O) - p(O) < 6 : 
Ix(t) - x(t)1 < f 

v 
(\I(x(O),p(O)): x(O) = 01\0 < p(O) - p(O) < 6: (29) 

Ix(t) - x(t)1 < f 

) 
) 

) 

We have deliberately not chosen the most general formulation, but one that is sufficient 
for our purposes. For solutions (x(t),p(t)) with p(t) = 0 if x(t) = xo at most one of the 
disjuncts can be true, whereas for all other solutions both disjuncts are true. If none of 
the disjuncts is true then the particle is waiting on top of the hill. This follows from the 
fact that limdoT+(C) = T+(O) and lilIlcloT-(c) = T-(O) which we shall prove below. So 
if we impose this semi-continuity condition on the set of solutions of (25) (and assuming 
x(O) = 0 for convenience) all solutions where the particle is waiting on top of the hill are 
excluded, thereby completely eliminating metastable behaviour (still assuming 1 < a < 2, 
of course). In order to prove our claim about T+(c) and T-(c), we need the following 
lemma: 

1 
JI+U = 1+ O(u) 

l+u 
for u ::::: -(3 with 0 < (3 < 1. One may prove this by considering the function h(u), given 
by 

h(u) = (1 +u)-! -1 
u 

If we define h(O) = -~, then h is continuous on [-(3,00). Since Ih(-(3)1 is bounded and 
limu _ oo h(u) = 0, there must exist a constant M((3) such that 

(\lu: -(3::; u : Ih(u)1 ::; M((3)) 

which proves the lemma. If we define the functions t+(e) and t-(e) for 0::; e < Xo by 

(30) 

then the following inequalities hold: 

(31) 
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Because 

we can derive for c < xo: 
t+(c) 

= { definition} 
,-----'--c,----_ 

fO dXVc+(X~_x)O 
= {y = Xo- x} 

r o 
dYV 1 io c + yO 

= { c = aO} 
{XO dy 

io ../ao + yO 

{ y = az} 

! l xo ,a dz al-~O: 

o ../1 + ZO 

= {calculus} 

I_1o (r dz + roia d z-oi
2 

) 

a , . io ../1 + ZO i l z ../1 + z ° 
{ lemma} 

a1-!0. ( {I dz + {xoia dzz-oi2. (1 + O(z-O») 
io ../1 + ZO i l 

= {calculus} 

t+(O) + O(al-~O) 
and for c < (T)O we can derive 

= 

= 

= 

C{c) 

{ defini tion } 
xo_c 1/ o 1 

{ dx'---;==~= 
io V(xo-x)O-c 

{ c = aO} 
(xo-a dx 

io V(xo - x)o - aO 

{ y = Xo - x} 

1.
xo ~d~y =:; 

a "/yO _ aO 

20 



= { y = az} 

f l
xofa dz 

aI-a 2 

I vza - 1 
{ calculus} 

al -af2 . ( f2 dz + rofa dz z-af2 ) 
JI vza - 1 J2 Vi - z a 

= {lemma} 

a l -a/2. ( f' dz + rofa dzz-af2 . (1 + O(z-a))) 
JI vza - 1 J2 

{ calculus} 

C(O) + O(al-af 2) 

We can now infer from the inequalities (31) and the definition c = aa that 

Hence, for 1 < Q < 2: 

(32) 

lim T±(c) = T±(O) = T (33) 
cjO 

which concludes the proof of the claim we made before. Note that it also holds for the 
unphysical range 1 < Q :::; q. 

7 Is metastability avoidable? 

In the previous section we have seen an example of a bistable system without metastable 
behaviour. The question is of course whether such a system can be physically realised. At 
first sight there seems to be nothing unphysical about a particle on a hill for 1 ~ < Q < 2. 
The violation of the well-posedness condition is a serious matter of course, but the semi
continuity condition preserves much of the old concept. In this context it is interesting 
to note a recent paper in the physics literature by Michail Zak [Zak92]. He demonstrates 
how violation of the Lipschitz condition (which in his case amounts to violation of the 
well-posedness condition) in systems that can exchange energy with their environment can 
give a new explanation for chaotic phenomena, leading to a new type of chaos which he 
calls terminal chaos. In this type of chaos equilibrium points can be approached in a finite 
time and also left following different branches of the same incoming trajectory, very much 
like the particle on the hill in the previous section. 

To see whether the particle on the hill can be physically realised, one should take the 
microscopic structure of the particle and the hill into account. Both are composed of atoms 
and molecules which interact with each other through some potential function. If one still 
assumes Newton's equations of motion to be valid at this microscopic level, everything 
depends on the potential function. When the potential function has some standard form 
(like Lennard-Jones), it seems likely that the particle on the hill (for q < Q < 2) cannot 
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be realised, because it is hard to imagine how the Lipschitz-condition can be violated for 
smooth potentials that only become infinitely repulsive at some distance between molecules. 
Actually Newton's equations of motion are not valid at the microscopic level and only 
quantum mechanics can give a reliable description of the interaction between two atoms 
or molecules. For a macroscopic number of atoms or molecules the macroscopic behaviour 
can often very well be approximated by assuming the validity of classical mechanics at the 
microscopic level. Often is not always, however. For instance, if water is in a so called 
undercooled state, it can change into ice immediately after a very small disturbance in the 
water. At the microscopic level the water molecules form so called hydrogen bonds between 
hydrogen atoms in different water molecules. The question seems legitimate whether phase 
transitions like these still obey the well-posedness criterion, i.e. whether in this case a 
physical transition point exists between the state of undercooled water and the state of 
ice such that the system can spend an indefinite period of time in the transition point. 
No definite answer seems available to date, but traditionally the phenomenon of critical 
slowing down is associated with second order phase transitions (where thermodynamical 
quantities change continuously, but their derivatives not) and not with first order phase 
transitions (where thermodynamical quantities change discontinuously) like the one from 
water to ice. In this case the absence of a physical transition point would ultimately stem 
from the quantum mechanical nature of the formation of hydrogen bonds between water 
molecules and the formation of a crystal structure out of these bonds. If true, then Marino 
and others are wrong in supposing that the well-posed ness criterion applies to all physical 
systems. Sometimes people make the more modest claim that it applies to all classical 
physical sytems, but it seems somewhat odd to consider water and ice as non-classical 
physical systems. 

Since no definite answer seems available to date, we will now focus on systems that are 
truly quantum mechanical. Our motivation for doing so stems from the particle on the hill 
example of the previous section. In case Q = 1 we don't have a hill, but a roof formed by 
the line-segments y = x for 0 $ x $ Xo and y = 2xo - x for Xo $ x $ 2xo. The total force 
acting on the particle is now no longer defined at the top of the roof (i.e. for x = xor, but 
we can define it as a random variable with two possible values, one being equal to the value 
of the force for x < Xo and the other one equal to the value for x > Xo. If we do so then 
an incoming trajectory representing a particle reaching the top with zero velocity branches 
into a trajectory representing a particle moving to the left and a trajectory representing a 
particle moving to the right. Again, there is no metastability because the total force has 
always the same positive magnitude (but two different directions are possible). Rooves 
with such a sharp top are certainly not physically realisable on a macroscopic scale, but 
in quantum mechanics we face a new situation. We can define for each (fermion) particle 
a trajectory using a so called quantum potential. Adding this quantum potential to the 
classical potential and using Newton's equations of motion like in classical mechanics, we 
can calculate the trajectory. We can not observe the trajectory, however. We can calculate 
all trajectories corresponding to a set of initial conditions and the probability that these 
initial conditions are within a certain range, but we can only observe certain quantities 
that are averaged over all possible trajectories according to the probability distribution over 
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the set of initial conditions. There is an ongoing metaphysical debate about the status of 
quantum mechanics, for instance whether the trajectories mentioned above really exist 
or not, but here we only use them to make judgments about observable quantities. The 
nice thing about the quantum potential is that it facilitates the construction of roof-like 
potentials with a perfectly sharp top, as we shall demonstrate now. 

We consider a particle with mass m and position r moving under the influence of a 
potential V(T). With the particle is associated a wave function .p(r, t) which determines 
both the possible trajectories of the particle and the probability distribution over the pos
sible initial conditions. Given .p(r, 0) we can calculate the wave function for all times t by 
solving the following partial differential equation, usually called the Schrodinger equation: 

(34) 

where Ii is a constant of nature and '\72 is a differential operator given by '\72 = ::' + ::' + 
::" which may also be written symbolically as '\7 . '\7 where '\7 is the gradient operator. 
Writing 

.p = ReiS/~ 

where R(r, t) and S(r, t) are real functions and R = l.pl, we can decompose the Schrodinger 
equation in a real and imaginary part. After some manipulations that involve multiplication 
of right- and left-hand sides of one equation with R and dividing left- and right-hand sides 
of the other equation by R (which is allowed for R of 0), we find: 

(35) 

where 

and 

Q(1', t) is the quantum potential and P(r, t) is the probability density for finding the part i
<:!e at position r at time t. The possible trajecto~ies of the particle are found by interpreting 
\l S as the impulse of the particle, i.e. mr = \l S, where 1'is now an implicit function of 
time and the dot denotes differentiation with respect to time. Integration of the impulse 
over time then gives the trajectory; the different integration constants that are still allowed 
correspond to the possible initial positions. Note that the initial impulse can no longer 
be varied independently, but is fixed by the initial position. This interpretation was first 
given by David Bohm in 1952. As said before, we will only use it to discuss observable phe
nomena like metastability. With this interpretation the second equation in (35) guarantees 
conservation of probability and the first equation becomes the Hamilton-Jacobi equation 
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for a total potential V + Q; it can be rewritten as Newton's equation of motion by taking 
the gradient of left- and right-hand sides and rewriting the first two terms as a total time 
derivative of '(l s: 

mf: = - '(l(V + Q) 

This shows that quantum mechanics may be approximated by classical mechanics whenever 
the quantum potential Q is negligible compared to the classical potential V. Although the 
initial impulse is fixed by the initial position, the initial wave function .p(r,O) may still 
be varied. This gives the freedom to change not only the initial impulse but the quantum 
potential as well. 

To show a roof-like quantum potential we assume for simplicity that the wave function 
only depends on the x-coordinate of the particle. Now suppose .p(0) = 0 at some point in 
time, and suppose further that 

then if x -> 0: 

and 

for x < 0 

for x > 0 

for x 1 0 

l.p( X )I" 
1.p(x)1 ->a 

~ [1.p(X)I"] -> b+ 
dx 1.p(x)1 

for x i 0 : ~ [1.p(x)I"] -> b 
dx 1.p(x)1 -

For a and b_ positive and b+ negative the quantum potential has indeed the shape of a roof 
(the signs are just the opposite if one includes the constant factor in Q). A weak point may 
be that for this choice of .p the fourth derivative doesn't exist in x = O. Strictly speaking 
the existence of a fourth derivative (with respect to x) is not required for a solution of 
the Schrodinger equation, but perhaps such solutions are unphysical. Actually one should 
not look at the wave function for one moment in time as we did, but rather consider the 
evolution in time. 

Let us consider in one dimension a so called square well potential, i.e. V(x) = 0 for 
x < 0.718 and x > 0.782 and in between V(x) = -2(50Jr)2. For simplicity we take such 
units that Ii = 1 and m = 0.5. Suppose the initial wave function is given by 

.p(x,o) = exp[ikox] exp[-(x - XO)2 /2a~] 

where ko = 50Jr, Xo = 0.5 and ao = 0.05. This represents a particle incident on the square 
well from the left (i.e. from x < 0.718) with an average energy equal to half the well depth. 
Two things can happen: the particle crosses the well or it is reflected. A third possibility 
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would be that the particle is trapped inside the well, which would be a metastable state. 
Whether a particle is transmitted or reflected depends on the initial position of the particle. 
If the well-posedness criterion would apply then there should also be an initial position 
for which the particle is trapped inside the well. Note however that trajectories through 
points where the wave function is zero at the moment that the particle passes are forbidden, 
because P(x, t) = 0 whenever .p(x, t) = O. The peaks in the quantum potential usually 
occur where the wave function is zero. Dewdney and Hiley have calculated the possible 
trajectories for this case numerically and claim to observe what they call a bifurcation 
effect between the transmitted and reflected trajectories. Let us quote from their paper 
[DH82J: 

"In Fig. 10 we have chosen to explore more trajectories that have initial positions in 
the front half of the wave packet. All of these are, in fact, transmitted because the particles 
reach and enter the well before the oscillations in the quantum potential have sufficient 
energy to change the particle trajectories. The particles whose initial positions lie on the 
tail side of the center of the packet spend more time in the well as these particles begin 
to encounter the oscillation in the quantum potential. This has the effect of spreading out 
the emerging trajectories which form the tail of the transmitted packet. 

We have increased the density of trajectories between the initial positions 0.47 and 0.46 
so that the region of bifurcation that occurs between these limits could be more clearly 
shown. The trajectory from 0.47 reaches the peak in the quantum potential at the front 
of the well with enough energy to traverse it and enter the well. The trajectory from 0.46, 
however, being further in the tail of the packet, experiences a greater deceleration from the 
initial inverse parabola formed by the quantum potential. This, coupled with the fact that 
it reaches the same peak at a slightly later time when its magnitude is greater, ensures 
that the particle will be reflected. 

If we examine more closely the trajectories between 0.4 7 and 0.46 we see that those that 
enter the well may be reflected out again because the peaks in the quantum potential in 
this region are now sufficiently high to repel the particles. These particles actually spend 
a short time in the well before being ejected to form the tail of the reflected packet." 

If this were true then after a certain (bounded) time the probability to find the par
ticle inside the well would have become exactly zero, and there would be no metastable 
behaviour. A weak point is that their claim is based on numerical analysis. The sharp 
edges that can be seen in their plot of the quantum potential may well be the result of 
the finite difference method they use. We saw above that the quantum potential may have 
sharp edges in principle (like the top of the roof), but in practice wave functions are well
behaved, i.e. infinitely many times differentiable almost everywhere except at the sources of 
the classical potential (the nucleus of the hydrogen atom is the source of the coulomb force 
acting on the atom's electron for instance). For a well-behaved wave function interesting 
behaviour can only be expected at it's zero's, because it's modulus must be differentiated 
to obtain the quantum potential. Suppose at a certain time t we have .p(x, t) = 0 in x = 0 
and that the real and imaginary part of the wave function may be expanded in powers of 
x in the neighbourhood of the origin. Since l.p(xll = J?R2(.p(x)) + '-$2(.p(x)) (ignoring the 
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t-dependence for the time being), l.pl may then be expanded in powers of x as well if we 
take care of the sign of x. For example, for x -> 0 we may write 

vx2 + x3 + x' = ±xVl + x + x 2 

= ±x(l + ~x + O(x2
)) 

= ±(x + ~X2 + O(x3
)) 

where the +-sign holds for positive and the --sign for negative values of x. The derivative 
of the quantum potential with repect to x is given by (apart from an irrelevant constant): 

!!... [l!t] = l.pl· l.pllll - l.pl" . l.pl' 
dx l.pl 1.p12 

Using the expansion of l.pl in powers of x we see that the lowest power of x in the denom
inator must be even. In order to have a roof-like quantum potential with it's top in x = 0, 
the derivative should change it's sign there. This means that the lowest power of x in the 
numerator should be odd. Hence, the roof is either completely flat (if the lowest power of x 
in the numerator is larger than in the denominator) or an infinite spike. In the latter case 
the quantum potential has a singularity in x = O. Consider for instance .p( x) = ax2 + bx3 , 

with a and b larger than zero. We then have 

l.pl" 2a + 6bx 
-- = -> 00 if x -> 0 l.pl ax2 + bx3 

and 

~ [I.plll] -> _~ if x -> 0 
dx l.pl x3 

At a slightly earlier moment in time the wave function may be given by .p( x) = c+ax2 + bx3 

with a very small positive constant c. The quantum potential in the origin is then equal 
to 2; and it's derivative equal to ~. So at the moment that c becomes zero the quantum 
potential and it's derivative in the origin change discontinuously. 

Whether this is enough to explain the bifurcation effect of Dewdney and Hiley remains 
to be seen. They may be wrong after all. On a priori grounds we cannot see that they are, 
however. We should treat this as an open question that can only be answered by further 
research. By the same token we feel that Marino and others have no ground to suppose 
that the well-posedness criterion applies to all physical systems. The unavoidability of 
metastable behaviour in bistable physical systems should therefore also be treated as an 
open question. 
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