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Abstract. Since the outbreak of connectionist modelling in the mid
eighties, several problems in natural language processing have been tack-
led by employing neural network-based techniques. Neural network's �bi-
ological plausibility� o�ers a promising framework in which the compu-
tational treatment of language may be linked to other disciplines such
as cognitive science and psychology. With this brief survey, we set out
to explore the landscape of arti�cial neural models for the acquisition of
language that have been proposed in the research literature.

1 Introduction

Human language, as a canonical representative of human cognitive faculties,
has gathered wide attention in such diverse �elds as cognitive science, psychol-
ogy, arti�cial intelligence and, of course, linguistics. There are strong intuitive
reasons to believe that human cognition, at least at its higher levels, revolves
around mental representations that have language at the base. This is why a
better understanding of the mechanisms behind language acquisition and its
representation in the brain could shed some light in unresolved questions about
the working of the human mind. In this respect, the ability to have computional
models run and interact with linguistic input data, and to analyze quantitave
and qualitative results, plays a very important role. Whether arti�cial neural
networks (ANNs) provide meaningful models of the brain and to what degree,
and whether they constitute a useful approach to natural language processing
(NLP) is subject to debate [1]. Throughout this survey, we will examine some of
the main arguments raised for and against the explanatory potential of ANNs
as models for language acquisition, while supporting the position that they do
indeed possess at least potential as useful tools and models.

First language acquisition concerns itself with the processes involved in the
development of language in children. There have been traditionally two schools
of thought: nativists and non-nativists or �emergencionists�. Nativists assume
that the ability for language is for the most part innate, and thus the underly-
ing principles of language are universal and inborn to all humans. Proponents
of nativism are Chomsky, Fodor and Pinker, among others. A central idea to
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nativism is the well-known Chomskian postulate of the existence of a Universal
Grammar [2], which is innate to all individuals and which underlies all speci�c
instances of human languages. Non nativists (among them, Mac Whinney, Bates
and Snow), despite admitting that some of the ability for developing language
may be innate, see language acquisition as a rather emergent process and a result
of children's social interaction and exposure to linguistic stimuli. As we will see
later, connectionist models of the brain in general, and self-organizing models in
particular, due to their design characteristics, have a lot to say as advocates of
the view of language acquisition as an emergent process.

The acquisition of a second language and bilingual development in children
present their own of set of issues: the interference and coupling e�ects between
the two languages, how the two languages and their respective lexicons are rep-
resented in the brain, the e�ects of age of acquisition, etc. We will also see
a neural-network based model of bilingualism that particially addresses these
issues.

The goal of this survey is to explore ANN-based approaches for an speci�c
NLP problem: that of language acquisition; what research e�orts have histori-
cally been made, where this area of research currently stands, and to what degree
ANNs are viable and biologically plausible models of language acquisition. It was
conceived in the light of a perceived prevalence of statistical (e.g. HMMs, linear
classi�ers, Gaussian models, SVMs, . . . ) and relational (rule induction) meth-
ods for NLP problems in general in current AI research, in detriment of more
generalized use of ANN (connectionist) methods, although connectionist models
of language cognitive development are being reappraised [3]. Nonetheless, it can
also be argued that statistical and connectionist methods are not necessarily mu-
tually exclusive �elds. Much work has been done both to provide a probabilistic
interpretation of neural networks and to insert neural networks within a prob-
abilistic framework [4,5,6]. Some of the most recent theories of cortical activity
draw heavily both from connectionist models and from probability theory [7].

The rest of this work is structured as follows. In Sect. 2, we provide some
historical perspective on connectionist modelling of natural language. Section
3 deals with the strengths of two speci�c neural architectures that have been
proposed to model aspects of language acquisition, namely Self-Organizing Maps
(SOM) and the Simple Recurrent Network (SRN). In Sect. 4, we describe four
particular proposed architectures commented in a greater level of detail: the
ANN for learning english verbs past tenses by Rummelhart and McClelland [8],
TRACE [9], SOMBIP [10] and DevLex [11]. We will examine in turn the rationale
behind these models, their architectures, training methods and their main results
and implications. Section 5 brie�y compares connectionist modelling of lexical
acquisition with statistical and other approaches. Finally, Sect. 6 presents the
conclusions.



2 The Connectionism vs. Symbolism Controversy: An

Historical Perspective

Connectionism attempts to construct biologically-inspired computacional models
of cognitive processes as a network of connections between processing units or
nodes, known as neurons [12]. According to this view of computation, information
is stored in the form of weights between the nodes' connections, or synapses,
in imitation of biological synapses. Connectionist models of NLP took o� in
the late eighties thanks to the pioneering work of Rummelhart & McClelland
[8], with their famous ANN model of the acquisition of past tenses of English
verbs. Rummelhart and McClelland's model was intended as a proof-of-concept
against symbolism (and simultaneously against the prevailing nativist view of
the time that language ability was hardwired into the brain from birth): they
argued, information could be better captured in the form of connections among
processing units, thus eliminating the need for formulating explicit rules that try
to explain the details of acquisition phenomena. This claim was widely contested
from symbolist circles (e.g. [13]).

The proponents of symbolism picture the human brain as a digital proces-
sor of symbolic information, and argue that computational models of the brain
should be based on algorithmic programs manipulating symbols. This is the tra-
ditional school of thought, antagonist to connectionism, which denies the validity
of connectionist models altogether and doesn't credit them with any explana-
tory potential. A halfway position between these two opposite views is that of
implementational connectionists (e.g. Fodor, Pinker and Pylyshyn), who admit
the utility of ANNs in modelling cognitive processes, but hold that they should
be employed ultimately to implement symbolic processing (�the mind is a neu-

ral net; but it is also a symbolic processor at a higher and more abstract level of

description� [14]). According to them, research of models should be made at the
symbolic (psychological) level, whereas ANNs are the tools through which these
models are implemented in practice.

Fodor raised in [15] a well-known argument against the adequacy of connec-
tionism as a model of the mind, based on a characteristic of human intelligence
which he called systematicity. Neural networks, he said, are good at captur-
ing associations, but they alone cannot account for higher cognitive abilities
required, for instance, for human language. Still another main criticism against
connectionist models of language is based on the compositionality of language
(the meaning of a complex statement can be decomposed in terms of the in-
dividual meanings of its simpler constituents). As if to contest this challenge
launched against connectionism about the recursive nature of language, Pollack
devised a neural network architecture that was well-suited to represent recursive
data structures, such as trees and lists: the recursive auto-associative memory
(RAAM) [16]. Due to their ability to represent recursive data structures, RAAM
networks are useful for working with syntactic and semantic representations in
NLP applications. In the �eld of speech processing, the TRACE architecture by
McClelland and Elman [9] set another milestone in early connectionist modelling
of language.



More recent systems have used SOM as neural-network models of language
acquisition. One such model is Miikkulainen's DISLEX [17], which is composed
of multiple self-organizing feature maps. DISLEX is a neural network model
of the mental lexicon, intented to explain the phenomena involved in lexical
aphasia. We will conclude this historical revision by making a reference to the
CHILDES database project [18]. The CHILDES database is a corpus of child-
directed speech, that is, recordings and transcripts of conversations between
parents and young children. It has been subsequently used by other experiments
on neural network modelling of lexical acquisition, in order to gather training
data for the model, and to build a restricted lexicon, representative of the �rst
stages of language learning.

3 Arti�cial Neural Network Architectures for Language

Acquisition

In this section we will discuss how two speci�c neural network architectures,
Kohonen's SOM [19] and Elman's SRN [20], have been applied for modelling
aspects of language acquisition and have served as building blocks for larger
ANN models.

3.1 Kohonen Self-Organizing Maps

A SOM network de�nes a topology-preserving mapping between a often highly
dimensional input space and a low dimensional, most typically 2-D, space. Self-
organization is introduced by having the notion of neighbouring units, whose
weights are adjusted in proportion to their distance from the winning unit. Sev-
eral characteristics of SOM make this architecture especially suitable for mod-
elling language acquisition [10]:

1. Unsupervised learning : SOM is trained by presenting inputs to the network
(without correcting feedback). This is coherent with the way in which chil-
dren are for the most part exposed to language.

2. Self-organization: Activation of the best-matching unit and propagation of
activation yield network units that specialize in speci�c groups of related
words, and resonance between the input and the matching neuron(s) is in-
creased. This presents a coherent picture of memory and the process of re-
membering.

3. Representation: Inputs that are close in the high dimensional space will
activate nearby units in the 2-D space. Also, semantic categories emerge in
SOM in the form of clusters of related words.

4. Neighbourhood function: Acting on the neighbourhood ratio allows the mod-
elling of di�erent levels of brain plasticity. Early plasticity and formation of
gross categories, and posterior establishment and �ne-grained specialization
of the learned structures can be modelled by decreasing the neighbourhood
ratio through the learning process.



5. Hebbian learning : SOM maps interconnected through hebbian associative
links can be used to model the interactions among di�erent levels of language,
as is done in DISLEX architecture [17].

Anderson reports in [21] the results of several experiments he conducted with
SOM simulations in order to model a number of aspects of language acquisition,
including: the modelization of the process of learning to distinguish word bound-
aries in a continuous stream of speech; the modelization of the disappearance
with age of the ability to recognize phonemes other than those of one's own lan-
guage; and the modelization of the clinical occurrences of semantically bounded
anomia (i.e. inability to distinguish correctly among words belonging to some
semantic category).

3.2 SRN for Building Word Meaning Representations

A simple recurrent network (SRN) architecture, as introduced by Elman in [20],
can be employed to construct distributed representations (i.e. as a vector of
weights) for the meaning of a word. The word meaning representations are built
from contextual features, by putting the word in relation to its context, as it
occurs in a stream of input sentences. This is indeed what Li and Farkas do in
the WCD (Word Co-ocurrence Detector) subsystem of their DevLex [11] and
SOMBIP [10] models, both of which are described in Sect. 4.

The SRN network has two layers, an input layer and a hidden layer (which
we will call copy layer). This model assigns to each word wi of a lexicon of size
N a unary encoding as a vector of N dimensions, where the i-th component is 1
and the rest of components are 0. The input layer has N input units (as many
units as the number of components in a word's encoding). At each time instant
t, the hidden or copy layer contains a one-to-one copy of the previous vector
on the input layer (the input word at time t − 1). L and R are two arrays of
associative vectors, fully connecting the units of the copy layer to input layer
and viceversa. Training consists in presenting the network with words from a
stream of input sentences, one word at a time. The weight lij , connecting unit j
in the copy layer to unit i in the input layer, expresses the probability P (jt−1|it)
that word wi is preceded by word wj . Similarly, the weight rij expresses the
probability P (it|jt−1) that word wi follows word wj . These weights are updated
by hebbian learning after each input word is presented. By the end of the train-
ing, li = [li1 . . . liN ] contains a representation of the left context of word wi (the
probability distribution of the words preceding i), and ri = [r1i . . . rNi] contains
a representation of the right context of wi (the probability distribution of the
words following i). The concatenation of these two vectors forms the distributed
representation of the meaning of a word.

4 Case Studies

In the previous sections, we have examined general questions about the subject
of language acquisition, trying to relate the viewpoints of di�erent disciplines.



In this section we examine four complete ANN models that have been proposed
in the literature to tackle di�erent problems in language acquisition. These four
models are presented here in chronological order of appearance in the research
literature, so that the reader will realize how each one draws on the experience
and foundations laid out by the previous ones.

A �rst attempt to establish a typology of neural lexical models may be estab-
lished with regard to the type of representation they use, and to the behaviour
of the network over time: in localist representations, each word or the meaning
of the concept that it conveys is represented by a single neuron or processing
unit (i.e. localized), whereas in distributed representations, the representation
of each word or its corresponding concept is spread through multiple units of
the network; likewise, regarding evolution with time, stationary or permanent
models are those in which the connection weights (and the network architec-
ture) are prespeci�ed, whereas in dynamic or learning models the connection
weights (and/or the network architecture) evolve through time. The TRACE ar-
chitecture, for instance, is a localist and stationary model. In constrast, systems
based on the SRN architecture introduced by Elman [20] are usually distributed
and dynamic. Dynamic models a�ord a better interpretability of the observed
results than stationary ones, by putting the model dynamics in relation with
the dynamics of human lexical learning evidenced by psychology and cognitive
science experimentation. Localist and distributed representations serve di�erent
purposes and are not mutually exclusive: some complex multi-level ANN models
such as DevLex and others based on SOM maps exhibit both types of unit-word
correspondence simultaneously at di�erent levels of representation.

A second attempt at establishing a taxonomy of these models refers to the
type of basic ANN architecture underlying the model. Table 1 summarizes this
distinction and presents some highlights of each type of model.

4.1 Rummelhart and McClelland: Acquisition of Past Tenses of

English Verbs

Rummelhart and McClelland [8] used a one-layer feedforward network based on
the perceptron learning algorithm in order to map verb roots to their past tense
forms. The representation of verbs was based on a system of phonological fea-
tures (Wickelphones), into which verb roots were encoded prior to being inputs
to the network, and which were decoded at the output. Rummelhart and McClel-
land wanted to model the U-shaped learning curve typically found in children:
early correct production of a few irregular verbs, middle confusion due to mix-
ing of regular and irregular verbs' patterns, and late correct production of the
majority of verbs. To this end, they split a training of 200 epochs in two stages:
in the �rst 10 epochs, they presented the network with 10 highly-ocurring verbs;
later, during the remaining 190 epochs, they introduced 410 medium-frequency
verbs. The testing set consisted of 86 low-frequency verbs (14 irregular and 72
regular). They report having observed the U-shaped pattern of learning, as many
irregulars were incorrectly produced during the middle stages of training due to
overregularization.



Table 1. A comparison of ANN models of lexical acquisiton by underlying architecture

Type Examples Training Highlights

Feed-
forward

Rummelhart &
McClelland [8]

Back-
propagation

� Supervised learning: poor re�ection of
human lexical acquisition

� The earliest architecture de�ned
� Able to capture only a highly limited

range of phenomena
� Inadequate to capture temporal dimen-

sion of language

Interactive
activation

TRACE [9]
Preset
weights

� Multi-level architecture
� Interactions among di�erent abstrac-

tion levels
� Competition and cooperation among

candidate hypotheses through in-
hibitory synapses

� Temporal context captured by inter-
connecting multiple copies of the net-
work

SOM-
based

DISLEX [17]
SOMBIP [10]
DevLex [11]

SOM
learning +
Hebbian
learning

� Unsupervised learning: re�ects main
mode of human language learning

� Self-organization allows for emergence
of lexical categories

� Interaction among di�erent levels of
language

� Distributed encoding for word seman-
tics based on contextual features

� Capture a wide range of phenomena

This model has received a number of critiques, among them:

� that it is not a valid model of language acquisition, because the direct map-
ping from phonological forms of verb roots to past tenses is considered in
isolation from the rest of the language;

� criticisms about the features chosen for representation (that Wickelphones
tend to favour positively the aspects of data that convey most information);

� that the results obtained fall short of being generalizable (due to relatively
low performance);

� and that the training and testing procedures were unrealistic, as a result of
an excessive zeal in modeling the U-shaped learning curve.



4.2 TRACE: A Model of Speech Processing

TRACE by McClelland and Elman [9] is a neural model of human speech percep-
tion, which implements activation of words in a lexicon through a combination
of phonological and phonotactical features. It set a hallmark in connectionist
treatment of language by introducing the notion of interconnection among dif-
ferent abstraction levels of language. A particularly interesting characteristic of
TRACE is found in its ability to perform word segmentation without an explicit
marker, based only on phonetic interactions.

The TRACE model was based on the principle of interactive activation (IA),
where units are related by connections that exercise either an inhibitory or exci-
tatory action on their neighbours. TRACE has three layers of neurons, each one
representing a higher level of abstraction in language: �rst, phonetic features;
second, individual phonemes; and third, words. Connections exist within and
across layers. Inhibitory synapses model situations where the items represented
by the co-activating units can not co-exist (competition), whereas excitatory
ones model items that are somehow related (cooperation). In addition, the tem-
poral dimension is captured by having multiples copies of the whole network,
among which neurons are also interconnected.

There is one particular novelty about TRACE that challenged the traditional
perception of the scienti�c community regarding how the brain network is orga-
nized. It is that activation between layers in TRACE works top-down (words to
phonemes) as well as bottom-up (phonemes to words). It is a matter of debate
whether layers of higher abstraction feed information back to lower layers. An-
other particular characteristic of TRACE is that the connection weights are all
preset to account for the desired model of language: the network does not learn.

4.3 SOMBIP: A Model of Bilingual Lexicon Acquisition

SOMBIP is an ANN model by Li and Farkas [10] of how a bilingual lexicon (i.e.
a lexicon where words of two languages appear mixed) is acquired by bilingual
learners. The network architecture consists of two Kohonen SOM maps, one
phonological (SOM1) and one semantical (SOM2), interconnected via associative
hebbian links. The network was trained to learn a bilingual English-Chinese
lexicon of 400 words (184 Chinese, 216 English), extracted from the CHILDES
database [18].

In order to allow the network to create associations between translation
equivalents in the two languages that occur in the bilingual lexicon, if the phono-
logical representation of an English (or Chinese) word is presented to SOM1 and
it has a translation equivalent in the lexicon, not only the semantic representa-
tion of the same English (or Chinese) word is presented to SOM2 coupled with
the word form, but also the semantic representation of the translation equivalent
in Chinese (or English) is presented.

Emergence of grammatical and lexical categories in the form of visible clusters
appears in SOMBIP, with the particularity that the network is able as well to
e�ectively separate words from the two languages. Interference e�ects between



words, both intra-language and inter-language, were veri�ed by presenting the
network with a phonological representation and observing the response it triggers
in the semantic map, and vice versa. Di�erent levels of the learner's pro�ciency in
one of the languages were modelled by building the word meaning representations
for one of the languages from a smaller portion of the corpus. Words from the
dominant language tended to occupy a larger area of the semantic map than
before, which caused lexical confusion in the disadvantaged language.

4.4 DevLex: A Model of Early Lexical Acquisition

DevLex [11], by Li, Farkas & MacWhinney, is a neural network model of the de-
velopment of the lexicon in young children, based mainly in the SOM architecture
and inspired by Miikkulainen's DISLEX model [17]. The authors observe that
most previous ANN models of lexical acquisition have been based on the super-
vised back-propagation algorithm for training, thus misrepresenting the mainly
unsupervised nature of lexical acquisition in children, and most have also failed
at modelling the incremental nature of vocabulary acquisition. To address this
issues, DevLex introduces through a combination of SOM and ART (Adaptive
Resonance Theory, [22]) modes of operation.

The DevLex architecture is composed of two GMAPs (Growing Maps), one
phonological map for dealing with phonological information of words (P-MAP)
and one semantic map (S-MAP) for dealing with word's meanings. A GMAP is
an arrangement that combines both the self-organization properties of SOM, and
the ability of ART networks to create new nodes that become representatives of
a new class of inputs. The learning process is modelled like a gradual transition
between the SOM and ART modes of learning. During SOM mode, the network
undergoes reorganization as a result of exposure to the input patterns. In ART
mode, the network is allowed to create new units when the input pattern (word
forms or meanings) is su�ciently di�erent from all the patterns stored in existing
nodes. At any time, showing the network a word form causes a response in the S-
MAP, which models language comprehension; while showing the network a word
meaning causes a response in the P-MAP, which models language production.

The results observed concerted three types of phenomena: category emer-
gence, lexical confusion and e�ects of age of acquisition. The target 500-word
vocabulary from the CHILDES database is structured in 4 major lexical cate-
gories (nouns, verbs, adjectives and closed-class words). By comparing each S-
MAP unit against its 5-nearest neighbours, category compaction was observed
in nouns (more than 90%), then in verbs, in adjectives (circa 80%), and last
closed-class words. Lexical confusion in the network was evaluated by looking
inside individual units, in order to observe how many words of the lexicon were
cluttered into the same unit, and over the associative links that relate phonology
and meaning. Largely in agreement with the way how this phenomenon manifests
in children, it was found that lexical confusion is very high during early stages
of high reorganization (in SOM mode), and then decreases steeply just to reach
a minimum in ART mode. Regarding age of acquisition, it was observed that,
after the network starts operating in ART mode, the earlier a word was entered



for learnig, the less it took the network to construct an unique representation
for it and with a correct association between form and meaning.

5 Comparison to Statistical Approaches

Statistical NLP has typically concerned itself with problems that depart from
the interpretation of language acquisition (or lexical acquisition) addressed in
this survey. Rather than modelling the identi�cation and learning of words of a
lexicon from phonological and/or semantic contextual information, as the ANN
models we have reviewed in the previous sections do, the methods employed in
statistical NLP extract a series of lexical, morphological, syntactic and semantic
features from text documents, in order to apply them to higher-level tasks where
the focus is on performance on the task at hand, as opposed to interpretabil-
ity of the results, or imitation of biological or cognitive processes. Examples of
such tasks are text categorization, information extraction, machine translation
or word sense disambiguation, among others.

An outstanding di�erence regarding the way features extracted from words
and text are employed in statistical NLP with respect with the connectionist
models we have seen here, is that in statistical NLP information �ows only
from lower-level features (i.e. levels of language) to higher-level problems. Lower
levels of language (e.g. morphological) are used to solve the NLP problems in
the higher levels (e.g. syntactic or semantic). There is no notion of information
�owing forward and backwards across language levels (as in the TRACE model
in [9]) or interaction (in a hebbian sense) among di�erent levels.

Although some research literature on the application of ANNs to NLP tasks
in general has been published in recent years, the overwhelming majority of in-
stances have employed either statistical or symbolic approaches. This scarcity of
ANN-related publications might be due, at least in part, to two of the limitations
that are usually associated to ANN models: that of the di�cult interpretabil-
ity of results, and the excessive tuning of the network architecture and learning
parameters that is required. Moreover, it is hard to integrate existing back-
ground linguistic knowledge for use by an ANN, if so desired. Nevertheless, and
as mentioned in the introduction, some connectionist models have been reinter-
preted within the framework of probability theory. Among the frequently quoted
advantages of this reformulation, we �nd: the possibility of de�ning principled
model extensions, and the explicit addressing of the model complexity problem.
Among the disadvantages: the likely increase of computational e�ort, and the
requirement of data distributional assumptions that might hamper biological
plausibility.

With respect to the e�ect of lexical category emergence of which we have seen
occurrences in SOM-based models, and which has an intrinsic interest from the
standpoint of modelling cognitive processes, a similar category separation could
have been attained by resorting to traditional statistical clustering techniques.
Nevertheless, models based on SOM o�er an additional value concerning analysis



and visualization of the resulting clusters, which is a�orded by the reduction-of-
dimensionality characteristic of SOM.

6 Conclusions

Throughout this brief survey, we have seen a variety of neural network con-
nectionist architectures that can be used to capture phenomena that arise in
language acquisition. Arguments that have been raised for and against ANNs as
valid models of language acquisition have been presented. This has lead to the
explanation of two particular instances of ANN-based models for lexical acqui-
sition, and has enabled us to prove the point that such full-scale neural models
as DevLex (for early lexical acquisition) and SOMBIP (for modelling the acqui-
sition of a bilingual lexicon) can reproduce a variety of phenomena that have a
parallel in empirical evidence: lexical confusion, interference between languages,
e�ects of pro�ciency and learning capacity, etc. In fact, ANNs such as these, as
well as other machine learning methods (as in [23]), provide a computational ba-
sis for certain biological and psychological explanations of empirically observed
phenomena.
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