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Evolutionary trends and processes can distort phylogenetic information in sequences such that they do not reliably
reflect the evolutionary processes that generate them. This fact of molecular evolution has a ubiquitous influence
on the ability of researchers to adequately reconstruct genealogical relationships and histories of the processes of
molecular evolution. This feature of phylogenetic inference can limit the capacity of researchers to adequately
specify a relevant null hypothesis for testing hypothesis of relationships, data informativeness, and processes of
molecular evolution. We show how this feature of historical inference also influences the exactness of the relative
apparent synapomorphy analysis (RASA) test for phylogenetic signal and demonstrate how a permutation modifi-
cation of the null hypothesis can improve the robustness of the underlying distributional assumption of the test.
The RASA test (using either null model) was found not only to appropriately reject the combinability of independent
lines of evidence for the relationships among the Physalaemus pustulosus frog species group, but also to be more
appropriately sensitive to individual uninformative data sets than commonly used tree-based measures of signal,
including the consistency index, the retention index, and the permutation tail probability test statistic.

Introduction

Methods for the estimation of phylogenetic rela-
tionships among organisms rely on the assumption that
the genealogical relationships of those organisms are en-
coded in the distribution of character states among them.
When this assumption is violated, the resulting infer-
ences of genealogical relationships and character evo-
lution are apt to be misleading (Lockhart et al. 1992).
To avoid the misuse of uninformative data, this funda-
mental assumption can be tested using tests of matrix
structure before tree topologies are derived (Lyons-Weil-
er, Hoelzer, and Tausch 1996; Lyons-Weiler and Hoelzer
1997). Such tests rely on the identification of an appro-
priate null universe of possible outcomes (Bryant 1995).
The usual null model adopted is a random distribution
of evidence of shared genealogy for all relationships
among taxa. In this paper, we use our improved under-
standing of the null universe for this test to illustrate a
number of generally important issues regarding the
choice of null distributions in statistical molecular sys-
tematics. Specifically, we demonstrate that the tree-in-
dependent test for phylogenetic signal described by Ly-
ons-Weiler, Hoelzer, and Tausch (1996), like most meth-
ods of phylogenetic analysis, is inappropriately sensitive
to compositional biases, and we trace this sensitivity to
differences between assumed and true null distributions.
We further demonstrate that a permutation-based esti-
mate of the null slope for the relative apparent synap-
omorphy analysis (RASA) test leads to an improvement
in this aspect and discuss some of the general limitations
of defining a representative null sampling distribution in
specific cases. Although the limitations we discuss exist
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for all statistical tests of historical processes, they do not
reduce the general utility of such tests.

Compositional Bias Versus Character State Bias

One potential pitfall for phylogenetic estimation
from biological sequence data is compositional bias.
While this problem is not unique to molecular data, it
has been most clearly shown in this context. Although
most genes and genomes exhibit some degree of com-
positional bias, it need not be accompanied by character
state biases (i.e., biases in the ratios of states within
characters), but it does make the latter and its concom-
itant problems more likely. The degree to which a com-
positional bias is accompanied by a character state bias
is strongly dependent on the details of the distribution
of character states at each site (Collins, Wimberger, and
Naylor 1994). For example, it is common for a character
state bias to exist at a given site without any composi-
tional bias evident in the overall data set; indeed, all
sites with configurations that do not exhibit even char-
acter state ratios are biased, but in many cases this ac-
curately reflects phylogenetic relationships. Thus, char-
acter state biases caused by shared compositional biases
can be phylogenetically informative (e.g., Powell and
Moriyama 1997) without necessarily indicating the oc-
currence of misleading homoplasy. When this is the
case, it would be counterproductive to ‘‘correct’’ for var-
iation in nucleotide composition among taxa, making an
accurate phylogenetic inference less likely. On the other
hand, character state biases at individual sites are prob-
lematic for methods of phylogenetic inference when
they reflect convergent trends in nucleotide composition,
because they can cause unrelated organisms to cluster
due to shared base composition instead of phylogenetic
affinity. The challenge in dealing with variation in com-
positional biases is no different from that in dealing with
other sorts of variation in a phylogenetic context; that
is, to distinguish between synapomorphic (i.e., phylo-
genetically informative) and homoplastic (i.e., phylo-
genetically misleading) similarities. Clearly, tree-based
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measures of phylogenetic signal would be hard-pressed
to distinguish these cases, because the optimal tree set
and characteristics of its members can be misled by var-
iation in a substantial fraction of characters which might
be mutually influenced by compositional convergence.

Compositional biases can be found throughout the
living world (e.g., Hasagawa and Hashimoto 1993; Pow-
ell and Moriyama 1997; Morton and Clegg 1995) and
may play an adaptive role in transcription efficiency
(Eyre-Walker 1996; Morton 1996; Xia 1996), making
interpretation in a phylogenetic context complex. The
LogDet transformation (Steel, Lockhart, and Penny
1993; Lake 1994; Lockhart et al. 1994) and other cor-
rections (Sidow and Wilson 1990, 1991) have been de-
vised for dealing with compositional bias. However, it
is important to consider that although these methods can
be viewed as strategies for noise reduction, and this may
often be the net effect of their implementation, such cor-
rections can add new sources of phylogenetic noise by
treating all individual sites, or sites within predefined
classes, the same. This is inevitable, because not all sites
will exhibit the influence of convergent compositional
biases; thus, corrections to distances should be expected
to ‘‘overcorrect’’ in many cases. All methods that treat
a set of sites as a sample from a single probability den-
sity function result in a loss of information for some
sites (i.e., they are ‘‘lossy’’ transforms) when the same
function is not appropriate for each site in the set (e.g.,
when the distribution of phylogenetic signal among sites
does not match designated site classes, such as sites
classified according to codon position).

Excessive compositionally induced character state
biases limit the phylogenetic information that can be
encoded in a data matrix, and they are known to be a
source of difficulty in all methods of phylogeny esti-
mation (see review by Collins, Wimberger, and Naylor
1994). For example, it is well known that characters
with the greatest possible bias in state frequencies, those
with a single unique taxon and a single state shared by
all other taxa, are entirely uninformative in the context
of cladistic parsimony. It is also clear that the probability
of inferring erroneous nodes on trees is greater for ma-
trices with lower phylogenetic signal (Lyons-Weiler,
Hoelzer, and Tausch 1996; Lyons-Weiler and Hoelzer
1997). Therefore, an abundance of characters with com-
positionally induced biased state frequencies is expected
to obscure the hierarchical patterns in the matrix caused
by phylogenetic history, making accurate phylogenetic
inference less likely (Saccone, Pesole, and Preparata
1989; Saccone et al. 1990; Saccone, Lanave, and Pesole
1993; Steel, Lockhart, and Penny 1993; Lockhart et al.
1994; Steel 1994; Pesole et al. 1995). Specifically, one
effect of evolving an increased compositional bias is to
reduce the effective number of character states per char-
acter; thus, the increased mean character state bias that
typically attends a matrixwide compositional bias can
reduce the probability of accurate phylogenetic infer-
ence, even in the absence of convergent compositional
biases.

The Null Distribution of tRASA

We explored the influence of compositional biases
on inferences drawn from one particular measure of
phylogenetic signal, called RASA (Lyons-Weiler, Hoel-
zer, and Tausch 1996), and the role of the assumed null
distribution of the RASA test statistic (tRASA) on that
influence. RASA is a tree-independent statistical test for
phylogenetic signal that can be solved in polynomial
time. The purpose of the RASA test for signal is to
provide a critical test of the assumption that the com-
bined influences of the processes of evolution and sam-
pling of both taxa and characters have resulted in a dis-
tribution of character states among taxa that is reflective
of genealogical relationships. The test statistic, tRASA,
provides a measure of the difference between an ob-
served (bobs) and null (bnull) rate of increase in apparent
phylogenetic similarity (RAS) with phenetic similarity
(E) for pairs of taxa in the matrix regression model

RAŜ 5 b (E ) 1 b 1 e , (1)m obs m 0 m

where em is the error with which apparent cladistic sim-
ilarity of the mth taxon pair is estimated by the model
and b0 is the intercept. Under the special rule of equi-
probability, the null expected frequency of any event is
the mean frequency of such events. This rule was in-
voked to achieve the analytical estimate of bnull (Lyons-
Weiler, Hoelzer, and Tausch 1996), which, in its most
elegant form, is

RASO
b 5 (2)null

EO
(D. Colless, personal communication). Lyons-Weiler,
Hoelzer, and Tausch (1996) demonstrated that tRASA is
appropriately sensitive to several variables that influence
the amount of phylogenetic signal in matrices, including
the amount of mutation per internode on trees, the num-
bers of characters, and the number of character states.
These authors also compared the effects of these factors
on signal under limited null conditions. When phylo-
genetic information is low or absent, conflicting state-
ments of relationships exist in the matrix, which de-
creases measured signal in two ways: random homopla-
sy tends to both increase the error term in the test sta-
tistic and reduce the difference between the observed
and null slopes. Applications that use phylogenetic sig-
nal as a criterion include the identification of long edges
(another source of systematic error for methods of phy-
logenetic inference; Lyons-Weiler and Hoelzer 1997)
and outgroup selection (Lyons-Weiler, Hoelzer, and
Tausch 1998). Lyons-Weiler and Hoelzer (1997) dem-
onstrated that tRASA tracks the distortion of hierarchy in
matrices caused by long- edge taxa, including the attri-
tion of signal as more characters are sampled when long-
edge taxa are present. Long-edge taxa also leave a char-
acteristic, localized footprint in the error structure of the
regression model, providing a means to detect long-
branch taxa. The RASA test, therefore, provides a win-
dow into the components of structure in phylogenetic
matrices not available from tree-based measures of in-
formation. The combined use of the test statistic as a
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Table 1
Estimated P Values for the Critical Value a 5 0.05 of
tRASA Based on Student’s t Distribution Using Both bnull
and bp

Character
State Bias Nt Nc

Empirical
Alpha,
bnull

Empirical
Alpha,

bp

None (1:1:1:1) . . . 7
7
7

12
40

100

0.064
0.022
0.073

0.008
0.055
0.024

9
9
9

12
40

100

0.009
0.026
0.027

0.024
0.062
0.067

6:1:1:1 . . . . . . . . . 7
7
7

12
40

100

0.175
0.209
0.225

0.043
0.052
0.048

9
9
9

12
40

100

0.264
0.329
0.318

0.049
0.053
0.060

9:1:1:1 . . . . . . . . . 7
7
7

12
40

100

0.172
0.270
0.235

0.035
0.069
0.055

9
9
9

12
40

100

0.283
0.318
0.323

0.046
0.054
0.065

NOTE.—Nt 5 number of taxa; Nc 5 number of characters; bnull 5 the ana-
lytical null slope; bp 5 the permutation-based null slope.

criterion and the taxon variance comparison as a win-
dow into the phenetic-cladistic covariance structure of a
matrix provides a guide for optimal taxon sampling. The
test statistic is also useful outside of a strictly phylo-
genetic context as a measure of the degree of hierarchy
in matrices of species’ distribution (Lyons-Weiler and
Tausch 1996), and has been used as an indicator of the
effects of differential lineage sorting (Lyons-Weiler and
Milinkovitch 1997). A worked example of the test is
available (Lyons-Weiler, Hoelzer, and Tausch 1998).

Given the apparent general utility of tRASA, its sta-
tistical properties deserve scrutiny. The sampling distri-
bution of the test statistic (Lyons-Weiler, Hoelzer, and
Tausch 1996) was originally approximated by Student’s
t distribution, as would be appropriate if the null model
was both sufficiently equiprobable and independent of
the observed model. However, it has since been deter-
mined that character state biases can cause the test to
yield inflated empirical P values (and correspondingly
inflated Type I error rates) under Student’s t distribution.
The reason for the undesirable sensitivity of the test to
character state biases appears to lie in construction of
the null model (bnull), which is algebraically dependent
on the mean empirical values of RAS and E alone. In
fact, bnull is defined by a line connecting the origin to
the point [RAS/Ē]. However, character state biases cause
the observed linear regression to pass below the origin.
Constraining the null slope to pass through the origin
artificially reduces bnull relative to bobs, making the null
and observed slopes more different than they ought to
be when the average character state bias in the matrix
is too great; hence, there is an association between in-
creasing character state bias and inflated type I error rate
(table 1).

For any statistical test, the frequency with which
matrices generated under completely null conditions ex-
ceeds particular critical values of a sampling distribution
(e.g., those for a 5 0.05, 0.01, etc.) reflects the fit of
the test to the distributional assumption. If the appro-
priate null distribution is used, these empirical P values
will approximate a. We compared the statistical prop-
erties of a revised test that uses a permutation-based
estimate of the null slope with those of the original test.
This null parameter, bp, is determined by randomizing
the character states within characters and then determin-
ing an observed slope for each randomized matrix. Like
bobs, these slopes are not constrained to pass through the
origin. The mean of this distribution of observed slopes
is used as an estimate of the null parameter (bp). States
are randomized without replacement within sites; thus,
the randomization step is identical to that used by Ar-
chie (1989). This approach to estimating the null slope
in a RASA analysis involves a modest increase in com-
puting time, but it appears to invoke a more appropriate
null distribution. Specifically, it defines a null universe
in which all matrices share the same distribution of char-
acter state biases but include all possible hierarchical
and nonhierarchical patterns consistent with that distri-
bution. The result is that bp . bnull, and tRASA is usually
reduced with the use of bp.

We generated 100 random four-state matrices for a
range of compositional biases (table 1) and determined
tRASA using bnull for each. We then performed 30 per-
mutations of each matrix to obtain bp and estimated
tRASA using the error term of the observed regression
model. The error terms for the regression used to derive
bp were ignored because the test was designed to study
the observed slope and the distribution of error around
that slope. Empirical P values were determined for the
old and new test statistics, based on both bnull and bp,
by determining the proportion of the randomly gener-
ated matrices that resulted in a test statistic greater than
the critical value of Student’s t distribution.

The difference between bobs and bnull was found to
be larger for matrices generated with a compositional
bias. This difference was not observed when the per-
mutation null parameter was implemented. In biological
terms, character state biases can generate patterns of
shared similarities and dissimilarities among taxa that
mimic the pattern caused by phylogeny. In this case, the
permutation estimate of the null hypothesis anticipates
the steeper relationship between RAS and E, typical of
such matrices, to provide a sufficiently exact test. Ac-
cordingly, the revised test statistic better approximates
Student’s t distribution under a wider range of condi-
tions and produces fewer type I errors under null con-
ditions. The results (table 1) indicate that bp generally
provides a better estimate of the null universe than does
bnull, and its use thus improves the empirical P values
of the RASA test. Moreover, because the original test
statistic changes in tandem with the new test statistic
(unpublished data), data exploration using maximum
signal as a criterion remains effective and worthwhile
when the more computationally efficient bnull is used.
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Table 2
Signal is Overestimated in Data partitions of the Physalaemus pustulosus Frog Species Group Under the Analytical
Null Model as well as Various Tree-Dependent Measures of Signal

DATA PARTITION

TREE-DEPENDENT MEASURES

CIa RIa PTPa

RASA

tRASA

(bnull)
tRASA

(bp)

Combined . . . . . . . .
12S . . . . . . . . . . . . .
COI . . . . . . . . . . . . .
Allozymes . . . . . . . .
Calls . . . . . . . . . . . .
Morphology . . . . . .

0.68
0.73
0.60
0.80
0.71
1.00

0.60
0.66
0.45
0.53
0.61
1.00

0.0002
0.0002
0.0002
0.0002
0.0004
0.0002

8.868
10.544

1.848(NS)*
4.695

20.7441(NS)*
5.56

5.609
7.4006

21.189(NS)*
4.532

20.9718(NS)*
4.566

NOTE.—tRASA (bnull) 5 the RASA test statistic derived using the analytical null model; tRASA (bp) 5 the RASA test statistic derived using the permutation null
model described in this paper. Note that the permutation tail probability (PTP) test fails to discriminate between any of the partitions.

a Results from Cannatella et al. 1998.
*NS 5 not significant at a 5 0.05.

Limitations of Permutation Theory

The characteristics of any test are influenced by the
degree and frequency with which the assumptions of the
test are met in specific cases, which then largely deter-
mine the Type I and Type II error rates. One assumption
is that a null distribution sufficiently represents the ac-
tual sampling distribution. The sampling distribution of
any test can be thought of as the distribution of possible
outcomes under the same processes minus the effect be-
ing tested for. For any test, when we use a given data
set to derive a null model, that derivation may not ad-
equately describe the range of possibilities under the
correct null model. The derived null distribution might
be constrained in obscure ways that invoke unwanted
and implicit changes to the intended null hypothesis. In
the present case, the use of bnull has the undesirable
effect that the null expectation includes values of tRASA
that correspond to the degree of structure expected with-
out considering the distribution of character state biases
in the focal matrix.

An inaccurate representation of the null universe
can result even when all possible permutations of ob-
served data are considered. For example, when a sam-
pled distribution is biased, the estimated null distribution
can differ from the correct null distribution, and the re-
sult will be an inflation of Type I error rates. This type
of problem is revealed for permutation tests of phylo-
genetic matrices when compositionally induced charac-
ter state bias is considered. In the study of molecular
evolution, two types of evolutionary models may be in-
voked: a stationary (equilibrium) model, or a dynamic
model in which the model varies over time and among
lineages. In the determination of the conditions that ob-
tain for our ‘‘random’’ matrices, we were omniscient in
the sense that we knew of all of the factors that influ-
enced the character state frequencies. In empirical stud-
ies, observed (extant) compositional biases may reflect
either a stationary (ergodic) process or a stage in a dy-
namic process with appreciable fluctuations over time,
with or without an accumulating trend, and with or with-
out reversals in trends. Historical trends can pose a prob-
lem for the accurate determination of a null sampling
distribution using extant sequences. Depending on the

dissimilarities in shape of the relevant distributions, a
null distribution derived under an ergodic assumption
may be more limited than one derived under a fluctu-
ating model in which any and all trends may be accom-
modated. In such instances, the ergodic assumption will
lead to overly extreme estimates of probabilities. In
practice, the use of permutation to achieve any null sam-
pling distribution imposes the assumption of stationarity
of state usage. In the present case, a permutation-based
point estimate of the null slope allows for improved ex-
actness by considering current character state biases, but
it cannot guarantee exactness, because by using the ob-
served data as a guide to the null distribution of possible
outcomes, permutation assumes ergodic compositional
and character state biases. Tests that apply null models
that implicitly or explicitly assume stationarity (as most
do) should be reexamined for exactness with fixed char-
acter state biases, and perhaps for dynamic composi-
tional biases.

It is clear that permutation-based estimates of pa-
rameters are far from assumption-free. Furthermore,
evaluating the performance of tests using many per-
mutations of only a single matrix can lead to spuriously
characterized empirical P values. We avoided this by
using permutations of 100 different matrices instead of
100 (or more) permutations of a single matrix.

Empirical Example

Table 2 provides the analytical and permutation-
based measures of signal for five recently published par-
titions of phylogenetic data for the frogs of the Physa-
laemus pustulosus species group (Cannatella et al.
1998). Our permutation-based estimate of the null slope
in each was determined using 30 randomizations for
each partition. The overestimation of phylogenetic sig-
nal for most partitions (12S sequences, allozymes, and
morphology) is evident from the larger test statistics
generated using the analytical null model. Interestingly,
for two partitions (cytochrome oxidase I [COI] sequenc-
es and call characters), the null hypothesis that the data
are phylogenetically uninformative cannot be rejected.
Other, tree-dependent, measures of phylogenetic infor-
mativeness, including the consistency index, the reten-
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tion index, and the permutation tail probability test, all
indicate that the vocalization (call) characters are at least
as informative as the other partitions, despite the deter-
mination from subsequent tree congruence tests and one
pairwise heterogeneity test that the call characters
should not be combined with the other partitions (Can-
natella et al. 1998). In addition, the COI tree was found
to be topologically very distinct from the other trees;
yet, again, the tree-dependent assessments of the COI
data did not indicate any potential difficulties. This ap-
pears to be an example wherein tree-dependent measures
of signal fail to identify individual data sets that are
misleading with respect to phylogenetic relationships,
while the tree-independent RASA test finds these data
sets uninformative. Given the apparent poor ability of
the tree-dependent tests to identify individual (as op-
posed to combined) problematic data sets, researchers
should be very cautious in their interpretation of tree-
based measures of the phylogenetic informativeness of
their data and tree-dependent tests of partition hetero-
geneity (Lyons-Weiler, Hoelzer, and Tausch 1996).

Discussion

The fact that unknown factors may impinge on ul-
timate inferences is not at all restricted to measures of
signal. Lyons-Weiler and Hoelzer (1997), for example,
demonstrated that the topology of the true phylogeny
has a major effect on the efficiency of maximum par-
simony; Sullivan, Holsinger, and Simon (1996) found
similar sensitivities of maximum-likelihood analysis to
parameters in likelihood models of molecular evolution.
Because taxon sampling largely determines the true to-
pology, taxon sampling has a major impact on phylo-
genetic accuracy (Lecointre et al. 1993); however, all
methods of phylogenetic estimation invoke the assump-
tion that every topology is equivalent to others with re-
spect to its influence on phylogenetic signal. This as-
sumption is obviously violated in most cases.

The negative influences of compositionally induced
character state biases can be detected and combated. Sta-
tistical comparisons of compositional bias within a tax-
on to the character state biases exhibited by the remain-
der of the matrix should help delineate cases in which
compositional distributions and character state distribu-
tions appear to fit the ergodic assumption from cases in
which localized (phylogenetic) compositional biases ex-
ist. In addition, comparisons of the RASA test statistic
determined with the analytical null model to one deter-
mined via the permutation null model might provide an
indication of the misleading effects of character state
biases in the matrix. Such tests might also be useful in
determining when to invoke the compositional correc-
tions of Sidow and Wilson (1990, 1991) and others
(such as the LogDet/paralinear distance).

Our results also suggest that researchers should
consider using tree-independent measures of phyloge-
netic signal as criteria to examine the influences of char-
acter and taxon sampling. For example, changes in tRASA
can be applied as an objective (maximizing) function
for testing the effects of taxon and character sampling

in a particular case, even when the assumptions of the
test are violated. The RASA framework fundamentally
demonstrates that statistical inference, especially the
type of statistical inference concerned with Type II error
minimization (classical statistical inference), is espe-
cially useful in the context of phylogenetic data explo-
ration and a priori testing of the informativeness of phy-
logenetic data. In this way, it is seen that statistics and
cladistics are compatible and that statistical inferences
of the right flavor can provide much useful information
about phylogenetic data that is not always accessible
when tree-dependent methods are used.

We improved the RASA test statistic for compari-
sons with Student’s t distribution with the use of a per-
mutation-based estimate of the null parameter in place
of the original, analytical, null parameter. This improve-
ment is accompanied by a marked reduction in the sen-
sitivity of the test to matrixwide biases in character state
usage (i.e., compositional biases) that translate into re-
dundant patterns within characters. Developers and us-
ers of methods of phylogenetic inference should keep in
mind that every method of systematic inference and ev-
ery test requires assumptions and that all methods have
limitations. In the long run, our comprehension of the
processes of molecular evolution is aided, not hindered,
by cataloging the limitations of methods of phylogenetic
inference. More effort is needed to make the limitations
of all of our inferential tools obvious, because only then
can tests for the violations in the specific case be de-
vised, and only then can improvements in methodology
occur. Given that so much of the structure of a matrix
is unveiled in the RASA regression, we expect that the
test will continue to provide new insights into compar-
ative analyses. Software available online (Lyons-Weiler
1999) now implements either null model.
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ADER. 1993. Species sampling has a major impact on phy-
logenetic inference. Mol. Phylogenet. Evol. 2:205–224.

LOCKHART, P. J., C. J. HOWE, D. A. BRYANT, T. J. BEANLAND,
and A. W. D. LARKUM. 1992. Substitutional bias confounds
inference of cyanelle origins from sequence data. J. Mol.
Evol. 34:153–162.

LOCKHART, P. J., M. A. STEEL, M. D. HENDY, and D. PENNY.
1994. Recovering evolutionary trees under a more realistic
model of sequence evolution. Mol. Biol. Evol. 11:605–612.

LYONS-WEILER, J. 1999. RASA 2.3 for Macintosh and manual.
http://test1.bio.psu.edu/LW/rasatext.html.

LYONS-WEILER, J., and G. A. HOELZER. 1997. Escaping from
the Felsenstein Zone by detecting long branches in phylo-
genetic data. Mol. Phylogenet. Evol. 8:375–384.

LYONS-WEILER, J., G. A. HOELZER, and R. J. TAUSCH. 1996.
Relative apparent synapomorphy analysis (RASA) I: the
statistical measurement of phylogenetic signal. Mol. Biol.
Evol. 13:749–757.

. 1998. Optimal outgroup analysis. Biol. J. Linn. Soc.
64:492–511.

LYONS-WEILER, J., and M. MILINKOVITCH. 1997. A phyloge-
netic approach to the problem of differential lineage sorting.
Mol. Biol. Evol. 14:968–975.

LYONS-WEILER, J., and R. J. TAUSCH. 1997. The demarcation
of historical from ecological variance in species diversity
patterns. Pp. 209–221 in T. N. KAYE, R. M. LOVE, D. L.
LUOMA, R. J. MEINKE, and M. V. WILSON, eds. Conserva-
tion and management of native plants and fungi. Native
Plant Society of Oregon, Corvallis, OR.

MORTON, B. R. 1996. Selection on the codon bias of Chla-
mydomonas reinhardtii chloroplast genes and the plant
psbA gene. J. Mol. Evol. 43:28–32.

MORTON, B. R., and M. T. CLEGG. 1995. Neighboring base
composition is strongly correlated with base substitution
bias in a region of the chloroplast genome. J. Mol. Evol.
41:597–603.

PESOLE, G., G. DELLISANTI, G. PREPARATA, and C. SACCONE.
1995. The importance of base composition in the correct
assessment of genetic distance. J. Mol. Evol. 41:1124–
1127.

POWELL, J. R. and E. N. MORIYAMA. 1997. Evolution of codon
usage bias in Drosophila. Proc. Natl. Acad. Sci. USA 94:
7784–7790.

SACCONE, C., C. LANAVE, and G. PESOLE. 1993. Time and
biosequences. J. Mol. Evol. 37:154–159.

SACCONE, C., C. LANAVE, G. PESOLE, and G. PREPARATA.
1990. Influence of base composition on quantitative esti-
mates of gene evolution. Methods Enzymol. 183:570–583.

SACCONE, C., G. PESOLE, and G. PREPARATA. 1989. DNA mi-
croenvironments and the molecular clock. J. Mol. Evol. 29:
407–411.

SIDOW, A., and A. C. WILSON. 1990. Compositional statistics:
an improvement of evolutionary parsimony and its appli-
cation to deep branches in the tree of life. J. Mol. Evol. 31:
51–68.

. 1991. Compositional statistics evaluated by computer
simulations. Pp. 129–146 in M. M. MIYAMOTO and J. CRA-
CRAFT, eds. Phylogenetic analysis of DNA sequences. Ox-
ford University Press, New York.

STEEL, M. A. 1994. Recovering a tree from the leaf colorations
it generates under a Markov model. Appl. Math. Lett. 7:
19–23.

STEEL, M. A., P. J. LOCKHART, and D. PENNY. 1993. Confi-
dence in evolutionary trees from biological sequence data.
Nature 364:440–442.

SULLIVAN, J., K. E. HOLSINGER, and C. SIMON. 1996. The ef-
fect of topology on estimates of among site rate variation.
J. Mol. Evol. 42:308–312.

XIA, X. 1996. Maximizing transcription efficiency causes co-
don usage bias. Genetics 144:1309–1320.

MICHAEL HENDY, reviewing editor

Accepted July 5, 1999


