
June 1, 2012

1

An IDE for the Grammatical

Framework
John J. Camilleri

Abstract

The GF Eclipse Plugin provides an integrated development environ-
ment (IDE) for developing grammars in the Grammatical Framework
(GF). Built on top of the Eclipse Platform, it aids grammar writing
by providing instant syntax checking, semantic warnings and cross-
reference resolution. Inline documentation and a library browser facil-
itate the use of existing resource libraries, and compilation and testing
of grammars is greatly improved through single-click launch configu-
rations and an in-built test case manager for running treebank regres-
sion tests. This IDE promotes grammar-based systems by making the
tasks of writing grammars and using resource libraries more efficient,
and provides powerful tools to reduce the barrier to entry to GF and
encourage new users of the framework.

The research leading to these results has received funding from the Euro-
pean Union’s Seventh Framework Programme (FP7/2007-2013) under grant
agreement no. FP7-ICT-247914.

1.1 Introduction

1.1.1 Grammatical Framework (GF)

GF is a special-purpose framework for writing multilingual grammars tar-
geting multiple parallel languages simultaneously. It provides a functional
programming language for declarative grammar writing, where each gram-
mar is split between an abstract syntax common to all languages, and multi-
ple language-dependent concrete syntaxes, which define how abstract syntax

1

A LATEX Package for CSLI Collections.
Edie Tor and Ed Itor (eds.).
Copyright c© 2012, CSLI Publications.



June 1, 2012

2 / John J. Camilleri

trees should be linearised into the target languages. From these grammar
components, the GF compiler derives both a parser and a lineariser for each
concrete language, enabling bi-directional translation between all language
pairs. (Ranta, 2011)

Apart from being a standalone logical and natural language framework,
there also exists an open-source collection of GF resource grammars for a
number of natural languages, collectively known as the Resource Grammar
Library (RGL) (Ranta, 2009). Currently comprising 24 natural languages
from around the world, the libraries cover low-level syntactic features like
word order and agreement in each particular language. These details are ab-
stracted away from the application grammar developer through the RGL’s
common language-independent API, making it possible to write multilin-
gual grammar applications without necessarily having any extensive linguis-
tic training.

1.1.2 GF grammar development

As a grammar formalism, GF facilitates the writing of grammars which can
form the basis of various kinds of rule-based machine translation applications.
While it is common to focus on the theoretical capabilities and characteristics
of such formalisms, it is also relevant to assess what software engineering
tools exist to aid the grammar writers themselves. The process of writing
a GF grammar may be constrained by the framework’s formal limits, but
its effectiveness and endurance as a language for grammar development is
equally determined by the real-world tools which exist to support it.

Whether out of developer choice or merely lack of anything better, GF
grammar development typically takes place in traditional text editors, which
have no special support for GF apart from a few syntax highlighting schemes
made available for certain popular editors1. Looking up library functions,
grammar compilation and running of regression tests must all take place in
separate windows, where the developer frequently enters console commands
for searching within source files, loading the GF interpreter, and running
some test set against a compiled grammar. GF developers in fact often end
up writing their own script files for performing such tasks as a batch. Any
syntax errors or compiler warnings generated in the process must be manually
interpreted.

While some developers may actively choose this low-level approach, the
number of integrated development environments (IDEs) available today indi-
cate that there is also a big demand for advanced development setups which
provide combined tools for code validation, navigation, refactoring, test suite
management and more. Major IDEs such as Eclipse, Microsoft Visual Studio
and Xcode have become staples for many developers who want more inte-
grated experiences than the traditional text editor and console combination.

1See the GF Editor Modes page at http://www.grammaticalframework.org/

doc/gf-editor-modes.html



An IDE for the Grammatical Framework / 3

June 1, 2012

1.1.3 Motivation

The goal of this work is to provide powerful development tools to the GF
developer community, making more efficient the work of current grammar
writers as well as promoting the Grammatical Framework itself and encour-
aging new developers to use the framework.

By building a GF development environment as a plugin to an existing IDE
platform, we are able to obtain many useful code-editing features “for free”.
Thus rather than building generic development tools, we only need to focus
on writing IDE customisations which are specific to GF, of course reducing
the total effort required.

The rest of this paper is laid out as follows: section 1.2 describes the design
choices which guided the plugin’s development, section 1.3.1 then covers each
of the major features provided by the plugin, and in section 1.4 we discuss
our plans for evaluation along with some future directions for the work.

1.2 Design choices

1.2.1 Eclipse

Eclipse2 is a multi-language software development environment which con-
sists of both a standalone IDE, as well as an underlying platform with an
extensible plugin system. Eclipse can also be used for the development of self-
contained general purpose applications via its Rich Client Platform (RCP).
The Eclipse Platform was chosen as the basis for a GF IDE for various rea-
sons:

1. It is written in Java, meaning that the same compiled byte code can
run on any platform for which there is a compatible virtual machine.
This allows for maximum platform support while avoiding the effort
required to maintain multiple versions of the product.

2. The platform is fully open-source under the Eclipse Public License
(EPL)3, is designed to be extensible and is very well documented.

3. Eclipse is a widely popular IDE and is already well-known to a number
of developers within the GF community.

4. It has excellent facilities for building language development tools via
the Xtext Framework (see below).

1.2.2 Xtext

Xtext4 is an Eclipse-based framework for development of programming lan-
guages and domain specific languages (DSLs). Given a language description
in the form of an EBNF grammar, it can provide all aspects of a complete lan-
guage infrastructure, including a parser, linker and compiler or interpreter.
These tools are completely integrated within the Eclipse IDE yet allow full
customisation according to the developer’s needs. Xtext can be used both for

2http://www.eclipse.org/
3http://www.eclipse.org/legal/epl-v10.html
4http://www.eclipse.org/Xtext/



June 1, 2012

4 / John J. Camilleri

creating new domain specific languages, as well as for creating a sophisticated
Eclipse-based development environment.

By taking the grammar for the GF syntax as specified in Ranta (2011, ap-
pendix C.6.2), and converting it into a non-left recursive (LL(*)) equivalent,
we used Xtext’s ANTLR5-based code generator to obtain a basic infrastruc-
ture for the GF programming language, including a parser and serialiser.
With this infrastructure as a starting point, a number of GF-specific cus-
tomisations were written in order to provide support for linking across GF’s
module hierarchy system. Details of this implementation as well as other
custom-built IDE features are described in section 1.3.1.

1.2.3 Design principles

Preserving existing projects

As users may wish to switch back and forth between a new IDE and their own
traditional development setups, it was considered an important design prin-
ciple to have the GF IDE not alter the developer’s existing project structure.
To this end, the GF Eclipse Plugin does not have any folder layout require-
ments, and never moves or alters a developer’s files for its own purposes.
For storing any IDE-specific preferences and intermediary files, meta-data
directories are used which do not interfere with the original source files.

Preventing application tie-in in this way reduces the investment required
for users who want to switch to using the new IDE, and ensures that develop-
ers retain full control over their GF projects. This is especially important for
developers using version control systems, who would want to use the plugin
without risking any changes to their repository’s directory tree.

Interaction with GF compiler

It is clear that an IDE which provides syntax checking and cross-reference
resolution is in some sense replicating the parsing and linking features of
that language’s compiler. With this comes the decision of what should be
re-implemented within the GF IDE itself, and what should be delegated to
the existing GF compiler. In terms of minimising effort required, the obvious
option would be to rely on the compiler as much as possible. This would
conveniently mean that any future changes to the language, as implemented
in updates to the compiler, would require no change to the IDE itself.

However, building an IDE which depends entirely on an external program
to handle all parsing and linking jobs on-the-fly is not a practical solution.
Thanks to Xtext Framework’s parser generator as described above, keeping
all syntax checking within the IDE platform becomes a feasible option, in
terms of effort required versus performance benefit. When it comes to ref-
erence resolution and linking however, it was decided that the IDE should
delegate these tasks to the GF compiler in a background process (see sec-
tion 1.3.4). This avoids the work of having to re-implement GF’s module
hierarchy system within the IDE implementation. Communication of scope

5http://www.antlr.org/



An IDE for the Grammatical Framework / 5

June 1, 2012

FIGURE 1 Screenshot of the GF Eclipse Plugin in use.

information from GF back to the IDE is facilitated through a new “tags” fea-
ture in the GF compiler, as described in section 1.3.3. This delegation occurs
in a on-demand fashion, where the GF compiler is called asynchronously and
as needed, when changes are made to a module’s header.

1.3 The GF Eclipse Plugin (GFEP)

This section covers the major features provided by the plugin and their rel-
evance to developers of GF grammars.

1.3.1 Code editing

Figure 1 shows a screenshot of the main IDE window. Note how multiple
editor panes can be viewed simultaneously, by partitioning the workbench
into arbitrary tabbed sections. Various source code-level features such as
code folding, block-level indentation and commenting, and matching bracket
highlighting are also provided. These basic code editing features, including
the project navigation view in the top-left of the screen, are all provided
directly by the Eclipse Platform.

Automatic formatting The built-in code formatter can be used to tidy
one’s code automatically, adhering it to the line break and indentation con-
ventions as used in the GF book (Ranta, 2011). Figure 2 shows screenshots
before and after invoking the code formatter.



June 1, 2012

6 / John J. Camilleri

FIGURE 2 Before and after applying the automatic code formatting feature.

Wizards The plugin also provides some wizards for guiding developers in
quickly creating new resources in the project, such as creating a new GF
module from scratch, or cloning an existing module in one language into a
new one.

Syntax validation As the basic language infrastructure for the IDE was
generated from a grammar of the GF syntax, the plugin provides fully cus-
tomisable syntax highlighting as well as instant syntax validation and mark-
ing of lexical errors. A variety of semantic warnings may also be shown to
the user, for example indicating that a linearisation rule has no correspond-
ing abstract function, or that an implemented interface has not been fully
instantiated. Note that these features are all provided directly by the plugin
implementation, without needing to call the standard GF compiler in the
background.

Outline view The outline view in the bottom-left of figure 1 offers a com-
plete overview of the current module structure. Every definition in the module
is listed in a tree structure, along with its type information and helpful icons
for quickly distinguishing the different judgement types. Clicking any of the
terms will make make cursor jump to that point in the file, allowing for easy
and quick navigation in large modules.

1.3.2 Launch configurations

Making use of Eclipse’s launching framework, grammar writers have the abil-
ity to compile and run their modules with GF with a single click or button
press. The plugin allows multiple launch configurations to be set up; each
specifying the source modules to be compiled, any additional compiler flags,
and any commands which should be passed to the GF shell for batch process-
ing. Launch configurations can also be configured to automatically linearise
treebank files for grammar regression testing (for more about this, refer to



An IDE for the Grammatical Framework / 7

June 1, 2012

section 1.3.5). The GF compiler can also optionally be launched into inter-
active shell mode, such that the user can interact with the GF interpreter in
the traditional way without leaving the development environment.

Once set up, any launch configuration can be run quickly from within the
IDE, avoiding the need to type in long terminal commands or scroll through
one’s shell history each time. A screenshot of the options available in the
launch configuration dialog window is shown in figure 3.

FIGURE 3 The launch configuration dialog, allowing developers to save
their compilation flags and arguments for quick re-use.

1.3.3 Cross-reference resolution and scoping

As in most other programming languages, GF comes with a hierarchical
module system which allows grammars to be split between multiple source
files (modules), and for these modules to import and extend each other in an
inheritable way. An identifier in a module which points to a function or value
defined in another module is known as a cross-reference. The GF IDE must
thus link all such cross-references between modules, allowing the developer to
“jump” to their original points of definition, and indicate when a referenced
identifier cannot be resolved.

A byproduct of this is the ability to display a list of all functions available
in the module hierarchy, which are visible from any given point in a gram-



June 1, 2012

8 / John J. Camilleri

IDE

GF compiler
Background invocation

using '--tags' flag

Tags files

 GenerationRead and build
scope information

FIGURE 4 Tags files created by the GF compiler in a background process
are used by the GF Eclipse Plugin for building scope information about the

GF source files opened in the IDE.

mar. This is provided as an auto-completion pop-up dialog, which filters the
displayed list of available functions by the characters preceding the current
cursor position.

All this is achieved through the scoping infrastructure of the GF Eclipse
Plugin, which can quickly find all visible definitions (i.e. the scope) for any
part of a grammar. As this scope calculation is highly specific to GF’s module
system and inheritance syntax, rather than attempting to re-implement this
behaviour within the IDE, it was decided that this task should be handled by
the standard GF compiler system. The delegation of this work from the IDE
to the GF compiler is handled by a custom Eclipse builder (see section 1.3.4).
In order to facilitate communication between the IDE and the standalone
compiler, a new tags-generation feature was added to GF. This is described
in the following section.

GF tags generation

Tags files are used as a means of providing module scope information to
the IDE from the GF compiler, when the latter is invoked as a background
process via the GFEP automatic builder as depicted in figure 4. The tags
generation in GF is inspired by popular tools like Ctags and Etags6. As
of GF version 3.3.3, running the compiler with the -tags flag will begin
the regular compilation pipeline, starting with the usual phases for parsing
and analysing of the grammar code but stopping before any actual code
generation. Instead, the compiler will write a set of .gf-tags files (one for
each .gf source module) containing lists of every identifier in the scope of
the current module. These files are saved in a tab-delimited format with one
identifier per line, as shown in figure 5.

The first two fields of each line indicate the identifier name and the kind
of declaration; that is, the keyword that is used for introducing the identifier,
i.e. fun, cat, lin, lincat or oper. If the identifier is defined in the current
module, then the third field contains the path to the source file along with

6http://ctags.sourceforge.net/ctags.html



An IDE for the Grammatical Framework / 9

June 1, 2012

mkN3 oper-def .../ParadigmsEng.gf:406

mkN3 oper-type .../ParadigmsEng.gf:118 {s : Number => Case => Str;...

mkPN overload-def .../ParadigmsEng.gf:390-393

mkPN overload-type .../ParadigmsEng.gf:390-393 Str -> {s : Case =>...

mkPN overload-type .../ParadigmsEng.gf:390-393 {s : Number => Case...

mkNoun indir ResEng R ResEng.gf-tags

FIGURE 5 Example of the .gf-tags file format, for the resource grammar
library module ParadigmsEng.gf (some lines truncated for brevity).

the line number(s) for the definition. When the type is either fun, oper or
overload then the final field contains the type signature for the identifier.

In addition to the declaration kinds listed above, the kind could also be
specified as indir, which indicates that the identifier is imported from some
other module, and that its definition should be looked up there. In this case,
the following fields on the same line respectively contain the module name
and alias under which the identifier was imported (where applicable), and
the path to the .gf-tags file which contains the actual definition of the
identifier. This is exemplified in the final line of figure 5 (mkNoun).

1.3.4 Automatic builder

The reliance on the GF compiler for providing scoping information means
that repeated calls to this external program must be made by the IDE. This
is handled by a custom Eclipse builder, which listens for changes in the project
workspace, analyses the resource deltas and calls the GF compiler to refresh
the scoping information. This generally happens each time a file is saved,
however the plugin also attempts to detect when changes to the current
module may have effects on its dependents, in which case it will update the
scoping information for these descendants also. To reduce the total number
of calls to the builder, the scoping information is only refreshed when changes
are made to the module’s header information.

In addition to obtaining scoping information as described in section 1.3.3
above, calling the GF compiler as a background task also allows any type
errors not caught by the IDE directly to still be relayed back to the user.
Since all GF grammars written in the IDE will ultimately have to be compiled
with GF, it is important that all errors are bubbled up to the developer as
soon as possible so that they do not go undetected for long.

1.3.5 Test case manager

As described in Ranta (2011, section 10.5), the typically recommended
development-test cycle for GF grammars is as follows:

1. Create a file test.trees which contains a list of abstract syntax trees
(one per line) to be tested.

2. Compile the grammar and linearise each tree to all forms, using a
command such as:

rf -lines -tree -file=test.trees | l -table -treebank



June 1, 2012

10 / John J. Camilleri

FIGURE 6 Viewing regression test output in the Test Manager view. In this
example we see that the input tree doctor N is incorrectly linearised as

läkaran and läkarans for the singular definite cases in Swedish. The correct
forms are läkaren and läkarens, respectively.

and capture the output in a file test.trees.out.

3. Manually correct the output in test.trees.out and save it as your
gold standard file test.trees.gold.

4. Each time the grammar is updated, repeat step 2 and compare the
new output against the gold standard using Unix diff or some other
comparison tool.

5. Extend the tree set and gold standard file for every new implemented
function.

The Tree Manager view in the GF Eclipse plugin provides a convenient
graphical interface for managing this treebank testing process. This feature
works together with the launch configurations to make the process of running
grammar regression tests and gold standard comparisons quick and easy. As
shown in the left-hand side of figure 6, all valid test input files in the project
are shown together, and a simple double click on any will invoke the GF com-
piler, linearise the trees with the current version of the grammar and present
comparisons against the corresponding gold standard in the right-hand panel.
Various options are available for sorting and filtering the test results given,
so that developers can quickly locate in which cases their grammar is failing.

Parsing While grammar testing is often focused on the linearisation of ab-
stract syntax trees, the same procedure can be used equally as effectively for
testing the parsing performance of the grammar under development. In this
case, one would use .sentences instead of .trees files, containing plain-text
sentences instead of abstract syntax trees, and the gold standard and output
files would conversely contain the parse trees produced by the grammar.

1.4 Conclusions

Based on the Eclipse Platform an the Xtext framework, we have built a
development environment for GF to replace the standard text editor and
console window combination. While the GF Eclipse Plugin is not any more
powerful in a computational sense, it does make available a number of devel-



An IDE for the Grammatical Framework / 11

June 1, 2012

opment tools and user interfaces for speeding up the writing and testing of
GF grammars, as well as the use of existing resource libraries in application
grammars.

The GF Eclipse Plugin is a new tool for the GF community, and as such
its popularity and ability to increase grammar writing productivity remain
to be seen.

1.4.1 IDE use and evaluation

Inevitably, it will often be the case that seasoned GF developers are happy
with their current development environments and would be unwilling to
switch to a new IDE-based setup. As a result, such developers are not con-
sidered the primary target for users of the GF Eclipse Plugin. Rather, the
expected target group would be those developers who are already familiar
with Eclipse or at least some similar IDE platform, even if they are not
necessarily experienced in GF.

For this reason, plans are underway for an objective evaluation of the
plugin to be carried out by a private company who already work in Eclipse
but are new to GF. The experience of these developers with the new IDE
will provide valuable information about the effectiveness of the GF plugin,
where the normal learning curve for Eclipse itself will not be an issue.

1.4.2 Future work

Apart from optimisations in performance and addressing the issues already
identified with the plugin to date, the following two major directions for
future work have been identified.

Refactoring tools A highly useful component of many IDEs—which is
currently missing from the GF Eclipse Plugin—is the availability of source
code refactoring tools. Such tools could include generic refactoring tasks such
as renaming identifiers (both locally and across modules) and moving func-
tion definitions, to more GF-specific ones such as extracting functors from
groups of concrete syntaxes. Such tools have the potential to minimise time
spent on repetitive programming tasks, minimise human error and indirectly
promote adherence to coding conventions.

Source module API In order to perform syntax checking and module
scoping the plugin must build internal models of a GF module’s source code
using the Eclipse Modelling Framework (EMF) and the derived language
infrastructure as described in section 1.2.2. These models are only used in-
ternally and not exposed via any API. However, having this level of access to
GF modules could open up many interesting possibilities, including graph-
ical tools for grammar writing and integration with ontology management
software. Implementing such an interface to the plugin’s inner modelling in-
formation is certainly possible, although the effort required could only be
justified if an appreciable demand for such a feature was expressed.



June 1, 2012

12 / John J. Camilleri

1.4.3 Availability

The GF Eclipse Plugin is freely available and any be used for any purpose. It
is open source and released under the GNU General Public License (GPL)7

(note that Xtext and the Eclipse Platform are covered by the Eclipse Public
License8).

The official GF Eclipse Plugin web page9 contains installation instruc-
tions, a user guide and tutorial screencast, the plugin’s release history and
links to the project’s source code repository and issue tracker.

References

Ranta, Aarne. 2009. The GF resource grammar library. Linguistic Issues in
Language Technology 2(2).

Ranta, Aarne. 2011. Grammatical Framework: Programming with Multilin-
gual Grammars. Stanford: CSLI Publications. ISBN-10: 1-57586-626-9
(Paper), 1-57586-627-7 (Cloth).

The Eclipse Foundation. 2011. Xtext 2.1 documentation. http:

//www.eclipse.org/Xtext/documentation/2_1_0/Xtext%202.1%

20Documentation.pdf. Accessed March 2012.

7http://www.gnu.org/licenses/gpl-3.0.txt
8http://www.eclipse.org/legal/epl-v10.html
9http://www.grammaticalframework.org/eclipse/


