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INTRODUCTION: Why not MD or MC?

Biological macromolecules, large chain molecules with hundreds of torsion angles,
adopt compact, uniquely folded and rigid conformations that correspond to their global free
energy minimum. Predicting this unique conformation from a vast number of alternatives,
for the whole protein or its parts, is the biggest challenge of computational biology. One of
the difficulties is conceptual. To evaluate the free energy correctly we need to account for
the dynamic nature of the entire system, including mobile water molecules, flexible side-
chains and soft vibrational modes of a solute. Molecular Dynamics (MD, reviewed in Ref.
1-4) or Monte Carlo simulations (MC, reviewed in Ref. 4-8) in water can be applied to
sample the conformational space and evaluate the free energy. However, these methods are
still too slow to reach the biologically relevant folding times for proteins or even large
peptides2,9.

Fortunately, the free energy of surrounding water molecules can be implicitly
evaluated through the electrostatic and surface effects10, the side chain mobility
contribution to the free energy can be roughly estimated through its solvent exposure, and
the vibrational contribution can be considered comparable in different folded
conformations. Therefore, the computationally expensive MC and MD methods, aimed at
the generation of a Boltzmann ensemble, can be replaced by much more efficient stochastic
global optimization methods aimed at identification of a unique global minimum in the
smallest number of iterations. Global optimization methods can be classified into zero-
order and first-order algorithms depending on whether a local minimization step is
performed after each iteration11. Two reasons account for the clear superiority of the first-
order methods for peptides and proteins12. The first reason is the energy improvement due
to local minimization, which is often comparable to the variation of the energy values
between different local minima. Second, an adequate standard local optimization method,
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using analytical energy derivatives, is the most efficient way to identify the nearest local
minimum, and such algorithms as MC, MD, or random sampling will be far inferior in
performing the same task.

Here we describe the principle of optimal sampling bias as an algorithm for
generation of the random moves in a stochastic global optimization method and
demonstrate a drastic improvement of the efficiency due to the optimal bias. The principle
of optimal bias was first introduced in 199413 as a linear sampling bias; in this essay, we
consider another optimization model and arrive at the square-root sampling bias rule. This
algorithm is general and applicable to stochastic global optimization of any function, both
continuous and discrete.

GLOBAL OPTIMIZATION: How to find a global minimum of a function?

In the Introduction we argued that free energy can be assigned to a single polypeptide
chain conformation, and, therefore a unique native folded conformation can be predicted by
global energy optimization. The global optimization algorithm is not bound by the
trajectory continuity or Boltzmann ensemble generation requirements, and, therefore, has a
larger potential to do what an optimization algorithm does best, i.e. find the minimum in
the minimal number of function evaluations.

Global optimization is used in many fields14,15, but in protein structure prediction it is
additionally complicated by high dimensionality (the smallest protein has about 100
essential degrees of freedom), and small separation between the native energy minimum
and the abundant false energy minima. The high dimensionality of the problem makes any
systematic search impossible, a problem known as the Levinthal paradox16. To make
matters worse, the optimization problem can not be considered at the discrete rotamer level
since small ‘continuous’ angular adjustments are essential for favorable packing. Finally,
the small energy difference between the correct and incorrect minima and the exponential
growth of the density of the non-native states with energy impose strict requirements on the
accuracy of energy evaluation (less than about

Numerous approaches have been used to attack the global optimization problem in
protein structure prediction, with some success1-8 (Table 1). These methods are initially
classified according to whether they are deterministic or not; stochastic methods are further
subdivided according to the degree of similarity between conformations generated in
consecutive iterations of the search algorithm.
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In principle, deterministic methods are guaranteed to find the global minimum. In
practice, however, such methods require the adoption of certain simplifying assumptions
that compromise their accuracy. Systematic search17,18 and the build-up methods19-21

assume that the global minimum of a complete structure is a combination of a relatively
small number of local minima of structural fragments. Both assumptions turn out to be
wrong; many intramolecular interactions are nonlocal (about 50% by the contact area
estimate22), the globally optimal conformation may contain strained fragments far from
their local minima, and the number of local conformations to be retained is exceedingly
large. The packet annealing (PA)23 and the diffusion equation (DEM)24 methods introduce
an elegant concept of smoothing the probability distribution and the energy surface,
respectively, and reduce the global optimization problem to a series of local minimizations.
However, the deterministic character of these methods is something of an illusion. DEM
procedure encounters numerous bifurcation points during the annealing process and a slight
inaccuracy in the free energy function can lock the search into the wrong path25.

We will distinguish between the MC or MD methods, which are designed to generate
a Boltzmann ensemble, and global optimization algorithms (such as simulated
annealing26,27) which attempt to identify a single conformation corresponding to the global
minimum of a free energy function (in the pseudo-potential energy form).

Most of the MC-like stochastic global optimization strategies employ a three-step
iteration: (i) modify the current conformation by means of a random move; (ii) evaluate its
energy; (iii) accept or reject the new conformation according to an acceptance criterion.
The random moves can be ranked by magnitude of change with respect to the current
conformation (Table 1). The first group contains algorithms in which the generated
conformations do not depend on the previous ones. The second group keeps maximum
memory by changing all variables quasi-continuously according to certain rules or by some
small amplitude random deviations. This category contains molecular dynamics (MD) 28-30,
local energy minimization methods31, scaled-collective-variable (SCV) method32, extended
SCV Monte Carlo (ESVC)33, high directional MC (HDMC)34, and some side chain MC
methods35. The third group takes an intermediate approach by changing one variable or a
group of variables (generally correlated variables) at a time. This group contains most of
the global optimization methods including genetic algorithm (GA)36 -based methods, lattice
model MC 37 most other MC methods4-8

.

HISTORY-DEPENDENCE OF CONFORMATIONAL SEARCHES

Different history-dependent protocols inherit current structural information to varying
degrees. Genetic-algorithm (GA) methods36 make a single random change with each
‘mutation’, and conformational recombination extends the random change to a wider range.
Various lattice MC methods37 make local elemental jumps, which may involve modifying
three to five bonds, and translation/rotation of a portion of the chain as well. In a global
step of the MCM method11, a random change of one angle is accompanied by a local
minimization with respect to all torsion angles. Some methods26 make sequential change to
one variable at a time in standard Metropolis MC (MMC) implementation, the amplitude of
randomization being tuned to ensure a sufficiently high acceptance ratio. Some other MMC
methods27 randomly change one angle with an amplitude of 90°. Electrostatically driven
MC (EDMC) method38 switches between a random prediction, where one dihedral angle is
randomized with an amplitude of 180°, and an electrostatically driven move, where two
coupled dihedral angles are changed with an amplitude estimated from the local electric
field. Restricted MC methods39 replace continuous side chain orientations by discrete
rotamer values. Biased MC (BMC)40,41 makes three- or four-residue backbone move at
once, the statistical distributions of backbone dihedral angles and rotamer libraries for side
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chain angles are taken into account in the conformation generation. Optimal-bias-MC-with-
minimization (OBMCM, also referred to as Biased Probability MC13 ) modifies groups of
correlated backbone or side chain variables according to optimal statistical distributions.
MD, local energy minimization methods, SCV/ESCV, HDMC make small amplitude
changes to all variables determined by dynamic equations or local energy landscape. Some
side chain MC methods35 change all side chain torsion angles simultaneously by

How similar should the next conformation be to the previous one? Virtually identical
as in a MD method, or totally unrelated as in a random search? In the following section we
investigate this question.

COMPARISON OF GLOBAL OPTIMIZERS OF ZERO ORDER (WITHOUT
MINIMIZATION)

The performance of the global optimization methods can be tested on small peptides.
Met-enkephalin, the Tyr-Gly-Gly-Phe-Met pentapeptide, has been extensively studied and
frequently used as a test peptide before11,12,19,32,34,42, but it is too small and conformationally
unusual for a good protein-like benchmark. Two other test peptides were used instead: an

and a The selected helix is a 12-residue synthetic peptide Acetyl-Glu-
Leu-Leu-Lys-Lys-Leu-Leu-Glu-Glu-Leu-Lys-Gly-COOH crystallized and solved by Hill et

. The second peptide is a 13-residue ubiquitin fragment (residue number 3-15)
suggested to be an independent fold by circular dichroism and NMR studies44,45.

We performed a series of Metropolis Monte Carlo (MMC) simulations without
minimization from random starting conformations for four different move generation
algorithms. (1) Change one randomly selected variable at each step, with amplitude of 30°,
90° and 180°. (2) Change two coupled variables such as backbone angles or
angles in a randomly selected residue with 180° amplitude. (3) Change all variables of a
randomly selected residue, and with 180° amplitude. (4) Randomize all variables
with 2° amplitude after each step.

A simulation temperature of 600K was used for all simulations to ensure the same
‘energetic accuracy’ of 1.2 kcal/mol. Each type of simulation was repeated ten times and
the conformational energies were recorded. Average angular RMSDs of conformations
generated in adjacent steps represent the scale of a random move. The average best

the
energies after a certain number of energy evaluation   for the      helix  and            for

table 2.
The result shows that neither smallest nor largest random moves result in good

performance. In general, a good move is the one generating the largest change at a given
temperature and acceptance ratio. That is exactly what a good biased move of several
angles at a time allows to be accomplished. For the above two benchmarks, the optimal-
bias MC algorithm (without minimization) reached acceptance
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ratio of 0.28 for the and acceptance ratio of 0.28 for the
while changing two variables at a time.

GLOBAL OPTIMIZERS WITH LOCAL MINIMIZATION ARE SUPERIOR

In 1997 Li and Scheraga introduced a new global optimization method in which each
random step is followed by local energy minimization11. Even though they called it Monte
Carlo-Minimization (MCM), the procedure did not obey the local balance condition and
can only be considered as a stochastic global optimization algorithm. But how important is
local energy minimization after each large random move? On the one hand, spending
valuable energy evaluations on local energy optimization in basically the same
conformational vicinity instead of more extensive sampling may sound wasteful. On the
other hand, minimization algorithms using function derivatives are much more efficient
than random sampling in finding the local energy minimum, and the unminimized values
are not really representative because of the ruggedness of the energy landscape. The
number of energy evaluations spent on local adjustments is typically hundreds of times
larger than the number of random moves! Maybe we should use only a partial minimization
thus saving the function evaluations for more random steps, given the fact that the energy
drops much faster in the beginning of the minimization?

The above questions were systematically analyzed12 and the conclusion was that
allowing a full local optimization following each random step resulted in the best
performance, with both partial and no minimization being clearly inferior under the
constraint of the total number of energy evaluations. In other words, making 100,000 high
quality moves is preferable over making 10,000,000 low quality moves.

In the MCM algorithm a randomly chosen angle was changed by a random, evenly
distributed value. Introduction of the optimal bias into the random step resulted in another
drastic increase of the global optimization performance13.

OPTIMAL BIAS FOR STOCHASTIC GLOBAL OPTIMIZATION (OBMCM)

We know that the groups of torsion angles in peptides and proteins have certain
preferences, i.e. some values are found more frequently than others. The preferences of the
backbone angles as well as the side chain rotamer libraries have been
described 46-50, and the correlations between the backbone and side chain angles have been
studied as well51. How can we take advantage of these statistical preferences? We know
that almost every protein or peptide contains some rare, unusual torsion angles; therefore,
should one still use a flat probability distribution (as in the MCM method) to ensure that
these rare values are sampled frequently enough? Or should we just use the discrete peaks
of the distributions (the rotamers)39 and hope that the rest will be taken care of by local
minimization? The answers to these questions are important; as we will see later, the
optimization efficiency is actually more sensitive to the answer to this question than to
whether one uses simulated annealing or constant temperature, or whether one uses
multiple independent runs or exchanges information between simulations.

There are basically two major alternatives: uniformly distributed random moves, and
moves biased according to some statistical information. The statistical information may be
sequence-independent a priori information13 derived from the structures in the Protein Data
Bank, or the statistical information accumulated during the simulation39. Configurational-
bias Monte Carlo (CBMC) simulations have been introduced very early on (a good
review of CBMC methods can be found in Chapter 13 of Frenkel and Smit's book53), but
the ability to generate a Boltzmann ensemble, an appropriate concern for a Monte Carlo
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algorithm, was the primary focus. However, the primary objective of a stochastic global
optimization algorithm is identification of the global minimum in a minimal number of
function evaluations, a different goal that is not necessarily compatible with the local
balance principle. For example, the local minimization after each move violates the local
balance but is necessary for efficient global optimization. Therefore, derivation of the bias
which is optimal from the global optimization point of view, a problem addressed by
OBMCM/BPMC algorithm13, became an important objective.

The idea is to use the geometrical preferences of local groups of coupled torsion
angles, preferences that can be pre-calculated, to guess their final values defined by all the
interactions in a larger molecule, under the assumption that the global interactions are
random with respect to the local preferences. Let us denote a group of coupled variables by
vector x and its value corresponding to the global minimum state as Therefore an
arbitrary protein conformation can be represented by its n variable groups as

and its lowest-energy conformation as . We further assume
that for all possible protein targets, satisfies statistical distribution function S(x0).
Actually a separate distribution function for each type of amino acid can be generated, and
the distribution function for the jth type of amino acid will be In MC-like
algorithms, one randomly selects a vector, for instant xi, to change during a global move,
is to be assigned a new value according to a probability function (assuming
belongs to the jth type of amino acid), which is to be called the sampling function later.
The question is what are the sampling functions resulting in identification of the correct
answer in the minimal number of energy evaluations.

Unfortunately, the question does not have a clear answer unless an analytical target
function is specified to measure the performance of a global sampling. We propose here
two target functions, (i) maximize the probability of finding the lowest-energy
conformation of a randomly given protein within a global sampling; minimize the
average number of global sampling steps required to successfully predict a randomly given
protein. In order to simplify our analyses, it is assumed that all the n variable groups are
randomly re-sampled according to their corresponding sampling function at a specific
global step and there is no local minimization afterwards. The proofs for the most general
case involving n continuously distributed variable groups are presented in Ref. 13 for the
first target function and in the Appendix for the second target function.

We will try to guess the true value of a vector x, with the knowledge that takes
the value with probability takes the value with probability takes the value
with probability In a biased guess, the sampling function f allows one to sample the
value with probability sample the value with probability , ..., sample the value
with probability fn. The game and some possible strategies are illustrated in Figure 1, where
the current target value of x is marked by a star and the distribution function 5 is resembled
by the shaded bars. Random vectors are generated according to the sampling function until
the true value of x is hit. An additional condition is independence of each guess on the
previous guess. This is counterintuitive in a simple guessing game, e.g., if there are only
two states, and you gave the wrong answer, the next one will be right. However, in a real
simulation with an MC-like calculation the global context of the same group of variables is
constantly changing and the independence assumption can be justified.

Game 1: Find the optimal so that the probability of correctly guessing the true
value in each guess is maximized.

If the actual value is one will guess it correctly with the probability in a step.
Since such an event happens with a probability of the overall probability to be
maximized is , under the normalization condition

This is equivalent to maximize where is the Lagrange multiplier

and can be treated as n independent variables. It is then straightforward to derive the
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optimal sampling function by setting the derivatives of this target function with respect to
equal to zero. The conclusion is i.e., the optimal sampling function equals the
original distribution function.

Game 2: Find the optimal so that the average number of unsuccessful guesses is
minimized.

Let us note that if the true value is and the probability of sampling of this
particular state is in each trial, therefore, it will take trials on average to find the true
value. Since such an event occurs with expected probability the ‘ensemble average’ of
the average numbers of required guesses is under the normalization

condition

Optimizing we arrive at i.e., square-root sampling

functions minimize the cost of global minimization.
As mentioned before, the same conclusions can be generalized for any arbitrary

number of vectors with continuous distributions S(x). The linear bias
maximizes the correct guessing probability13, and square-root bias  minimizes
the average number of guesses required.

SUPERIOR PERFORMANCE OF THE OPTIMAL-BIAS-MCM

Comparison between the zero-order MMC and OBMC (with both the linear and the
square-root bias) show that both biased sampling algorithms out-performed the uniform
random sampling scheme. Both linear and square-root bias result in comparable
performance on both previous benchmarks. However, because the square-root bias allows
sampling of the rarely populated zones of the torsion space much more frequently than the
linear biasing functions, we expect that less standard benchmarks would reveal a better
performance of the square-root bias.

We also compared the first-order method such as unbiased MCM and linear-bias
MCM algorithms using the 12-residue and a more realistic (results
are not shown) as a benchmark. The performance increase due to the optimal bias varies
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but on average is about ten fold for a mixed topology. However, these calculations take
several days even for the OBMCM algorithm and we were not able to reach the solution
with the MCM algorithm in a reasonable time.

Waiting until each algorithm reaches its global minimum may take a lot of time, and
this time varies strongly between simulations. Previously, we used a more stable
performance criterion, which was a fraction of the set of many low energy minima visited
after the fixed number of function evaluations12. Here we returned to the old measure of the
number of iterations until the global minimum was reached, but we softened the minimum
identification criterion and averaged this number with up to 10 independent simulations.
R(n) is the fraction of systems that have reached the global minimum after n energy
evaluations. By reaching the global minimum, we mean that a simulation hits a
conformation of correct secondary structure and also has energy within 3 kcal/mol above
the lowest energy found by pre-simulations. Success rate, also called cumulative
distribution function (CDF), has been used before to study the folding time of the simulated
annealing algorithm54.

R(n) can be approximately described by a Poisson distribution54. Taking the
simulation cost for the early stage of forming compact globular conformations into
account, we use the following expression to describe the success rate:

where q is a constant. can be interpreted as the probability of hitting
a global minimum conformation per energy evaluation. Since is the average number of
energy evaluations required to lower the system energy to a plateau and 1/q is the mean
value of the Poisson distribution, is the measurement of overall simulation cost
including both early and latter stages in a simulation.

The benchmarks used here are the 12-residue and a 12-residue hairpin55.
Their global minimum energies were –185.0 kcal/mol and -198.6 kcal/mol, respectively.
Three algorithms were analyzed: (i) Lee et biased MC (BMC) with linear sampling
function but without minimization. We used the distributions derived in Ref. 13 for
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backbone sampling, but rotamer libraries for the side chain sampling; (ii) Li & Scheraga11,
MCM with uniform sampling and minimization; (iii) Abagyan & Totrov13, OBMCM with
the linear-bias and minimization.

Ten simulations for each case were initiated under constant simulation temperature
600K. q and values were then derived from the data. The results are shown in Figure 2
and Table 3. We found that OBMCM is 18 times faster compared to the unbiased MCM in
the alpha-helix simulation, and 4.4 times faster in the beta-hairpin simulation. No
successful simulations were found for the BMC case, the lowest energies reached by this
protocol within functional calls were –151.1 kcal/mol and –171.2 kcal/mol for the α -
helix and the hairpin, respectively (therefore

SUMMARY

The native structure of a protein may be described with reasonable accuracy as the
global minimum of the free energy (in the pseudo-potential energy form), only as a
function of free torsion angles. Therefore, global optimization methods might be preferable
over methods designed to create dynamic ensembles, such as MD or MC that are bound by
the trajectory continuity requirement or the local balance requirement.

The Monte Carlo Minimization (MCM) method outperforms zero order MC-like
stochastic global optimization protocols.

The Optimal-Bias-MCM method further improves the sampling efficiency by an
order of magnitude by incorporating the optimal-bias into MC conformation generation.
The square-root bias derived in this work and the linear bias13 are two possible strategies.

The OBMCM algorithm can predict a 23-residue peptide56, with 70 essential
torsion angles and 385 atoms, starting from completely random conformations. (Figure 3).
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APPENDIX: OPTIMAL CONTINUOUS SAMPLING FUNCTIONS IN GLOBAL
SAMPLING

If a group of coupled torsion angles of a residue is denoted by
vector x, the lowest-energy conformation of protein consisting of n such groups of
variables can be denoted as is the values of the ith

group of torsion angles in the lowest-energy protein conformation. has an a priori

continuous probability distribution in the subspace formed by the vector, where j
denotes the type of amino acid belongs to. We sample each variable group according
to a sampling function Randomly given a representative protein, we consider the
problem of finding the optimal sampling functions that minimize the average number of
energy evaluations required for successful structure prediction.

Following the same assumption made in Ref.13, i.e., the probability of finding the
true value of variable group is proportional to when a global sampling is made
for according to the sampling function Since the probability of finding the true
conformation at this specific conformation generation step reads

where c is a constant, it takes 1/P steps to find the true conformation on average. The S-
ensemble average is the mean number of iterations:

Since is always positive,  maximizing  is equivalent to maximize 

to find the optimal sampling functions, we set

Given the normalization conditions for the sampling functions,

order for the above equation to hold for any arbitrary function we have

where is the normalization constant equal to
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