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Abstract

Learnability has always been one of the most central problems in learning theory. Most
previous studies on this issue were based on the assumption that the samples are drawn
independently and identically according to an underlying (unknown) distribution. The i.i.d.
assumption, however, does not hold in many real applications. In this paper, we study the
learnability of problems where the samples are drawn from empirical process of stationary β-
mixing sequence, which has been a widely-used assumption implying a dependence weaken
over time in training samples. By utilizing the independent blocks technique, we provide
a sufficient and necessary condition for learnability, that is, average stability is equivalent
to learnability with AERM (Asymptotic Empirical Risk Minimization) in the non-i.i.d.
learning setting. In addition, we also discuss the generalization error when the test variable
is dependent on the training sample.

Keywords: Learning theory, β-mixing sequence, stationary, learnability, generalization,
consistency, stability

1. Introduction

The characterization of learnability has become one of the most fundamental issues in learn-
ing theory, and it concerns about whether the learned function converges uniformly to the
optimal function for a learning problem as the size of training sample tends to infinity.
Some influential work (Alon et al., 1997; Blumer et al., 1989) showed that learnability, at
least for supervised classification and regression, is equivalent to the uniform convergence
of the empirical risk to the expected risk, and thus much attention has been paid to estab-
lishing the uniform convergence based on various measures of hypothesis space complex-
ity, such as Vapnik-Chervonenkis dimension (Vapnik, 1982), cover number (Bartlett, 1998),
Rademacher or Gaussian complexity (Bartlett and Mendelson, 2002), etc. This equivalence,
however, does not hold in the general learning setting (Alon et al., 1997), and stability has
been explored as an equivalent condition for learnability (Shalev-Shwartz et al., 2010).

Most previous studies on learning theory were accomplished by assuming i.i.d. sam-
ples, whereas the i.i.d. assumption does not hold in many tasks, e.g., signal processing,
system diagnosis, speech recognition, etc., where the dependence exists among the training
samples and the intrinsic learning processes are non-i.i.d (Doukhan, 1994; Bradley, 2007;
Dedecker et al., 2007). Much effort has been paid to exploring the dependence existing in
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the training sample, and various conditions have been made to measure the dependence
in non-i.i.d. scenarios, e.g., α-mixing, β-mixing, φ-mixing sequence, etc. It is possible to
use simple methods to estimate the mixing rate for various classes of random process, e.g.,
Hidden Markov Model (Modha and Masry, 1998). Owing to the i.i.d. assumption, existing
theoretical results could not be applied directly to non-i.i.d. cases.

We present a theoretical study on the learnability of non-i.i.d. setting, where the training
samples are drawn from empirical process of stationary β-mixing sequence. We first prove
that uniform stability is not necessary for learnability though it is enough for generalization.
Then, we introduce the average stability in the general non-i.i.d. learning setting and
establish its equivalence with learnability; in other words, we prove that the existence
of a universally average stable AERM is sufficient and necessary for learnability of non-
i.i.d. setting. In summary, we establish the relationships for non-i.i.d. setting: Existence
of average stable AERM⇔Learnability with AERM⇔Learnability. Also, we discuss the
generalization error when the test variable is dependent on the training sample.

1.1. Related Work

The pioneer study of Yu (1994) established the uniform convergence based on VC-dimension
for empirical processes of stationary β-mixing sequence. Vidyasagar (2002) pointed out that
β-mixing seems to be the “just the right” assumptions for maintaining the PAC-learning
properties with some sub-additivity conditions. Mohri and Rostamizadeh (2009) recently
provided the first Rademacher complexity-based generalization bounds for stationary β-
mixing sequence. Mohri and Rostamizadeh (2008) introduced the uniform stability and
provided a generalization bound with application to SVM and Kernel Ridge Regression. The
uniform stability, however, is overly-strong and far from necessary for learnability, shown by
Example 1 in Section 5.1. The consistency for non-stationary sequence has been studied in
(Steinwart et al., 2009), and there are alternative non-i.i.d. assumptions (Karandikar and
Vidyasagar, 2002; Modha and Masry, 1998; Steinwart and Christmann, 2010). The non-
i.i.d. sequence can be viewed as a special case of environment change, and our work makes
a step to theoretically understand the evolvable property (Zhou, 2016), i.e., the learning
model is able to get accustomed to environment in the future of machine learning.

Algorithmic stability was first proposed by Rogers and Wagner (1978), and has been
used to analyze the generalization performance of algorithms (Bousquet and Elisseeff, 2002;
Elisseeff et al., 2005; Rakhlin et al., 2005). Shalev-Shwartz et al. (2010) introduced the on-
average-LOO stability and established its equivalence to learnability with AERM in the i.i.d.
general learning setting, yet can not be applied to the non-i.i.d. learning setting. Vidyasagar
(2002) presented possibly the first study on the learnability of non-i.i.d. setting, which is
different from ours. First, he focused on the uniform convergence, where the equivalence
between learnability and uniform convergence is specific to supervised classification and
regression; while we prove the sufficient and necessary condition of non-i.i.d. learnability
in the general learning setting. Second, Vidyasagar made an additional assumption that
β(m) = O(m−c) for constant c > 0; while we require a weaker condition β(m) → 0 as
m → ∞. Third, the result in (Vidyasagar, 2002) is heavily related to the hypothesis space;
while our result does not rely on any space complexity measure, but rather on the way the
algorithm searches the space.
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2. Preliminaries

2.1. Mixing Sequence

Definition 1 A random-variable sequence Z = {Zt}∞t=−∞ is said to be stationary if, for
every integer t, i ≥ 0 and k ≥ 0, the random vector (Zt, . . . , Zt+k) has the same distribution
as the random vector (Zt+i, . . . , Zt+i+k).

It is easy to find that the time index t is not relevant to the distribution for a stationary
sequence. This, however, does not imply independence in the sequence because, for example,
Pr[Zj |Zi] may be unequal to Pr[Zj ]. Several conditions have been made to measure the
weak dependence of random sequences, while in this work, we mainly focus on the following
β-mixing sequence, and leave the discussion on other non-i.i.d. sequences to future work.

Definition 2 Let Z = {Zt}∞t=−∞ be a stationary sequence, and σj
i denotes the σ-algebra

generated by random variables Zi, . . . , Zj for i < j. For any integer m > 0, the β-mixing

coefficients are given by β(m) = supn

[
EA1∈σn

−∞

[
supA2∈σ+∞

n+m

[
|Pr [A2|A1]− Pr [A2]|

]]]
.

The stationary sequence Z is said to be β-mixing if β(m) → 0 as m → ∞; algebraically
β-mixing if β(m) ≤ β0/m

r holds for some constants β0 > 0 and r > 0; exponentially
β-mixing if β(m) ≤ β0 exp(−β1m

r) holds for some constants β0 > 0, β1 > 0 and r > 0.

The β-mixing coefficients β(m) can be used to measure the dependence between ‘future’
events and ‘past’ ones separated by a distance of at least m. Throughout this paper, we
assume that β(m) is non-increasing, and it is easy to obtain the following propositions:

Proposition 3 Any i.i.d. sequence can be viewed as a special stationary β-mixing sequence
with coefficients β(m) = 0 for m > 0.

For a real number r, we denote by ⌊r⌋ the biggest integer which is no larger than r. It
is necessary to introduce the following lemma:

Lemma 4 If β(m) → 0 as m → ∞, then there exists a τ(m) ≤ m such that τ(m) → ∞
and τ(m)β (⌊m/τ(m)⌋) → 0 as m → ∞.

Proof: If β(m) = 0 then we choose τ(m) = m as desired. Now we consider the case
β(m) ̸= 0 for m > 0. If β(m) → 0 as m → ∞, then there exists a sequence {ai} such that
ai → ∞ and aiβ(i) → 0 as i → ∞. For example, a possible choice is ai =

⌊
1/
√

β(i)
⌋
. For

every m ≥ 1, there exists an index k ≥ 1 such that (k − 1)ak−1 ≤ m ≤ kak. We select
τ(m) = ak and this lemma follows.

It is not difficult to select τ(m) for some special cases, e.g., for algebraically β-mixing
sequence with coefficients β(m) ≤ β0/m

r, for some β0 > 0 and r > 0, we can select
τ(m) = mr0 such that 0 < r0 < r/(1 + r); for exponentially β-mixing sequence with
coefficients β(m) = β0 exp(−β1m

r), for some β0 > 0, β1 > 0 and r > 0, we can select
τ(m) = mr0 such that 0 < r0 < 1.

It is worth noticing that the choice of τ(m) is not unique, and different choices lead to dif-
ferent convergence rate for τ(m)β(⌊m/τ(m)⌋) → 0. Throughout this paper, τ(m) is not re-
ferred to specific choices. We also assume, without loss of generality, that τ(m)β (⌊m/τ(m)⌋)
is a non-increasing sequence in this paper.
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Figure 1: A series of weakly dependent blocks {σsj
rj }

q
j=1.

The independent block technique, owing originally to Bernstein (1927), has been utilized
as a popular tool to produce new results when dealing with learning problems of weak
dependence. This technique has been applied successfully to many non-i.i.d learning studies
(Lozano et al., 2006; Mohri and Rostamizadeh, 2008, 2009; Yu, 1994). We introduce a lemma
from (Yu, 1994, Corollary 2.7) as follows:

Lemma 5 (Yu, 1994, Corollary 2.7) For m > 1, suppose that a measurable hypothesis
h is bounded by B on a product probability space (

∏q
j=1Ωj ,

∏q
j=1 σ

sj
rj ) shown by Figure 1

with rj ≤ sj ≤ rj+1. Let Q be a probability measure on the product space with marginal
measures Qj on (Ωj , σ

sj
rj ) and let P =

∏q
j=1Qj. By setting kj = rj+1 − sj, we have

|EQ[h]− EP [h]| ≤ (q − 1)Bβ(Q) with β(Q) = supj∈[q−1] β(kj).

2.2. Learning Setting

The general non-i.i.d. learning setting can be described as follows. Let Z denote an instance
space and Z = {Zt}∞t=−∞ is a stationary β-mixing sequence where each random variable
has the same underlying (unknown) distribution P over the instance space Z. A training
sample S = {z1, z2, . . . , zn} is chosen according to n different components of Z. Here we do
not require that these components must be continuous.

A learning algorithm A is a mapping from a training sample S to a hypothesis AS ∈ H.
For simplicity, we consider symmetric algorithms in this paper, i.e., algorithms depending
upon the given sample but not on the order of instances in the sample. Many existing ap-
proaches are symmetric for non-i.i.d. setting (Lozano et al., 2006; Mohri and Rostamizadeh,
2008), and our results can be generalized to asymmetric algorithms.

A learning problem is relevant to a hypothesis space H and loss function l : H×Z → R,
where the goal is to minimize the expected risk

R(h) = Ez∼P [l(h, z)] (1)

over the hypothesis space H, where z is taken independently of any sequence and we will
discuss the dependently expected risk in Section 4. We assume that the loss function is
bounded by some constant B > 0, i.e., |l(h, z)| ≤ B for all h ∈ H and z ∈ Z. Many classi-
cal learning problems fall into this framework such as classification, regression, clustering,
density estimation, etc.

In the general non-i.i.d learning setting, we essentially try to find some hypothesis h ∈ H
which minimizes the expected risk over the whole hypothesis space H, i.e., minh∈HR(h).
Notice that the underlying distribution is unknown, and therefore, we could not minimize
the expected risk R(h) directly. Classical learning methods, instead, seek to minimize the
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empirical risk R̂S(h) with respect to h based on the training sample S:

R̂S(h) =
1

n

n∑
i=1

l(h, zi).

A learning algorithm A is said to be an ERM (Empirical Risk Minimizer) if it minimizes the
empirical risk R̂S(AS) = R̂S(ĥS) = minh∈H R̂S(h), where ĥS = argminh∈H R̂S(h). A learn-
ing algorithm A is said to be an AERM (Asymptotic Empirical Risk Minimization) with
rate ϵerm(n) under stationary β-mixing distribution if ES [|R̂S(AS)− R̂S(ĥS)|] ≤ ϵerm(n).

A learning algorithm is universally an AERM with rate ϵerm(n) if it is an AERM with
rate ϵerm(n) under all stationary β-mixing distributions with coefficients β(m). By “all
stationary β-mixing distributions with coefficients β(m)”, or shortly for all stationary β-
mixing distributions, we mean all (underlying) distributions P over the instance space Z
and all β-mixing sequences whose coefficients are smaller than β(m).

A learning algorithm A is said to be consistent with rate ϵcon(n) under stationary
β-mixing distribution if ES [R(AS) − R(h∗)] ≤ ϵcon(n), where h∗ = argminh∈HR(h). A
learning algorithm A is universally consistent with rate ϵcon(n) if it is consistent with rate
ϵcon(n) under all stationary β-mixing distributions. Based on this definition, we give the
following definition of learnability for the non-i.i.d. case:

Definition 6 A problem is learnable if there exists a universally consistent algorithm, i.e.,
there exists an algorithm A and a rate ϵcon(n) such that supΛ {ES [R(AS)−R(h∗)]} ≤
ϵcon(n) where ϵcon(n) → 0 as n → ∞, and Λ denotes all stationary β-mixing distributions
with coefficients β(m).

A learning algorithm A generalizes with rate ϵgen(n) under stationary β-mixing distri-
bution if ES [|R(AS)− R̂S(AS)|] ≤ ϵgen(n), and A universally generalizes with rate ϵgen(n)
if it generalizes with rate ϵgen(n) under all stationary β-mixing distributions.

3. Sufficient and Necessary Condition for Non-I.I.D. Learnability

3.1. Stability

We set [n] = {1, 2, . . . , n} for an integer n > 0. Given sample Sn = {z1, z2, . . . , zn} and for
i ∈ [n], we denote by Si

n = {z1, . . . , zi−1, zi+1, . . . , zn} the sample in which the ith example
has been deleted in sample Sn. We also denote by Si,z

n = {z1, . . . , zi−1, z, zi+1, . . . , zn} the
sample in which the ith example has been replaced by instance z in sample Sn.

For the i.i.d. learning setting, several stability notions have been explored for studying
the performance of learning algorithms (Bousquet and Elisseeff, 2002; Rakhlin et al., 2005)
and the learnability of learning problems (Mukherjee et al., 2006; Shalev-Shwartz et al.,
2010). For the non-i.i.d. scenarios, Mohri and Rostamizadeh (2008) first introduced the
uniform stability given below, and derived stability bounds for generalization error.

Definition 7 A algorithm A has uniform stability ζ(n) if |l(ASn , z) − l(A
Si,z′
n

, z)| ≤ ζ(n)

for all i ∈ [n] and z, z′ ∈ Z. Here ζ(n) → 0 as n → ∞.

162



Learnability of Non-I.I.D.

The uniform stability is sufficient for generalization. This notion is overly-strong, and is
far from necessary for learnability of non-i.i.d. setting as shown by Example 1 (Section 5.1).
In this paper, we introduce a new notion of stability, which is weaker than uniform stability
but is proven to be equivalent to learnability with AERM. The definition is:

Definition 8 A learning algorithm A has average stability ζ(n) under stationary β-mixing
distribution if |ESn,z[l(ASn , z)− l(A

Si,z
n
, z)]| ≤ ζ(n) for i ∈ [n], where ζ(n) → 0 as n → ∞.

Notice that the variable z in l(A
Si,z
n
, z) is a substitute sample and a test sample si-

multaneously. A learning algorithm has universally average stability with rate ζ(n) if the
stability property holds with rate ζ(n) under all stationary β-mixing distributions. It is
obvious that uniform stability implies average stability whereas the converse direction does
not hold from Example 3 (in Section 5.1).

3.2. Main Results

We first prove that an average stable AERM is sufficient for generalization and consistency
for a stationary β-mixing sequence.

Theorem 9 If a learning algorithm A is an AERM with rate ϵerm(n), and is average
stable with rate ζ(n) for stationary β-mixing sequence with coefficients β(m), then it exhibits
generalization and consistency with rate

ϵcon(n) ≤ ϵerm(n) + ζ(n)

ϵgen(n) ≤ ζ(n) + 2ϵerm(n) + 2Bτ(n)β

(⌊
n

τ(n)

⌋)
+

2B√
τ(n)

,

where τ(n) is given in Lemma 4.

We can easily get the following two corollaries by combining with Lemma 21 in Section 5:

Corollary 10 If a algorithm A is an AERM with rate ϵerm(n), and is average stable with
rate ζ(n) for stationary algebraically β-mixing sequence with coefficients β(n) ≤ β0/n

r for
some constants β0 > 0 and r > 0, then it exhibits generalization and consistency with rate

ϵcon(n) ≤ ζ(n) + ϵerm(n)

ϵgen(n) ≤ ζ(n) + 2ϵerm(n) + 2Bβ0n
− r

2 + 2Bn
− r

4(1+r) .

Corollary 11 If a learning algorithm A is an AERM with rate ϵerm(n), and is average
stable with rate ζ(n) for stationary exponentially β-mixing sequence with coefficients β(m) ≤
β0 exp(−β1m

r) for some constants β0 > 0, β1 > 0 and r > 0, then it exhibits generalization
and consistency with rate

ϵcon(n) ≤ ζ(n) + ϵerm(n),

ϵgen(n) ≤ ζ(n) + 2ϵerm(n) + 2Bβ0
√
n exp(−β1n

r/2) + 2B/ 4
√
n.
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From Theorem 9, it is easy to prove that the existence of universally average stable
AERMs is sufficient for learnability.

Corollary 12 If a learning algorithm is universally an AERM and average stable, then it
is universally generalizing and consistent.

Theorem 9 shows that, for an AERM, average stability implies generalization and con-
sistency for specific β-mixing sequence, while the inverse direction does not hold as shown
by Example 2 in Section 5.1. However, we have the following equivalence:

Theorem 13 For an AERM, we have the following equivalence for non-i.i.d. setting,

Universal average stability ⇔ Universal consistency ⇔ Universal generalization.

The detailed proof is presented in Section 5.2, and it is noteworthy that, from Lem-
mas 22 to 24, we do not require the universal condition for stability ↔ generalization
→ consistency. The universality property is only utilized to prove consistency → gen-
eralization. Finally, we have

Theorem 14 For non-i.i.d. setting, a problem is learnable if and only if there exists a
universally average stable AERM.

From Corollary 12, it is obvious that the existence of a universally average stable AERM
implies learnability of non-i.i.d. setting. For the inverse direction, Definition 6 illustrates
that learnability does not require an AERM, but rather a universal consistent algorithm.
Thus, we complete the proof by constructing a universally average stable AERM from a
universally consistent algorithm, and the detailed proof is presented in Section 5.3.

4. Dependently Expected Risk

Our previous work focused on the independently expected risk R(AS) = Ez∼D[l(AS , z)],
where the test variable z is totally independent to S as mentioned in Section 2. From a more
realistic view, we should consider the case where test variables are dependent on samples,
even if the dependence is rather weak as shown in β-mixing sequence.

For a β-mixing sequence Z = {Zt}∞t=−∞, we assume, without loss of generality, that
the sample S of size n are drawn from (Z1, Z2, . . . , Zn), and based on this sample, we can
learn a function AS . First, we notice that it is not unique for the definitions of dependently
expected risk, and different choices for test variables give different notions. Here, we will
introduce two definitions:

• To measure the performance of AS on the sequence {Zt}∞t=n+1, i.e., the sequence after
the sample, we define the dependently expected risk as

R1(AS |S) = lim
k→∞

1

k

k∑
i=1

EZn+i [l(AS , Zn+i)]. (2)
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• To measure the performance of AS on a special interval {Zn+k0 , Zn+k0+1, . . . , Zn+k1}
for k1 ≥ k0 ≥ 1, we define the dependently expected risk as

R2(AS |S) =
1

k1 − k0 + 1

k1∑
i=k0

EZn+i [l(AS , Zn+i)]. (3)

If k1 = k0 ≥ 1, then we can measure the performance of AS on special variable Zn+k0 .

We now discuss the relationships between the independently expected risk R(AS) and
the dependently expected risks defined above. First, we observe that R1(AS |S) = R(AS)
almost surely, and the proof is deferred to Section 5.4.

Theorem 15 For a sample S from β-mixing sequence, we have ES [|R(AS)−R1(AS |S)|] =
0. Here R(AS) and R1(AS |S) are given by Eqns. (1) and (2), respectively.

This theorem gives an explanation for the independently expected risk R(AS), i.e.,
it measures the average generalization error of learned function AS on the β-mixing se-
quence that is after the sample; in other word, R(AS) reflects the performance on sequence
{Zt}∞t=n+1. Intuitively, R(AS) ≈ R1(AS |S) because the β-mixing sequence is rather weakly
dependent over time. We also have the following relationship between R(AS) and R2(AS |S),
whose proof is deferred to Section 5.5.

Theorem 16 For some k1 ≥ k0 ≥ 1 and for a sample S from β-mixing sequence with coef-
ficients β(m), we have ES [|R(AS)−R2(AS |S)|] ≤ Bβ(k0)+Bτ(s)β (⌊s/τ(s)⌋)+B/

√
τ(s).

Here s = k1 − k0 + 1, R(AS) and R2(AS |S) are given by Eqns. (1) and (3), respectively.

5. Detailed Proofs and Examples

We start by introducing the following lemmas and theorem, which will be used later.

Lemma 17 We have E[X] = E[X|X ≥ ϵ] Pr[X ≥ ϵ] + E[X|X < ϵ] Pr[X < ϵ].

Lemma 18 (Shalev-Shwartz et al., 2010) For two random variables X and Y , if X ≤ Y
then E[|X|] ≤ |E[X]|+ 2E[|Y |].

Lemma 19 (Shalev-Shwartz et al., 2010) If X1, X2, . . . , Xn are n i.i.d. random variables
with |X1| ≤ B, then we have E[|

∑n
i=1(Xi − E[X1])/n|] ≤ B/

√
n.

Theorem 20 If S = {z1, z2, . . . , zn} is from a stationary β-mixing sequence with coeffi-
cients β(m), then, for h ∈ H, we have ES [|R̂S(h)−R(h)|] ≤ Bτ(n)β (⌊n/τ(n)⌋)+B/

√
τ(n).

Here τ(n) is given by Lemma 4.

Proof: From Lemma 4, there is a τ(n) such that τ(n) → ∞ and τ(n)β (⌊n/τ(n)⌋) → 0 as
n → ∞. The ES [|R̂S(h)−R(h)|] is bounded by

1

⌊ n
τ(n)⌋

⌊ n
τ(n)

⌋−1∑
k=0

ES

∣∣∣ τ(n)∑
j=1

l(h, zj⌊ n
τ(n)

⌋+k)

τ(n)
−R(h)

∣∣∣
 = ES

∣∣∣ τ(n)∑
j=1

l(h, zj⌊ n
τ(n)

⌋)

τ(n)
−R(h)

∣∣∣
 (4)
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where the last equality holds from the stationary β-mixing sequence. We now introduce
a ghost sample S′ = {z′1, z′2, . . . , z′τ(n)} chosen i.i.d. from the distribution P , and from
Lemmas 19, it holds that

ES′ [|R̂S′(h)−R(h)|] ≤ B/
√
τ(n). (5)

Meanwhile, Lemma 5 gives∣∣∣∣∣∣ES

∣∣∣ τ(n)∑
j=1

∣∣∣ l(h, zj⌊ n
τ(n)

⌋)

τ(n)
−R(h)

− ES′ [|R̂S′(h)−R(h)|]

∣∣∣∣∣∣ ≤ Bτ(n)β

(⌊
n

τ(n)

⌋)
, (6)

where each instance zj⌊ n
τ(n)

⌋ (j ∈ [τ(n)]) is viewed as a weakly dependent block. It is

noteworthy that the above equality holds even if the sample S is chosen from noncontinuous
components of a β-mixing sequence since β(m) is non-increasing. Thus this theorem holds
from Eqs. (4) to (6).

Lemma 21 For a hypothesis h ∈ H,

• if S = {z1, z2, . . . , zn} is from a stationary algebraically β-mixing sequence with co-
efficients β(m) ≤ β0/m

r for some constants β0 > 0 and r > 0, then, we have

ES [|R̂S(h)−R(h)|] ≤ Bβ0n
− r

2 +Bn
− r

4(1+r) ;

• if S = {z1, z2, . . . , zn} is from a stationary exponentially β-mixing sequence with co-
efficients β(m) ≤ β0 exp(−β1m

r) for some constants β0 > 0, β1 > 0 and r > 0, then,
it holds that ES [|R̂S(h)−R(h)|] ≤ Bβ0

√
n exp(−β1n

r/2) +B/ 4
√
n.

Proof: This lemma holds by setting τ(n) = ⌊n
r

2(r+1) ⌋ for algebraically β-mixing sequence

and by setting τ(n) = ⌊n
1
2 ⌋ for exponentially β-mixing sequence in Theorem 20.

5.1. Examples

Example 1 For non-i.i.d. setting, there exists a learning problem with universally consis-
tent algorithm, but does not have uniform stability.

Proof: For instance space Z = X × {−1, 1} with X = [−1, 1] and objective hypothesis
t(x) = I[x ≥ 0], we consider the hypothesis space H = {hθ : hθ(x) = I[x ≥ θ] for θ ∈
[−1, 0]}, and loss function l(h, (x, y)) = I[h(x) ̸= y].

Assume that a training sample S = {z0 = (x0, y0), z1 = (x1, y1), . . . , zn = (xn, yn)} is
chosen from any given β-mixing sequence {Zt}∞−∞ with coefficients β(m), where each Zt

has the same distribution P . From Lemma 4, there exists a τ(n) such that τ(n) → ∞ and
τ(n)β (⌊n/τ(n)⌋) → 0 as n → ∞.

Thus we can construct a subsample S′ = {z0, z⌊ n
τ(n)

⌋, z2⌊ n
τ(n)

⌋, . . . , zτ(n)⌊ n
τ(n)

⌋} and con-

sider the algorithm AS = ÂS′ = hθ with θ = max{−1, xi : (xi, yi) ∈ S′ and xi < 0}. Fur-
ther, we introduce a ghost sample S̃′ = {z̃0, z̃1, . . . , z̃τ(n)} drawn i.i.d. from the distribution
P . From Lemma 5, we have

|ES′ [R(ÂS′)]− ES̃′ [ÂS̃′ ]| ≤ τ(n)β (⌊n/τ(n)⌋) . (7)
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For any hθ ∈ H, we have R(hθ) = Ez[l(hθ, z)] = Prz[θ ≤ x < 0] with z = (x, y). Thus, it
follows that, for any ϵ ≥ 0,

Pr
S̃′
[R(ÂS̃′) ≥ ϵ] = Pr

S̃′
[Pr
z
[θ ≤ x < 0] ≥ ϵ] ≤ (1− ϵ)τ(n)+1 ≤ (1− ϵ)τ(n) ≤ exp(−τ(n)ϵ),

where the first inequality holds from the facts that there are τ(n)+1 instance in the sample
S̃′, and for every instance z = (x, y) ∈ S̃′, it holds that Prz[x /∈ [θ, 0)] < 1 − ϵ. Noticing
|l(h, (x, y))| ≤ B = 1 and setting ϵ = 1/

√
τ(n), we have that, from Lemma 17,

ES̃′ [R(ÂS̃′)] ≤ exp
(
−
√

τ(n)
)
+ 1/

√
τ(n). (8)

It is clear that R(h∗) = 0 when we choose h∗(x) = t(x), and it holds that

ES [R(AS)−R(h∗)] = ES′ [R(ÂS′)] ≤ exp(−
√

τ(n)) + τ(n)β (⌊n/τ(n)⌋) + 1/
√
τ(n)

by combining Eqs. (7) and (8). Thus, it is proved that AS is universally consistent, and
therefore this problem is learnable.

On the other hand, for examples ẑ = (x̂, ŷ) and z = (x, y) such that θ < x < x̂ < 0,
it holds that |l(AS , z) − l(ASi,ẑ , z)| = 1, which proves that the uniform stability does not
hold, and thus we complete the proof.

Example 2 For specific β-mixing sequence, there exists an ERM which is consistent but
not average stable.

Proof: For instance space Z = X × {−1,+1} with X = [−1, 1], target hypothesis t(x) =
I[x ≥ 0] and loss function l(h, z = (x, y)) = I[y ̸= h(x)], we consider the hypothesis space
H = {h : h(x) = 1 except for finite x ∈ [−1, 1]} and the uniform distribution P .

A training sample S = {z0 = (x0, y0), z1 = (x1, y1), . . . , zn = (xn, yn)} is chosen from
a specific β-mixing sequence {Zt}∞−∞ with coefficients β(m), where each Zt has the same
distribution P . We consider the following algorithm AS(x) = I[x ≥ 0] if there is an i ∈ [n]
s.t. x = xi; otherwise, AS(x) = 1. Algorithm A is consistent since every hypothesis h ∈ H
is consistent under the continuous uniform distribution P . We also have |ES,z[l(AS , z) −
l(ASi,z , z)]| = 1/2 for i ∈ [n], which discloses that algorithm A is not average stable.

Example 3 For specific β-mixing sequence, there exists an average stable algorithm without
uniform stability.

Proof: Let the instance space Z = X × [−1, 1] with X = [0, 2]. We assume that the object
function t(x) = sgn(x − 1), the loss function l(h, (x, y)) = |y − h(x)| and the underlying
distribution P is uniform on X . Assume that a training sample S = {z0 = (x0, y0), z1 =
(x1, y1), . . . , zn = (xn, yn)} is chosen from a specific β-mixing sequence {Zt}∞−∞ with co-
efficients β(m), where each Zt has the same distribution P . We consider the following
non-AERM algorithm AS(x) = 1 for x ∈ S; otherwise, AS(x) = 0.

From the continuous distribution P , we have ESn,z[l(ASn , z)] = 1 and ESn,z[l(ASi,z
n
, z)] =

1; therefore, A has average stability from |ESn,z[l(ASn , z)− l(A
Si,z
n
, z)]| = 0. On the other

hand, if z /∈ Sn, then we have |l(ASn , z) − l(A
Si,z
n
, z)| = 1, which implies that A does not

have uniform stability.
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5.2. Proof of Theorems 9 and 13

It is easy to prove that generalization implies average stability:

Lemma 22 (Generalization⇒average stability) If a learning algorithm A has gen-
eralization with rate ϵgen(n), then it has average stability with rate ζ(n) = ϵgen(n) for a
stationary β-mixing sequence.

Proof: We have ES [l(AS , zi)] = ES [l(AS , zj)] for all i, j ∈ [n], and

ES [R̂S(AS)] = ES,z[l(ASi,z , z)]. (9)

From the definition of R(AS), we have

ES [R(AS)] = ES,z[l(AS , z)]. (10)

This follows |ES,z[l(AS , z)− l(ASi,z , z)]| = |ES [R(AS)− R̂S(AS)]| ≤ ϵgen(n).

Lemma 23 (AERM+average stability⇒generalization) If a learning algorithm A
is an AERM with rate ϵerm(n) and has average stability with rate ζ(n) for a stationary
β-mixing sequence with coefficients β(m), then it generalizes with rate ϵgen(n) = ζ(n) +
2ϵerm(n) + 2Bτ(n)β (⌊n/τ(n)⌋) + 2B/

√
τ(n). Here τ(n) is given by Lemma 4.

Proof: With the definitions of ĥS and h∗, we have R̂S(AS)−R(AS) = R̂S(AS)− R̂S(ĥS)+
R̂S(ĥS)− R̂S(h

∗)+ R̂S(h
∗)−R(h∗)+R(h∗)−R(AS) ≤ R̂S(AS)− R̂S(ĥS)+ R̂S(h

∗)−R(h∗).
By utilizing Eqs. (9) and (10), we have |ES [R̂S(AS) − R(AS)]| ≤ ζ(n) for average stable
algorithms. From the definition of AERM and Theorem 20, it holds that

ES [|R̂S(AS)− R̂S(ĥS) + R̂S(h
∗)−R(h∗)|] ≤ ϵerm(n) +Bτ(n)β (⌊n/τ(n)⌋) +B/

√
τ(n).

Thus, the lemma follows by applying Lemma 18.

Lemma 24 (AERM+average stability⇒consistency) If a learning algorithm A is an
AERM with rate ϵerm(n), and has average stability with rate ζ(n) for a stationary β-mixing
sequence with coefficients β(m), then it is consistent with rate ϵcon(n) = ϵerm(n) + ζ(n).

Proof: For stationary sequence, we have E[R(h∗)] = E[R̂S(h
∗)], and E[R(AS)−R(h∗)] =

E[R(AS) − R̂S(h
∗)]. Moreover E[R(AS) − R̂S(h

∗)] = E[R(AS) − R̂S(AS)] + E[R̂S(AS) −
R̂S(ĥS)]+E[R̂S(ĥS)−R̂S(h

∗)] ≤ ζ(n)+ϵerm(n) where the last inequality holds from Eqns. (9)
and (10), and R̂S(ĥS) ≤ R̂S(h

∗).
Theorem 9 follows from Lemmas 23 and 24, and we also establish the relationships

generalization↔stability→consistency for an AERM. The inverse direction, however,
does not hold for specific stationary β-mixing distribution, as can be seen from Example 2
in Section 5.1. We consider the universal consistency and introduce the following lemma:

Lemma 25 If a problem is learnable, i.e., there exists a universally consistent algorithm
A with rate ϵcon(n) for all stationary β-mixing distributions with coefficients β(n), then

E
[∣∣∣R̂S(ĥS)−R(h∗)

∣∣∣] ≤ ϵemp(n) with ϵemp(n) = 2ϵcon(n
′) + 2Bn′2/n+ 2Bn′/n+ 4B/

√
n+

B/
√

τ(⌊n/2⌋) + τ (⌊n/2⌋)β (⌊n/2⌋/τ(⌊n/2⌋)) + (2τ(⌊ 4
√
n⌋) + 1)β (⌊⌊ 4

√
n⌋/τ(⌊ 4

√
n⌋)⌋), τ(n)

is given by Lemma 4, and n′ = τ(⌊ 4
√
n⌋).
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Bs2
Bs3

Bs1

zn
zih+δzihzik

zik−δzij+δzij
zij−δz1

Figure 2: A sequence of blocks {Bi} composed of successively indexed instances in S, and
the index distance from those in S′ is larger than δ. Note that in this figure
zij , zik , zih ∈ S′ and ih − ik < δ.

Proof: For S′ = {zi1 , zi2 , . . . , zin′} of size n′ = τ(⌊ 4
√
n⌋) chosen independently from the

uniform distribution over sample S = {z1, z2, . . . , zn} (with replacements), where τ(n) is
given by Lemma 4 with respect to the β-mixing coefficients β(n), the probability of instances

in S′ having repeated indices can be bounded by
∑n′

i=1 (i− 1)/n ≤ n′2/n. The subsample
S′ (without repeated indices from S) can be viewed from the original β-mixing sequence
and thus we have, from universal consistency,

E[|R(AS′)−R(h∗)|| no repeated indices in S′] ≤ ϵcon(n
′). (11)

Meanwhile, S′ can also be viewed as a sample drawn from the uniform distribution over
instances in S, which yields

E[|R̂S(AS′)− R̂S(ĥS)|| no repeated indices in S′] ≤ ϵcon(n
′). (12)

Notice that S′ has no repeated index from S, and S′ could be temporally dependent
to S \ S′. We will construct a sequence of blocks {Bi} such that each block Bi is weakly
relevant to S′ by following steps: 1) We first introduce a new set S1 = {zt ∈ S\S′| the index
distance is larger than δ from those indices in S′ = {zi1 , zi2 , . . . , zin′}, i.e., |t − ij | ≥ δ for
1 ≤ j ≤ n′} with where δ = ⌊⌊ 4

√
n⌋/n′⌋; 2) Blocks {Bi} are composed of those successively

indexed instances in S1, which can be shown by Figure 2.
Then, we have E[|R(AS′) − R̂S\S′(AS′)|] ≤ | ∪ Bi|E[|R(AS′) − R̂∪Bi(AS′)|]/(n − n′) +

|S \ S′ \ ∪Bi|E[|R(AS′) − R̂S\S′\∪Bi
(AS′)|]/(n − n′). It is obvious that |S1| = | ∪ Bi| <

n − n′ and |S \ S′ \ ∪Bi| ≤ 2n′δ ≤ 2 4
√
n. For bounded loss function, we have E[|R(AS′) −

R̂S\S′\∪Bi
(AS′)|] ≤ 2B. Therefore, we have

E[|R(AS′)− R̂S\S′(AS′)|] ≤ E[|R(AS′)− R̂∪Bi(AS′)|] + 4B/
√
n (13)

for n ≥ 5. To bound E[|R(AS′) − R̂∪Bi(AS′)|], we consider the similar sequence of blocks
{B̂i}, which are independent to S′ and each blocks are drawn according to the same original
β-mixing distribution. Recalling that the index distance in blocks {Bi} is lager than δ from
the indices of instances in S′, it holds that, from Lemma 5, E[|R(AS′) − R̂∪Bi(AS′)|] ≤
E[|R(AS′) − R̂∪B̂i

(AS′)|] + (2n′ + 1)Bβ (⌊⌊ 4
√
n⌋/n′⌋) ≤ Bτ (⌊n/2⌋)β (⌊n/2⌋/τ(⌊n/2⌋)) +

B/
√
τ(⌊n/2⌋)+ (2n′+1)Bβ (⌊⌊ 4

√
n⌋/n′⌋), where the last inequality holds from Theorem 20

since | ∪ B̂i| ≥ n/2 for n ≥ 8, and {B̂i} are independent to S′. From Eq. (13), E[|R(AS′)−
R̂S\S′(AS′)|] can be bounded

4B/
√
n+Bτ (⌊n/2⌋)β (⌊n/2⌋/τ(⌊n/2⌋))+B/

√
τ(⌊n/2⌋)+(2n′+1)Bβ

(⌊
⌊ 4
√
n⌋/n′⌋) . (14)
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Finally, if there is no repeatedly indexed instances, then, for any hypothesis, especially for
AS′ , it holds that |R̂S(AS′)− R̂S\S′(AS′)| ≤ 2Bn′/n. Combining Eqs. (11), (12) and (13),
and accounting for maximum discrepancy for the repeatedly indexed sample S′ case.

Lemma 26 (AERM+universal consistency⇒generalization) For a universally con-
sistent AERM A with rates ϵerm(n) and ϵcon(n) for all stationary β-mixing distributions
with coefficients β(m), it generalizes with rate ϵgen(n) = ϵerm(n) + ϵcon(n) + ϵemp(n). Here
ϵemp(n) is given by Lemma 25.

Proof: We have E[|R̂S(AS)− R(AS)|] ≤ E[|R̂S(AS)− R̂S(ĥS)|] + E[|R̂S(ĥS)− R(h∗)|] +
E[|R(h∗)−R(AS)|] ≤ ϵemp(n) + ϵerm(n) + ϵcon(n) as desired.

5.3. Proof of Theorem 14

It is obvious that, from Theorem 9, an average-stable AERM implies learnability, and the
inverse direction holds from the following lemma:

Lemma 27 If a problem is learnable, i.e., there exists a universally consistent A with rate
ϵcon(n) under all stationary β-mixing distributions with coefficients β(m), then there is an
algorithm A ′ which is average stable with rate ζ(n) = ϵgen(n), and is an AERM with rate
ϵerm(n) = ϵgen(n) + ϵcon(n

′) + ϵemp(n). Here n′ = ⌊
√
n⌋, and

ϵgen(n) = Bβ(n′) + 4Bn′/n+Bτ(n− 2n′)β
(⌊
(n− 2n′)/τ(n− 2n′)

⌋)
+B/

√
τ(n− 2n′),

ϵemp(n) is given by Lemma 25 and τ(n) is given by Lemma 4.

Proof: For any universally consistent algorithm A with rate ϵcon(n), we can construct
a universally average stable AERM A ′. For a training sample S = {z1, z2, . . . , zn}, we
construct two blocks B1 = {z1, . . . , zn′} and B2 = {z2n′+1, . . . , zn} as illustrated in Figure 3,
where n′ = ⌊

√
n⌋, i.e., the first n′ instances of S compose block B1 and the last n − 2n′

instances compose block B2.

zn
′ z2n

′+1 znz1

B1 B2

Figure 3: Constructing two blocks where B1 contains the first n′ instances of S, while B2

contains the last n− 2n′ instances of S.

Now the algorithm A ′ is defined to be A ′
S = AB1 . It is easy to find that A ′ is consistent

since it holds that E[R(A ′
S)−R(h∗)] = E[R(AB1)−R(h∗)] ≤ ϵcon(n

′). For generalization,

E[|RS(A
′
S)−R(A ′

S)|] = E[|RS(AB1)−R(AB1)|] ≤ 2n′E[|RS\B2
(AB1)−R(AB1)|]/n

+ (n− 2n′)E[|RB2(AB1)−R(AB1)|]/n ≤ 4Bn′/n+ E[|RB2(AB1)−R(AB1)|], (15)
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where the last inequality holds since the loss function is bounded by B and 1− 2n′

n < 1. We

consider two similar blocks B̂1 and B̂2 that are independent each other but the instances in
them are drawn from the same original β-mixing distribution. From Lemma 5, we have

E[|RB2(AB1)−R(AB1)|] ≤ E[|RB̂2
(AB̂1

)−R(AB̂1
)|] +Bβ(n′)

≤ Bβ(n′) +Bτ(n− 2n′)β
(⌊
(n− 2n′)/τ(n− 2n′)

⌋)
+B/

√
τ(n− 2n′)

where the last inequality holds from Theorem 20. By combining the above inequality with
Eq. (15), it can be obtained that A ′ is generalizing with rate

ϵgen(n) = Bβ(n′)+
4Bn′

n
+Bτ(n−2n′)β

(⌊
(n− 2n′)/τ(n− 2n′)

⌋)
+B/

√
τ(n− 2n′). (16)

From Lemma 22, it is easy to see that A ′ is average stable with rate ζ = ϵgen(n). Finally,

we prove that A ′ is an AERM since E[|R̂S(A
′
S) − R̂S(ĥS)|] ≤ E[|R̂S(A

′
S) − R(A ′

S)|] +
E[|R(A ′

S)−R(h∗)|] + E[|R(h∗)− R̂S(ĥS)|] ≤ ϵgen(n) + ϵcon(n
′) + ϵemp(n).

5.4. Proof of Theorem 15

For large fixed k, we divide {Zn+1, Zn+2, . . . , Zn+k} into B1 = {Zn+1, . . . , Zn+⌊
√
k⌋} and

B2 = {Zn+1+⌊
√
k⌋, . . . , Zn+k}. We first introduce R̃k(AS) =

1
k

∑k
i=1EZn+i [l(AS , Zn+i)] and

R̃Bi(AS) =
1

|Bi|
∑

Z∈Bi
EZ [l(AS , Z)] for i = 1, 2. It is easy to obtain

R1(AS |S) = lim
k→∞

R̃k(AS) and R̃k(AS) =
⌊
√
k⌋
k

R̃B1(AS) +
k − ⌊

√
k⌋

k
R̃B2(AS). (17)

Now we consider a block B̂2 that is independent to S whereas the instances in them are
drawn from the same original β-mixing distribution. From Lemma 5, we have |R̃B2(AS)−
R̃B̂2

(AS)| ≤ Bβ(⌊
√
k⌋), where R̃B̂2

(AS) =
∑

Z∈B̂2
EZ [l(AS , Z)]/|B̂2|. From Theorem 20,

we further have

ES [|R̃B̂2
(AS)−R(AS)|] ≤ Bτ(k − ⌊

√
k⌋)β

(⌊
k − ⌊

√
k⌋

τ(k − ⌊
√
k⌋)

⌋)
+

B√
τ(k − ⌊

√
k⌋)

, (18)

where τ is given by Lemma 4. By combining Eqns. (17) and (18), we have ES [|R1(AS |S)−
R(AS)|] = limk→∞E[|R̃k(AS)−R(AS |] = 0, and this completes the proof as desired.

5.5. Proof of Theorem 16

We denote by B = {Zn+k0 , Zn+k0+1, . . . , Zn+k1}, and introduce another block B̂2 of size
k1−k0+1 that is independent to S whereas the instances in them are drawn from the same
original β-mixing distribution. From Lemma 5, we have |R2(AS |S) − RB̂(AS)| ≤ Bβ(k0),
where RB̂(AS) =

∑
Z∈B̂ EZ [l(AS , Z)]/(k1 − k0 + 1). From Theorem 20, we further have

ES [|RB̂(AS)−R(AS)|] ≤ Bτ(k1 − k0 + 1)β

(⌊
k1 − k0 + 1

τ(k1 − k0 + 1)

⌋)
+

B√
τ(k1 − k0 + 1)

.

This theorem holds as desired.
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6. Conclusion

Learnability has been one of the central issues in learning theory. Most previous studies
on learnability were developed based on assuming i.i.d. samples. This i.i.d. assumption,
however, is usually violated in many applications, and it is important to characterize the
learnability of non-i.i.d. setting. In this paper, we prove a sufficient and necessary con-
dition for learnability of general non-i.i.d. learning setting where the training samples are
picked from stationary β-mixing sequence. More precisely, we prove that the existence of a
universally average stable AERM is equivalent to learnability in the non-i.i.d. setting.
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