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We study one class of nonlinear fluid dynamic models with impulse source terms. The model consists of a system of two hyperbolic
conservation laws: a nonlinear conservation law for the goods density and a linear evolution equation for the processing rate. We
consider the case when influx-rates in the second equation take the form of impulse functions. Using the vanishing viscosity
method and the so-called principle of fictitious controls, we show that entropy solutions to the original Cauchy problem can be
approximated by optimal solutions of special optimization problems.

1. Introduction

The main goal of this paper is to approximate entropy
solutions to a Cauchy problem for the system of nonlinear
balance laws with an impulse source term. Conservation
laws, taking the form of hyperbolic partial differential
equations, appear in a variety of applications that offer
control or identification of parameters, including the control
of traffic and water flows, the modeling of supply chains,
gas pipelines, blood flows, and so forth. The analysis of
conservation laws is a very active research area. The main
difficulty in dealing with them is the fact that the solution
of such systems may develop discontinuities (after a finite
time), that propagate in time even for smooth initial and
boundary conditions (see [1–3]). Usually such solutions
can be formed by the so-called rarefaction or shock waves.
Therefore, it makes a sense to consider a more flexible notion
of solutions, which are physically meaningful and whose
admissibility issue is related to the notions of entropy and
energy.

We analyze the following initial value problem for the
system of nonlinear conservation laws

ρt +
(
f (μ, ρ)

)
x = 0, (t, x) ∈ ΩT = (0,T)×R,

μt − μx = u(t, x), (t, x) ∈ ΩT ,

ρ(0, x) = ρ0(x), μ(0, x) = μ0(x), x ∈ R.
(1)

Throughout this paper we suppose that the structure of the
source term u(t, x) is prescribed, namely,

u = u(t, x) =
N∑

i=1

ui(t)δτi(x),

with −∞ < a < τ1 < · · · < τN < b < +∞,

(2)

where the functions {ui ∈ L2(0,T)}Ni=1 can play the role of
control factors, and δτi denote the Dirac measures located at
the points τi.

In the recent applications of the model (1) to the supply
chain problem [4], ρ = ρ(t, x) represents the density of
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objects or the concentration of a physical quantity processed
by the supply chain (modeled by a real line R), and μ =
μ(t, x) is the processing rate. However, to the best knowledge
of authors, the existence and uniqueness of entropy solutions
to the problems of conservation laws with impulse controls
is an open problem even for the simplest situation. Thus our
prime interest is to discuss the approximation approach to
the construction of entropy solutions for the above problem.
To this end, we apply the vanishing viscosity method and
the so-called principle of fictitious controls. We prove that
entropy solutions to the Cauchy problem (1)–(2) can be
approximated by optimal solutions of special optimization
problems. Namely, we introduce the following penalized
optimization problem

Iε
(
vε, ρε

) = ‖vε‖2
L2(0,T ;M(O))

+ ε−1
∥
∥∥
(
f2(με)

)
x − vε

∥
∥∥
L2(0,T ;H−1(O))

−→ inf

(3)

subject to the constraints

ρεt (t, x)− ερεxx(t, x) +
(
f1(ρε(t, x))

)
x = v(t, x), (t, x) ∈ ΩT ,

μεt (t, x)− εμεxx(t, x)− μεx(t, x) = u(t, x), (t, x) ∈ ΩT ,

ρε(0, x) = ρ0(x), με(0, x) = μ0(x), x ∈ R,

u(t, x) = u1(t)δτ1 (x) + u2(t)δτ2 (x) + · · · + uN (t)δτN (x),

ui ∈ L2(0,T), ∀i = {1, . . . ,N} ,

v ∈ L2(0,T ; M(R)),

ρε(t, x) = 0, με(t, x) = 0, on (0,T)× ∂O,
(4)

where v = v(t, x) is a fictitious control. We carry out
the analysis of this problem and show that under some
additional assumptions every cluster pair (v∗, ρ∗) (in an
appropriate topology) of the sequence {(vε0, ρε0) ∈ Ξε}ε>0 of
optimal solutions to the penalized problem (3)-(4) is an
entropy solution (u∗, ρ∗,μ∗) to the Cauchy problem (1).

2. Notation and Preliminaries

Let a and b be two fixed constants such that −∞ < a < b <
+∞. For a given T > 0 we set ΩT = (0,T) × R and Ω =
(0,T) × (a, b). Let L

p
loc(ΩT), with 1 ≤ p ≤ ∞, be the locally

convex space of all measurable functions g : ΩT → R such
that g|(0,T)×K ∈ Lp((0,T)× K) for all compact sets K ⊂ R.

Let M(R) be the set of all Radon measures on R, that is,
μ ∈M(R) if μ is a countably additive set function defined on
the Borel subsets of R such that μ is finite on every compact
subset of R. We say that a sequence of Radon measures
{μk}k∈N converges weakly-∗ to a measure μ ∈ M(R) (in

symbols μk
∗⇀ μ) if

lim
k→∞

∫

R
ϕdμk =

∫

R
ϕdμ, ∀ϕ ∈ C0(R). (5)

A subset M of M(R) is called to be bounded if for every
compact set K ⊂ R we have

sup
μ∈M

∣
∣μ
∣
∣(K) < +∞, (6)

where |μ| denotes the total variation of μ. The following
compactness result for measures is well known.

Proposition 1. Let {μk}k∈N be a bounded sequence of Radon
measures on R. Then there exist a subsequence {μkj} j∈N and a

Radon measure μ ∈M(R) such that μkj
∗⇀ μ.

According to the Riesz theory, every Radon measure μ
on R can be identified with an element of the dual space
(C0(R))′, that is, μ is a linear form on C0(R) and for every
compact set K ⊂ R there exists a constant C > 0 depending
only on K and μ such that

∣
∣〈μ, f

〉∣∣ ≤ C
∥
∥ f
∥
∥
C(K), ∀ f ∈ C0(R) with supp f ⊆ K.

(7)

As an example of a Radon measure on R, we consider the
following one. Let {ak}k∈N and {bk}k∈N be two sequences in
R such that

∑∞
k=1 |ak| ≤ C < +∞. Let δc be the Dirac measure

located at the point c ∈ R, that is, this measure is defined as
follows

〈
δc,ϕ

〉 =
∫

R
δc(x)ϕ(x)dx := ϕ(c), ∀ϕ ∈ C0(R). (8)

Since
∣∣
∣
∣∣
∣

∞∑

k=1

akϕ(bk)

∣∣
∣
∣∣
∣
≤
⎛

⎝
∞∑

k=1

|ak|
⎞

⎠
∥
∥ϕ
∥
∥
C(R) ≤ C

∥
∥ϕ
∥
∥
C(R) (9)

for every continuous function with compact support ϕ ∈
C0(R), it follows that the linear form

μ∗ =
∞∑

k=1

akδbk (10)

is continuous on C0(R). Hence μ∗ is an element of the space
of Radon measures M(R).

Let O be a bounded open subset of R. Let f : O → R be
an element of L1(O). Define
∫

O

∣
∣D f

∣
∣

= sup
{∫

O
f ϕ′dx : ϕ ∈ C1

0(O),
∣
∣ϕ(x)

∣
∣ ≤ 1 for x ∈ O

}
.

(11)

According to the Radon-Nikodym theorem, if
∫
O |D f | <

+∞ then the distribution D f is a measure and there exist
a function f ′ ∈ L1(O) and a measure Ds f , singular with
respect to the one-dimensional Lebesgue measure L�O
restricted to O, such that

D f = f ′L�O +Ds f . (12)
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Definition 2. A function f ∈ L1(O) is said to have a bounded
variation in O if the derivative D f exists in the sense of
distributions and belongs to the class of Radon measures
with bounded total variation, that is,

∫
O |D f | < +∞. By

BV(O) we denote the space of all functions in L1(O) with
bounded variation.

Under the norm

∥
∥ f
∥
∥

BV(O) =
∥
∥ f
∥
∥
L1(O) +

∫

O

∣
∣D f

∣
∣, (13)

BV(O) is a Banach space. The following compactness result
for BV-functions is well known.

Proposition 3. The uniformly bounded sets in BV-norm are
relatively compact in L1(O), that is, if { fk}∞k=1 ⊂ BV(O) and
supk∈N‖ fk‖BV(O) < +∞, then there exists a subsequence of
{ fk}∞k=1 strongly converging in L1(O) to some f ∈ BV(O).

Definition 4. A sequence { fk}∞k=1 ⊂ BV(O) weakly converges
to some f ∈ BV(O), and we write fk ⇀ f if and only if the
two following conditions hold: fk → f strongly in L1(O),
and D fk ⇀ D f weakly∗ in M(O).

In the following proposition we give a compactness
result related to this convergence, together with the lower
semicontinuity property (see [5]).

Proposition 5. Let { fk}∞k=1 be a sequence in BV(O)
strongly converging to some f in L1(O) and satisfying
supk∈N

∫
O |D fk| +∞. Then

(i) f ∈ BV(O) and
∫
O |D f | ≤ lim infk→∞

∫
O |D fk|;

(ii) fk ⇀ f in BV(O).

3. Statement of Problem and Main Motivation

Let {τk}Nk=1 ⊂ R be a given finite family of points such that
a < τ1 < · · · < τN < b. We focus on the following fluid
dynamic model, expressed by the nonlinear inhomogeneous
hyperbolic conservation laws:

ρt +
(
f
(
μ, ρ

))
x = 0, (t, x) ∈ ΩT , (14)

μt − μx = u(t, x), (t, x) ∈ ΩT , (15)

ρ(0, x) = ρ0(x), μ(0, x) = μ0(x), x ∈ R, (16)

where the source term is subjected to the following con-
straints:

u(t, x) = u1(t)δτ1 (x) + u2(t)δτ2 (x) + · · · + uN (t)δτN (x),
(17)

ui ∈ L2(0,T), ∀i = {1, . . . ,N}. (18)

Here ui ∈ L2(0,T) are some external distributed sources
located at the corresponding points τi ∈ (a, b), ρ0,μ0 ∈
BV(R) ∩ L∞(R) are data functions, and f = f (μ, ρ) =
f1(ρ) + f2(μ) is a flux function.

We note that a particular case of the initial value
problem (14)–(16) is a perturbed model for the supply chain
(represented by a real line), where ρ = ρ(t, x) represents the
density of objects or the concentration of a physical quantity
processed by the supply chain (modeled by a real line R),
μ = μ(t, x) is the processing rate, and u = u(t, x) is a source
term associated with an influx-rate.

In order to give a precise description of the set of
admissible source terms to the Cauchy problem (14)–(18),
we note that for any function u(t, x) of type (17), we have
∫ T

0
‖u(t, ·)‖2

M(R)dt

=
∫ T

0

⎛

⎜
⎜
⎝ sup
‖ϕ‖C(R)=1
ϕ∈C0(R)

〈
u(t, ·),ϕ(·)〉M(R),C0(R)

⎞

⎟
⎟
⎠

2

dt

=
∫ T

0

⎛

⎜
⎜
⎝ sup
‖ϕ‖C(R)=1
ϕ∈C0(R)

N∑

k=1

uk(t)
∫

R
δτk (x)ϕ(x)dx

⎞

⎟
⎟
⎠

2

dt

≤
∫ T

0

⎛

⎝
N∑

k=1

uk(t)

⎞

⎠

2

dt

≤ N
N∑

k=1

‖uk‖2
L2(0,T).

(19)

Hence, it is natural to define the following class:

Uad =
{
u ∈ L2(0,T ; M(R)) | u = u(t, x)

satisfy (25)-(26) for some a < τ1 < . . . < τN < b
}
.

(20)

Definition 6. Let u ∈Uad be a fixed source term. We say that

a vector value function Y =
[
ρ
μ

]
∈ [L2(0,T ;L2

loc(R))]
2

is a
weak solution to (14)–(16) if the identities
∫ T

0

∫

R

(

Y � ∂ϕ

∂t
+ F(Y)� ∂ϕ

∂x

)

dx dt

+
∫ T

0

N∑

k=1

Uk(t)� ϕ(τk)dt = 0,

lim
t→ 0+

1
t

∫ t

0

∣∣
∣
∣

∫

R
Y(t, x)� ψ(x)dx −

∫

R
Y0 � ψ(x)dx

∣∣
∣
∣
R2
dt = 0

(21)

hold true for all C∞0 -functions ϕ : [0,T] × R → R2 and
ψ : R → R2 with compact supports in (0,T) × R and R,
respectively. Here

Y0 =
⎡

⎣
ρ0

μ0

⎤

⎦, Uk(t) =
⎡

⎣
0

uk(t)

⎤

⎦, F(Y) =
⎡

⎣
f
(
μ, ρ

)

−μ

⎤

⎦,

(22)

and the symbol � denotes the tensor product
[
a1

a2

]
�
[
b1
b2

]
=

[
a1b1

a2b2

]
.
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The characteristic feature of the initial value problem
(14)–(16) is that even for arbitrary smooth functions ρ0,
μ0, and smooth external sources uk, k = 1, . . . ,N , a weak
solution Y(t, x) = (ρ(t, x),μ(t, x)) to (14)–(16), is, in general,
not unique (see [2, 3]). Hence, in order to select the
“physically” relevant solution, some additional conditions
must be imposed. Following [2, 3, 6], we can introduce
the entropy-admissibility condition, coming from physical
considerations.

Definition 7. A C1-function η : R2 → R is an entropy for the
system (14)-(15), if it is convex and there exists aC1-function
q : R2 → R such that

Dη(v) ·DF(v) = Dq(v), ∀v ∈ R2. (23)

The function q : R2 → R is said an entropy flux for η.
The pair (η, q) is said an entropy flux pair for the system
(14)-(15).

Remark 8. Note that the C1-functions η, q in Definition 7
form a special family of convex entropy pairs. However, any
convex function η defined on an open set is locally Lipschitz,
and therefore Dη is defined almost everywhere. This allows
us to call a C0-function η an entropy, if there exists a
sequence of C1-entropies {ην : R2 → R}∞ν=1 converging to η
locally uniformly as ν → ∞. Moreover a C0-function q is a
corresponding entropy flux, if there exists a sequence {qν}∞ν=1
of C1-entropy fluxes of ην converging to q locally uniformly.

As a result, an entropy solution of (14)–(16) for a given
u ∈Uad can be defined as follows.

Definition 9. Let u ∈ Uad be a given source term with
prescribed location a < τ1 < · · · < τN < b. A weak solution

Y =
[
ρ
μ

]
: [0,T] × R → R2 to the Cauchy problem (14)–

(16) is said entropy admissible if for any constants k, l ∈ R
the entropy inequalities

∫ T

0

∫

R

(
νl
(
ρ
)
ψt + gl

(
ρ
)
ψx
)
dx dt

−
∫ T

0

∫

R
sign

(
ρ− l)( f2(μ)

)
xψdx dt ≥ 0,

∫ T

0

∫

R

(
νk
(
μ
)
ϕt − qk

(
μ
)
ϕx
)
dx dt

+
T∑

i=1

∫ T

0
sign

(
μ(t, τi)− k

)
ui(t)ϕ(t, τi)dt ≥ 0

(24)

hold true for all positive functions ϕ,ψ ∈ C∞0 (ΩT), provided
that

νk
(
μ
)

:= ∣
∣μ− k∣∣, qk

(
μ
)

:= (
μ− k) sign

(
μ− k),

gl
(
ρ
)

:= (
f1
(
ρ
)− f1(l)

)
sign

(
ρ − l).

(25)

Remark 10. Note that the existence and differential proper-
ties of entropy solutions to the Cauchy problem (14)–(16)

with impulse influx-rate (17) in the sense of Definition 9
are unknown in general. To the best knowledge of authors,
the problems (14)–(17) with measure data in the right hand
side are not covered by the classical theory of nonlinear
hyperbolic conservation laws. Moreover, we cannot assert
that entropy admissible solutions (ρ(u),μ(u)) to the above
problem are elements of the class

[
C([0,T];L1(a, b))∩ L∞(Ω)∩ L∞(0,T ; BV(a, b))

]2 (26)

which is a natural functional space for the scalar hyperbolic
conservation laws (see [2, 7, 8]). Usually these properties
essentially depend not only on the flux function f (μ, ρ), but
also on the properties of the admissible source terms u(t, x),
which typically, in contrast to our case, are supposed to be
bounded in L∞(ΩT) and closed in L1(ΩT) (see [8]).

Taking this motivation into account, it is reasonable to
introduce the following concept.

Definition 11. Let u ∈ Uad be a given source term. We say

that a vector value function Y =
[
ρ
μ

]
∈ [L2(0,T ;L2

loc(R))]
is an approximately entropy solution to the Cauchy problem

(14)–(16) in a domain (0,T)×O, if Y =
[
ρ
μ

]
: [0,T]×R →

R2 is a weak solution in the sense of Definition 6 and there
exists a sequence {Yε =

[
ρε

με

]
}
ε>0

⊂ [L2(0,T ;L2(O))]2 such
that

(B1) ρε ⇀ ρ and με ⇀ μ in L2(0,T ;L2(O)) as ε → 0;

(B2) for any constants k, l ∈ R and for all positive concave
functions ϕ ∈ C∞0 ((0,T)×O) the entropy inequalities

∫ T

0

∫

O

(
νl
(
ρε
)
ϕt + gl

(
ρε
)
ϕx
)
dx dt

+
∫ T

0

〈
sign

(
ρε(t, ·)− l)

×( f2(με(t, ·))x,ϕ(t, ·)
〉

M(O),C0(O)
dt ≥ 0,

(27)

∫ T

0

∫

O

(
νk
(
με
)
ϕt − qk

(
με
)
ϕx
)
dx dt

+
N∑

i=1

∫ T

0
sign

(
με(t, τi)− k

)
ui(t)ϕ(t, τi)dt ≥ 0

(28)

it hold true for every ε > 0 with νl(ρ) := |ρ − l|,
gl(ρ) := ( f1(ρ) − f1(l)) sign(ρ − l), νk(μ) := |μ − k|
and qk(μ) := (μ− k) sign(μ− k).

4. A Perturbation Framework

As was mentioned above the existence and uniqueness of
entropy solutions for nonlinear hyperbolic conservation laws
(14)–(16) with source terms (17), where ui ∈ L2(0,T) for all
i = 1, . . . ,N , and with initial distributions ρ0,μ0 ∈ BV(R)∩
L∞(R), is not covered by the classical theory. In view of this,
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we apply in this section the scheme of “vanishing viscosity”
method and the principle of fictitious controls.

To begin with, we impose the following assumptions on
the flux function:

f
(
μ, ρ

) = f1
(
ρ
)

+ f2
(
μ
)
, (29)

(A1) the function f1 : R → R is locally Lipschitz, that is,

∣
∣ f1

(
ρ1
)− f1

(
ρ2
)∣∣ ≤ Lρ

∣
∣ρ1 − ρ2

∣
∣, ∀ρ1, ρ2 ∈

[
−Mρ,Mρ

]
,

(30)

f1(0) = 0, and f ′2 : R �→ R is a piecewise linear mapping.

Remark 12. As was shown in recent works [4, 9–11], a flux
function of the fluid dynamic model for supply chains is the
following:

f
(
μ, ρ

) = f1
(
ρ
)

+ f2
(
μ
) =

⎧
⎨

⎩

ρ, if ρ < μ

0, if ρ ≥ μ

⎫
⎬

⎭ +

⎧
⎨

⎩

0, if ρ < μ

μ, if ρ ≥ μ

⎫
⎬

⎭.

(31)

Hence, the fulfilment of Hypothesis (A1) is obvious in this
case.

Let ε be a small positive parameter associated with a
viscosity coefficient. Then instead of the fluid dynamic sys-
tem (14)–(16), we focus on the following singular perturbed
system of nonlinear PDEs:

ρεt (t, x)− ερεxx(t, x) +
(
f1(ρε(t, x))

)
x = v(t, x), (t, x) ∈ ΩT ,

(32)

μεt (t, x)− εμεxx(t, x)− μεx(t, x) = u(t, x), (t, x) ∈ ΩT ,
(33)

ρε(0, x) = ρ0(x), με(0, x) = μ0(x), x ∈ R (34)

subjected to the constraints

u(t, x) = u1(t)δτ1 (x) + u2(t)δτ2 (x) + · · · + uN (t)δτN (x),
(35)

ui ∈ L2(0,T), ∀i = {1, . . . ,N}, (36)

v ∈ L2(0,T ; M(R)), (37)

where v = v(t, x) is a fictitious control. By Vad we denote the
set of all fictitious controls satisfying conditions (37).

Since ρ0,μ0 ∈ L1(RN ) ∩ L∞(RN ), it is natural to assume
that there is a compact interval I ⊂ R such that ρ0 = 0 and
μ0 = 0 almost everywhere in R \ I . Then taking a sufficiently
big open bounded interval O ⊂ R including the interval I ,
we can suppose that the rate processing με and the density
ρε vanish at the ends of O. As a result, we can introduce the
following boundary conditions into the model (32)–(37):

ρε(t, x) = 0, με(t, x) = 0, on (0,T)× ∂O. (38)

Since by the initial assumptions the influx-rate u =
∑N

k=1 uk(t)δk and the fictitious control v belong to the space
of measure data L2(0,T ; M(O)), we make the notion of
solution for the problem (32)–(38) precise. To this end, we
give the following theorem which plays an important role in
the study of partial differential equations (see [12]).

Theorem 13. Let one defines the Banach spaces:

W =
{

y : y ∈ L2(0,T ;H1
0 (O)

)
,
∂y

∂t
∈ L2(0,T ;H−1(O)

)
}

,

(39)

W1 =
{

y : y ∈ L2(0,T ;L2(O)
)
,
∂y

∂t
∈ L2(0,T ;H−1(O)

)
}

,

(40)

equipped with the norm of the graph. Then, the following
properties hold true:

(1) the embeddings W ↪→ L2(0,T ;L2(O)), W1 ↪→ L2(0,T ;
H−1(O)) are compact;

(2) one has the embedding

W ↪→ C
(
[0,T];L2(O)

)
, W1 ↪→

(
[0,T];H−1(O)

)
,

(41)

where, for X = L2(O) or X = H−1(O), C([0,T]; X)
denotes the space of measurable functions on [0,T]×O
such that y(t, ·) ∈ X for any t ∈ [0,T] and such that
the map t ∈ [0,T] �→ y(t, ·) ∈ X is continuous;

(3) for any u, v ∈W

d

dt

∫

O
u(t, x)v(t, x)dx

= 〈
u′(t, ·), v(t, ·)〉H−1(O),H1

0 (O)

+
〈
v′(t, ·),u(t, ·)〉H−1(O),H1

0 (O);

(42)

(4) let y ∈ L2(0,T ;H1
0 (O)) ∩ C([0,T];L2(O)). Then the

following density result holds: for any δ > 0 there exists
Φ ∈ C∞([0,T];C∞0 (O)), such that

∥
∥y −Φ

∥
∥
C([0,T];L2(O)) ≤ δ,

∥
∥∇y −∇Φ∥∥L2((0,T)×O) ≤ δ.

(43)

Further we note that by the Friedrichs inequality, we have
∣
∣∣
∣

∫

O
yϕ′dx

∣
∣∣
∣ ≤ c

∫

O
y2dx

∫

O

∣∣ϕ′
∣∣2
dx

≤ c1

∫

O

∣
∣y′

∣
∣2
dx

∫

O

∣
∣ϕ′

∣
∣2
dx, ∀y,ϕ ∈ H1

0 (O).

(44)

Hence the bilinear form
∫
O yϕ

′dx is bounded on H1
0 (O).

Moreover, this form is skew-symmetric by the identity
∫

O
yϕ′ dx =

∫

O

(
yϕ
)′
dx −

∫

O
y′ϕdx

= −
∫

O
y′ϕdx, ∀y,ϕ ∈ C∞0 (O),

(45)
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which remains valid for all y,ϕ ∈ H1
0 (O) by continuity.

Then, we come to the following classical result (see [12, 13]).

Theorem 14. Assume that μ0 ∈ BV(O) ∩ L∞(O) and
Hypothesis (A1) holds true. Then for every ε > 0 the initial-
boundary value problem (32)–(38) admits a unique solution
(ρε,με) ∈W ×W satisfying the integral identities:

∫ T

0

∫

O

[
∂ρε

∂t
ψ + ε

∂ρε

∂x

∂ψ

∂x
− f1

(
ρε
)∂ψ

∂x

]

dx dt

=
∫ T

0

〈
v(t, ·),ψ(t, ·)〉H−1(O),H1

0 (O)dt,

∀ψ ∈ L2(0,T ;H1
0 (O)

)
,

(46)

∫ T

0

∫

O

[
∂με

∂t
ϕ + ε

∂με

∂x

∂ϕ

∂x
+ με

∂ϕ

∂x

]

dx dt

=
∫ T

0

〈
u(t, ·),ϕ(t, ·)〉H−1(O),H1

0 (O)dt,

∀ϕ ∈ L2(0,T ;H1
0 (O)

)
,

(47)

with a priori estimates

∫ T

0

∫

O

[∣
∣ρε(t, x)

∣
∣2 + ε

∣
∣ρεx(t, x)

∣
∣2 +

∣
∣ρεt (t, x)

∣
∣2
]
dx dt

≤ C
∫ T

0

∫

O

[∣∣ĝt(t, x)
∣∣2 +

∣∣ĝx(t, x)
∣∣2
]
dx dt

+ C‖v‖2
L2(0,T ;H−1(O)),

(48)

∫ T

0

∫

O

[∣
∣με(t, x)

∣
∣2 + ε

∣
∣μεx(t, x)

∣
∣2 +

∣
∣μεt (t, x)

∣
∣2
]
dx dt

≤ C
∫ T

0

∫

O

[∣∣gt(t, x)
∣∣2 +

∣∣gx(t, x)
∣∣2
]
dx dt

+ C‖u‖2
L2(0,T ;H−1(O)),

(49)

∫ T

0

∥
∥ρεt (t, ·)

∥
∥2
H−1(O)dt

≤ C
∥∥ĝ
∥∥2
W−1,2((0,T)×O) + C‖v‖2

L2(0,T ;H−1(O)),

(50)

∫ T

0

∥
∥μεt (t, ·)

∥
∥2
H−1(O) dt

≤ C
∥
∥g
∥
∥2
W−1,2((0,T)×O) + C‖u‖2

L2(0,T ;H−1(O)),

(51)

where C > 0 is a constant independent of ε and g, ĝ ∈
W1,2((0,T) × O) are such that g|∂O = 0, ĝ|∂O = 0, ĝ(0, ·) =
ρ0, and g(0, ·) = μ0 in O (the so-called compatibility
condition).

Note that in this case

ρε ∈ C
(
[0,T];L2(O)

)
, με ∈ C

(
[0,T];L2(O)

)
(52)

by the embedding (41), and the terms in the right-hand sides
of (46)-(47) are well defined, because H1

0 (O) ⊂ C0(O) by

the classical Sobolev Embedding Theorem. Moreover, in the
one-dimensional case every Radon measure ν ∈ M(O) can
be identified with an element of H−1(O), that is, M(O) ⊂
H−1(O). As a result, the integral identity (47) with a source
term

u(t, x) =
N∑

k=1

uk(t)δk(x) (53)

can be rewritten as follows:

∫ T

0

∫

O

[
∂με

∂t
ϕ + ε

∂με

∂x

∂ϕ

∂x
+ με

∂ϕ

∂x

]

dx dt

=
N∑

k=1

∫ T

0
uk(t)ϕ(t, τk)dt, ∀ϕ ∈ L2(0,T ;H1

0 (O)
)
.

(54)

In conclusion of this section we state the following
entropy property of the weak solutions to the initial-
boundary value problem (32)–(38).

Lemma 15. Let u∗ = ∑N
k=1 u

∗
k (t)δτk ∈ Uad be a given source

term with prescribed location a < τ1 < · · · < τN < b.
Let {(ρε,με)}ε>0 be a sequence of corresponding weak solutions
to the initial boundary value problem (32)–(38) where the
small parameter ε > 0 varies in a strictly decreasing sequence
of positive numbers converging to 0. Let {vε ∈ L2(0,T ;
M(R))}ε>0 be a bounded sequence of fictitious controls. Assume
that supposition (A1) holds true. Then for every ε > 0, k, l ∈ R,
and for all positive concave functions ϕ ∈ C∞0 ((0,T)×O), each
of the pairs ((ρε,με)) satisfies the following integral inequalities:

∫ T

0

∫

O

(
νl
(
ρε
)
ϕt + gl

(
ρε
)
ϕx
)
dx dt

+
∫ T

0

〈
sign

(
ρε(t, ·)− l)vε(t, ·),ϕ(t, ·)〉M(O),C0(O)dt ≥,

(55)

∫ T

0

∫

O

(
νk
(
με
)
ϕt − qk

(
με
)
ϕx
)
dx dt

+
N∑

i=1

∫ T

0
sign

(
με(t, τi)− k

)
u∗i (t)ϕ(t, τi)dt ≥ 0

(56)

with νl(ρ) := |ρ − l|, gl(ρ) := ( f1(ρ) − f1(l)) sign(ρ − l),
νk(μ) := |μ− k|, and qk(μ) := (μ− k) sign(μ− k).

Proof. Let E = E(ρ) ∈ C2(R) be any convex function. We
multiply (32) by E′(ρ). Then the equalities

E′
(
ρ
)
ρt = ∂E

(
ρ(t, x)

)

∂t
,

f ′1
(
ρ
)
E′
(
ρ
)
ρx = ∂

∂x

(∫ ρ(t,x)

k
f ′1 (ξ)E′(ξ)dξ

)

,

E′
(
ρ
)
ρxx =

(
E(ρ)

)
xx − E′′

(
ρ
)
ρ2
x,

(57)
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imply the following relation

(
E(ρε)

)
t +

(∫ ρε

k
f ′1 (ξ)E′(ξ)dξ

)

x

= ε
(
E(ρε)

)
xx − εE′′

(
ρε
)(
ρε
)2
x + E′

(
ρε
)
vε, in D ′((0,T)×O).

(58)

By the initial assumptions, for every ε > 0 the functions ρε ∈
W can be zero-extended to the domain ΩT = (0,T)×R. Now
let us multiply equality (58) by a test function ϕ ∈ C∞0 (ΩT)
and integrate it over ΩT . Using the integration by parts and
the fact that ε > 0 and E′′(ρε) ≥ 0 a.e. in ΩT , we transfer all
derivatives to the test function ϕ:

−
∫ T

0

∫

R

[

E
(
ρε
)
ϕt +

∫ ρε

k
f ′1 (ξ)E′(ξ)dξ ϕx

]

dx dt

= ε
∫ T

0

∫

R

(
E
(
ρε
))
ϕxxdx dt

− ε
∫ T

0

∫

R
E′′
(
ρε
)(
ρε
)2
xϕdx dt +

∫ T

0

∫

R
E′
(
ρε
)
vεϕdx dt

≤ ε
∫ T

0

∫

R
E
(
ρε
)
ϕxxdx dt +

∫ T

0

∫

R
E′
(
ρε
)
vεϕdx dt.

(59)

Since ρε ∈ L2(0,T ;H1
0 (O)) for all ε > 0 and H1

0 (O) ↪→ C(O)
by the classical Sobolev Embedding Theorem, it follows that
the following term is well defined:

∫ T

0

∫

R
E′
(
ρε
)
vεϕdx dt =

∫ T

0

〈
E′
(
ρε
)
vε,ϕ

〉
M(R),C0(R)dt.

(60)

Further we use the well-known trick. Let {Em}m∈N be a
sequence of C2-functions approximating the function ξ �→
|ξ−k| uniformly onR. Substitute E = Em(ρ) in the inequality
(59) and pass to the limit asm → ∞. Note that we can choose
Em in such way that E′m is bounded and E′m(ξ) → sign(ξ− k)
for all ξ ∈ R, ξ /= k. Since ϕxx ≤ 0 in ΩT and

∫ ρε

k
f ′1 (ξ)E′m(ξ)dξ −→

∫ ρε

k
f ′1 (ξ) sign(ξ − k)dξ

= sign
(
ρε − k)

∫ ρε

k
f ′1 (ξ)dξ = sign

(
ρε − k)( f1

(
ρε
)− f1(k)

)
,

(61)

it immediately leads us to the entropy inequality (55) from
(59). The verification of inequality (56) can be done by
similar arguments.

5. The Penalized Optimization Problem

In this section, for every ε > 0 and a given influx-rate
uε ∈ Uad, we analyze the following penalized optimization

problem associated with the singular perturbed initial-
boundary value problem (32)–(38):

Iε
(
vε, ρε

) = ‖vε‖2
L2(0,T ;M(O))

+ ε−1
∥
∥∥
(
f2(με)

)
x − vε

∥
∥∥
L2(0,T ;H−1(O))

−→ inf

(62)

subject to the constraints (33)–(39). (63)

Definition 16. We say that a pair (vε, ρε) is admissible to the
optimization problem (62)-(63) if vε ∈ L2(0,T ; M(R)) and
ρε = ρε(vε) ∈ W is the corresponding weak solution to the
initial boundary value problem (32), (34)1, and (38)1.

Let Ξε be the set of all admissible solutions to the
perturbed problem (62)-(63). As follows from Theorem 13,
for every ε > 0, Ξε is a nonempty subset of the space:

Y = L2(0,T ; M(O))× L2((0,T)×O). (64)

Remark 17. We note that the cost functional (63) is well
defined on Ξε for every ε > 0. Indeed, let (vε, ρε) be any
representative of Ξε. By supposition (A1), we have that f ′2 :
R → R is a piecewise linear mapping and με ∈ W . Hence
( f ′2 (με))μεx is in L2((0,T) × O), and vε ∈ L2(0,T ; M(O))
by the definition of the class Vad. Since L2((0,T) × O) ⊂
L2(0,T ; M(O)), we come to the required conclusion.

We define the τ-topology on Y as follows: τ is the product
of the weak-∗ topology of L2(0,T ; M(O)) and the topology
of norm in L2((0,T) × O). Then we have the following
topological properties of the set Ξε of admissible solutions
to the perturbed optimization problem (62)-(63).

Lemma 18. Assume that supposition (A1) holds true. Then the
set Ξε is nonempty and sequentially τ-closed for every ε > 0.

Proof. For a fixed ε > 0 let (uε, vε) ∈Uad×Vad be an arbitrary
pair of source terms. Then Theorem 14 implies the existence
of a unique pair (ρε,με) such that ρε = ρε(vε) and με = με(uε)
are the corresponding weak solutions to the initial boundary
value problem (32)–(34), (38). Since

με, ρε ∈W

:=
{

y : y ∈ L2(0,T ;H1
0 (O)

)
,
∂y

∂t
∈ L2(0,T ;H−1(O)

)
}

(65)

and W ↪→ L2((0,T)×O), we conclude that (vε, ρε) ∈ Ξε and
hence Ξε /=∅.

To establish the τ-closedness of Ξε, we fix an arbitrary τ-
converging sequence of admissible solutions to the perturbed
problem (32)–(38) and (62) {(vεk, ρεk) ∈ Ξε}∞k=1 and show that
(vε∗, ρε∗) ∈ Ξε, where (vε∗, ρε∗) is its τ-limit.

We have that vεk
∗⇀ vε∗ in L2(0,T ; M(O)) and ρεk → ρε∗

in L2((0,T) × O). Hence vε∗ ∈ Vad and it remains to show
that ρε∗ is the corresponding weak solution of the initial-
boundary value problem (32), (34)1, and (38)1. Indeed,
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in view of the a priori estimate (48), it is easy to see that the
L2((0,T) × O-limit function ρε∗ belongs to the space W and
satisfies conditions:

f1
(
ρεk
)
−→ f1

(
ρε∗
)
, in L2(0,T ;L2(O)

)
as k −→ ∞,

(
ρεk
)

x
⇀

(
ρε∗
)
x, in L2(0,T ;L2(O)

)
as k −→ ∞,

(
ρεk
)

t
⇀

(
ρε∗
)
t, in L2(0,T ;H−1(O)

)
as k −→ ∞,

ρεk, ρε∗ ∈ C
(
[0,T];L2(O)

)
, ρεk(0, x) = ρ0(x) in O,

∀k ∈ N.
(66)

This enables us to pass to the limit in the integral identity
(46) as k → ∞ with ρε = ρεk and v = vεk, and eo ipso to show
that the limit function ρε∗ is a weak solution to the parabolic
problem (32), (34)1, (38)1.

Thus, the pair (vε∗, ρε∗) is an admissible solution to the
perturbed optimization problem (32)–(38), (62). The proof
is complete.

In conclusion of this section, we prove that the penalized
problem (32)–(38), (62) has a nonempty set of optimal
solutions.

Theorem 19. Assume that supposition (A1) holds true. Then
for every ε > 0 and uε ∈ Uad there exists at least one pair
(vε0, ρε0) ∈ Ξε such that

Iε
(
vε0, ρε0

) = inf
(vε ,ρε) ∈Ξε

Iε
(
vε, ρε

)
, (67)

that is, the problem (32)–(38), (62) is solvable.

Proof. Since Ξε /=∅ and the cost functional Iε is bounded
below on Ξε, it follows that there exists a sequence
{(vεk, ρεk)}k∈ N ⊂ Ξε such that

Iε
(
vεk, ρεk

)
−→
k→∞

Imin
ε ≡ inf

(vε ,ρε)∈Ξε
Iε
(
vε, ρε

) ≥ 0, (68)

that is, {(vεk, ρεk)}k∈ N ⊂ Ξε is a minimizing sequence for the
problem (32)–(38), (62).

To begin with, we show that for any λ > 0 the set

Ξλε =
{(
vε, ρε

) ∈ Ξε : Iε
(
vε, ρε

) ≤ λ
}

(69)

is bounded in L2(0,T ; M(O)) ×W . Indeed, as follows from
inequality (68), the sequence of fictitious controls {vεk}k∈N
is bounded in L2(0,T ; M(O)). Hence, we may assume that

there exists an element vε0 ∈ Vad such that vεk
∗⇀ vε0 in

L2(0,T ; M(O)) as k → ∞, that is,

lim
k→∞

∫ T

0

〈
vεk(t, ·),ϕ

〉

M(O),C0(O)
ψ(t)dt

=
∫ T

0

〈
vε0(t, ·),ϕ

〉
M(O),C0(O)ψ(t)dt,

∀ϕ ∈ C0(O), ∀ψ ∈ C∞0 (0,T).

(70)

Then having used the a priori estimate (48), we see that
{ρεk = ρε(vεk)}k∈N form a uniformly bounded sequence in W .
Hence, we may again assume that, up to a subsequence, there
exists an element ρε0 ∈ W such that ρεk ⇀ ρε0 weakly in W
and strongly in L2((0,T) × O). As a result, (vε0, ρε0) ∈ Ξε by
Lemma 18.

Let us show that the τ-limit pair (vε0, ρε0) is an optimal
solution to the penalized problem (32)–(38), (62). Indeed,
taking into account supposition (A1) and Theorem 14, we
have
[(
f2
(
με
))

x − vεk
] ∗⇀

(
f2
(
με
))

x − vε0, in L2(0,T ; M(O)).

(71)

Using the property of lower semi-continuity for Iε with
respect to the τ-topology, we get

0 ≤ Iε
(
vε0, ρε0

) ≤ lim
k→∞

I
(
vε, ρε

) = Imin
ε . (72)

Thus the pair (uε0, ρε0) is optimal for the problem (32)–(38),
(62).

6. Approximation Properties of the Perturbed
Optimization Problem

The aim of this section is to study the asymptotic behavior of
the optimal solutions to the penalized optimization problem
(32)–(38), (62) as the small parameter ε tends to zero. To
begin with, we note that for every ε > 0 the set of admissible
solutions Ξε is embedded in the topological space (Y1, σ),
where

Y1 = L2(0,T ; M(O))× L2(0,T ;H−1(O)
)
, (73)

and σ is the product of the weak-∗ topology of
L2(0,T ; M(O)) and the strong topology of L2(0,T ;H−1(O)).
So, we can take σ as the main topology for the asymptotic
analysis.

Lemma 20. Let u∗ = ∑N
k=1 u

∗
k (t)δτk ∈ Uad a given source

term with prescribed location a < τ1 < . . . < τN < b. Let
{με}ε>0 be a sequence of corresponding weak solutions to the
initial boundary value problem (33), (34)2, (38)2 when the
small parameter ε > 0 varies in a strictly decreasing sequence
of positive numbers converging to 0. Let {(vε0, ρε0) ∈ Ξε}ε>0
be a sequence of optimal solutions to the penalized problem
(32)–(38), (62). Assume that the fictitious controls {vε0}ε>0 are
bounded in L2(0,T ; M(O)) and supposition (A1) holds true.
Then subsequences of {με}ε>0 and of {(vε0, ρε0)}ε>0, still denoted
by the suffix ε, can be extracted such that

(a) vε0
∗⇀ v∗ in L2(0,T ; M(O));

(b) ρε0 → ρ∗ and με → μ∗ weakly in L2((0,T) × O) and
strongly in L2(0,T ;H−1(O));

(c) (ρ∗,μ∗) is a weak solution in [L2((0,T) × O)]2 of the
Cauchy problem:

ρ∗t +
(
f1(ρ∗)

)
x = v∗, ρ∗(0, ·) = ρ0, (74)

μ∗t − μ∗x = u∗, μ∗(0, ·) = μ0. (75)
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Proof. As follows from the a priori estimates (50)-(51), the
sequences {ρε0}ε>0 and {με}ε>0 are bounded in

W1 =
{

y : y ∈ L2(0,T ;L2(O)
)
,
∂y

∂t
∈ L2(0,T ;H−1(O)

)
}

.

(76)

Hence the compactness properties (a)-(b) of the sequences
{vε0}ε>0, {ρε0}ε>0, and {με}ε>0 are a direct consequence of
the initial suppositions, the Banach-Alaoglu Theorem, and
the compactness embedding W1 ↪→ L2(0,T ;H−1(O)).
Moreover, as follows from estimates (48)-(49), the sequence
{(ρε0,με)}ε>0 is bounded in L2(0,T ;L2(O)). So, we can
suppose that

ρε0 −→ ρ∗, με −→ μ∗, as ε −→ 0 (77)

strongly in L2(0,T ;H−1(O)) and weakly in L2(0,T ;L2(O)).
In view of estimates (48)-(49), there are elements η, η̂ ∈
L2((0,T) × O) such that, up to subsequences, we have
√
ε
(
ρε0
)
x ⇀ η,

√
ε
(
με
)
x ⇀ η̂ in L2((0,T)×O),

as ε −→ 0.
(78)

In order to verify the item (c), we note that the integral
identity (46) leads us to the following relation:

∫ T

0

∫

O

[

−ρε0
∂ϕ

∂t
+
√
ε

(√
ε
∂ρε0
∂x

)
∂ϕ

∂x
− f1

(
ρε0
)∂ϕ

∂x

]

dx dt

=
∫ T

0

〈
vε0(t, ·),ϕ(t, ·)〉M(O),C0(O)dt,

(79)

which holds true for every ε > 0 and any test function ϕ ∈
C∞0 ((0,T)×O). Since vε0

∗⇀ v∗ in L2(0,T ; M(O)) as ε → 0,
we can pass to the limit in (79) using the property (77)1-
(78)1. As a result, we come to the relation

∫ T

0

∫

O

[

−ρ∗ ∂ϕ
∂t
− f1

(
ρ∗
)∂ϕ

∂x

]

dx dt

=
∫ T

0

〈
v∗(t, ·),ϕ(t, ·)〉M(O),C0(O)dt,

(80)

which gives us the weak formulation of the hyperbolic
conservation law (75)1. As for the initial condition (75)1, we
note that by continuity property (41) the following identity

lim
t→ 0+

1
t

∫ t

0

∣
∣
∣∣

∫

O

(
ρε0(s, ·)− ρ0

)
ψdx

∣
∣
∣∣ds = 0, ∀ψ ∈ C∞0 (O)

(81)

is valid for every ε > 0. So, we can pass to the limit in (81) as
ε → 0 using the weak convergence of ρε0 → ρ∗ in L2((0,T) ×
O). As a result, the initial condition for the limit function ρ∗

is satisfied in the following sense:

lim
t→ 0+

1
t

∫ t

0

∣∣
∣
∣

∫

O

(
ρ∗(s, ·)− ρ0

)
ψdx

∣∣
∣
∣ds = 0, ∀ψ ∈ C∞0 (O).

(82)

Thus, ρ∗ ∈ L2((0,T) × O) is a weak solution to the Cauchy
problem (74). By analogy, similar properties for the limit
function μ∗ can be proved. This concludes the proof.

The next result is crucial in this paper. We show that
approximately entropy weak solutions to the system of
nonlinear conservation laws with impulse controls can be
constructed by optimal solutions to the penalized problem
(32)–(38) and (62).

Theorem 21. Let u = ∑N
k=1 uk(t)δτk ∈ Uad be a given source

term with prescribed location a < τ1 < · · · < τN < b. Assume
that there exists a sequence of pairs {(v̂ε, ρ̂ε) ∈ Ξε}ε>0 satisfying
the following relation:

lim sup
ε→ 0

Iε
(
v̂ε, ρ̂ε

)
< +∞. (83)

Let {(vε0, ρε0) ∈ Ξε}ε>0 be a sequence of optimal solutions
to the penalized problem (32)–(38) and (62). Then, under
supposition (A1), for every σ-cluster point (v∗, ρ∗) ∈ Y1 of the
sequence {(vε0, ρε0) ∈ Ξε}ε>0 we has that the triplet (u∗, ρ∗,μ∗)
is an approximately entropy solution to the Cauchy problem
(14)–(16) in the domain (0,T) × O and the equality v∗ =
( f2(μ∗))x is valid almost everywhere in (0,T) × O. Here the
distribution μ∗ is defined by (75).

Remark 22. It is worth to notice that the existence of a
sequence {(v̂ε, ρ̂ε) ∈ Ξε}ε>0 satisfying relation (83) is rather
important for our further analysis and this assumption
is coming from the regularity property of the original
Cauchy problem (14)–(18). Here by the regularity of Cauchy
problem (14)–(18) we mean that this problem admits at least
one entropy solution. Since the existence of such solutions
is unknown in general, we must assume it. Only in this
case it has a sense to construct an approximation of entropy
solutions. So, for the regular Cauchy problem (14)–(18), the
sequence {(v̂ε, ρ̂ε) ∈ Ξε}ε>0 can be constructed as follows:
v̂ε = ( f2(με))x for all e > 0, and (ρε,με) is the corresponding
solution of the perturbed problem (32)–(37). As for the
general case, we demand the fulfilment of the condition (83).

Proof. As Lemma 20 indicates, the sequence {(με) ∈W1}ε>0
is relatively compact with respect to the strong conver-
gence in L2(0,T ;H−1(O)) and the weak convergence in
L2(0,T ;L2(O)). So, passing to a subsequence, when the
occasion requires, we get

με −→ μ∗, in L2(0,T ;H−1(O)
)
,

με ⇀ μ∗, in L2(0,T ;L2(O)
)
,

(84)

where μ∗ ∈ L2((0,T) × O) is a weak solution to the Cauchy
problem (75). For our further analysis we have to show that

(
f2(με)

)
x ⇀

(
f2(μ∗)

)
x, in L2(0,T ;H−1(O)

)
. (85)



10 Journal of Control Science and Engineering

Indeed, let ϕ ∈ C∞0 ((0,T) ×O) be a fixed test function. Then
the following estimate holds:

∣∣
∣
∣
∣

∫ T

0

∫

O
μεxϕ dx dt

∣∣
∣
∣
∣

=
∣∣
∣
∣∣

∫ T

0

∫

O

(
μεtϕ + μεxϕx − uϕ

)
dx dt

∣∣
∣
∣∣

≤
∫ T

0

(∣∣
∣
〈
μεt ,ϕ

〉
H−1(O),H1

0 (O)

∣∣
∣ +

√
ε
∫

O

∣
∣√εμεxϕx

∣
∣dx

+
∣∣
∣
〈
u,ϕ

〉
H−1(O),H1

0 (O)

∣∣
∣
)
dt

by (59),(61)≤
(
C + ‖u‖L2(0,T ;H−1(O))

)∥
∥ϕ
∥
∥
L2(0,T ;H1

0 (O)).

(86)

Hence the sequence {μεx}ε>0 is uniformly bounded in L2(0,T ;
H−1(O). Therefore, in view of (84), we can suppose that
μ∗x ∈ L2(0,T ;H−1(O)) and

μεx
∗⇀ μ∗x , in L2(0,T ;H−1(O)

)
. (87)

As a result, applying the arguments of Remark 17, we come
to the required conclusion (85).

Let {(v̂ε, ρ̂ε) ∈ Ξε}ε>0 be a sequence with property (83).
Then there exist a value ε0 > 0 and a constant c > 0
independent of ε such that the following inequality holds
true:

∥
∥vε0

∥
∥2
L2(0,T ;M(O)) + ε−1

∥
∥
∥
(
f2(με)

)
x − vε0

∥
∥
∥
L2(0,T ;H−1(O))

≤ Iε
(
v̂ε, ρ̂ε

) ≤ c, ∀ε ∈ (0, ε0).
(88)

Hence the sequence of optimal fictitious controls {vε0}ε>0
is bounded in L2(0,T ; M(O)). Therefore, by Lemma 20
the sequence of optimal pairs {(vε0, ρε0) ∈ Ξε}ε>0 is relatively
compact with respect to the σ-topology of L2(0,T ; M(O))×
L2(0,T ;H−1(O)). Moreover, every σ-cluster point (v∗, ρ∗) ∈
Y1 possesses the properties (a)–(c) of Lemma 20.

Further we note that the inequality (88) leads to the
estimate

0 ≤
∥
∥
∥
(
f2(με)

)
x − vε0

∥
∥
∥
L2(0,T ;H−1(O))

≤ εc, ∀ε ∈ (0, ε0).

(89)

Since ( f2(με))x − vε0 ⇀ ( f2(μ∗))x − v∗ in L2(0,T ;H−1(O))

(see (85)), vε0
∗⇀ v∗ in L2(0,T ; M(O)), and M(O) ⊂

H−1(O), we can pass to the limit in (89) as ε → 0. Then,
in view of the lower semicontinuity property, we obtain

0 ≤
∥∥
∥
(
f2(μ∗)

)
x − v∗

∥∥
∥
L2(0,T ;H−1(O))

≤ lim inf
ε→ 0

∥
∥∥
(
f2(με)

)
x − vε0

∥
∥∥
L2(0,T ;H−1(O))

≤ 0.
(90)

Since this is equivalent to the equality v∗ = ( f2(μ∗))x almost
every where in (0,T) × Ω, by Lemma 15 it follows that the
pair (ρ∗,μ∗) is an approximately entropy solution to the
initial-boundary value problem (32)–(38). This concludes
the proof.

7. Conclusion

In this article, we have proposed the approximation of
entropy solutions for the system of two hyperbolic conser-
vation laws (14)–(16) with impulse source terms. We have
considered the case when influx-rates in the second equation
(15) take the form of impulse functions (17)-(18). Since
the existence of entropy solutions for Cauchy problem (14)–
(18) is not covered by the classical theory, we combine the
vanishing viscosity method and the so-called principle of fic-
titious controls in order to show that entropy solutions to the
original Cauchy problem can be approximated by optimal
solutions of special optimization problems. The main result
is given by Theorem 21, where we conclude that every σ-
cluster pair (v∗, ρ∗) ∈ Y1 of the sequence {(vε0, ρε0) ∈ Ξε}ε>0
of optimal solutions to the penalized problem (32)–(38),
(62) is an approximately entropy solution (u∗, ρ∗,μ∗) to the
Cauchy problem (14)–(16).
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