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A Variational Boundary
Element Formulation
for Shear-Deformable Plate
Bending Problems
This paper presents the derivation of a new boundary element formulation for plate bend-
ing problems. The Reissner’s plate bending theory is employed. Unlike the conventional
direct or indirect formulations, the proposed integral equation is based on minimizing
the relevant energy functional. In doing so, variational methods are used. A collocation
based series, similar to the one used in the indirect discrete boundary element method
(BEM), is used to remove domain integrals. Hence, a fully boundary integral equation is
formulated. The main advantage of the proposed formulation is production of a symmetric
stiffness matrix similar to that obtained in the finite element method. Numerical examples
are presented to demonstrate the accuracy and the validity of the proposed formulation.
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1 Introduction

Integral forms in solid mechanics could be categorized into
three main categories:

(1) Integral forms based on superposition: In such forms, the
effect of several sources (represented by the fundamental
solution, single or double-layer potentials) is computed at a
series of field points by means of collocation. The indirect
boundary element methods [1] or its discrete version (the
method of the fundamental solutions, see, for example,
Antes [2] and Cho et al. [3]) is a direct implementation of
such forms. Higher order derivatives of these integral forms
could be found in the literature under the name of dipole
formulation as reported by Fam and Rashed [4] for poten-
tial problems and by Mohareb and Rashed [5] for Reiss-
ner’s plates. A continuous collocation version of such
integral forms was presented by Mitic and Rashed [6] and
Fam and Rashed [7]. A version of this integral form could
be formulated based on the displacement discontinuity as in
the textbook of Crouch and Starfield [8]. Other alternative
indirect boundary element formulations based on similar in-
tegral forms could be found in Patton and Perlin [9] and
Tran-Cong et al. [10]. It has to be noted that it is difficult to
prove uniqueness and convergence of matrix equations gen-
erated from these integral forms, as generally speaking, the
number and places of potential sources are not unique for a
certain problem.

(2) Integral forms based on two states or the virtual work state-
ments: In such forms, a work statement is written between
two states, the actual problem state and a virtual state. In
the case of considering the direct boundary integral equa-
tions (see for example Ref. [11]), the considered virtual
state is the fundamental solution state. Higher derivative of
such integral forms are given in forms of traction integral
equations or the hyper-singular integral equations (Rashed
et al. [12,13]). The equivalency of the direct and the indi-

rect integral forms was considered by Brebbia and Butter-
field [14] and was written later in the textbook of Brebbia
and Walker [15]. The equivalency between the displace-
ment discontinuity method and the hyper-singular integral
equation form was reported by Kuhn et al. [16]. A continu-
ous collocation scheme could be used in these integral
forms to formulate the so-called Galerkin direct boundary
element (see, for example, Perez-Gavilan and Aliabadi
[17]). It has to be noted that several virtual cases could be
considered, and for each case the virtual work equation
could be written to generate the matrix equation [18]. The
number of the virtual states and places of the load points in
such states is not unique; therefore, it is also difficult to
prove the uniqueness and convergence for these integral
forms.

(3) Integral forms based on stationary conditions of certain
functionals (see, for example, Reddy [19]). In solid
mechanics, in particular, one of these functionals is the
potential energy functional. Several other functionals could
be considered, such as the Reissner functional and the Hu
functional [20]. Most of finite element formulations are
based on these integral forms [19]. Some boundary element
formulations are based on such functionals. For example,
potential and elasticity problems were reported by DeFi-
gueiredo [21], Dumont [22,23] and Liu et al. [24]. The only
relevant boundary element textbook that considered such
formulations is the book of Gaul et al. [25]. The main
advantage of such boundary element formulations is they
produce symmetric and positive definite stiffness matrices.
Moreover, uniqueness and convergence proofs could be
justified in terms of energy [26].

A complete description of the historical developments of most
of these formulations is given by Cheng and Cheng [27]. Concern-
ing the application of the BEM for thick plate bending problems,
the direct boundary element formulation was originally developed
by Vander Weeën [28]. Hence, several applications were consid-
ered based on this theory; for example, Barcellos and Silva [29]
extended the formulation to Mindlin plates. El-Zafrany et al. [30]
divided the formulation into kernels for thin and others for thick
plates. Ribeiro and Venturini [31] discussed the application of
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elastoplastic analysis to the direct formulation. Westphal et al.
[32] studied the fundamental solution used in plates. Marczak and
Creus [33] considered the evaluation of singular integrals in the
direct integral equation formulation. Fernandes and Konda [34]
coupled the formulation with beams. To the authors’ best knowl-
edge, none of these formulations considered a variational bound-
ary integral formulation for the thick Reissner’s plate bending.

In this paper, a new variational boundary element formulation
for the Reissner plate bending problems is derived based on mini-
mizing the relevant energy functional. A collocation based series
is used to remove involved domain integrals. Numerical examples
are presented to demonstrate the accuracy and the validity of the
proposed formulation. This formulation could be used to develop
boundary element based super finite elements; it also could be
linked to finite elements in a straightforward way.

2 Basic Equations

In this section, the basic equations of the Reissner plate bending
theory are reviewed. Throughout this paper, the indicial notation
is used. Greek indices vary from 1 to 2, whereas Roman indices
vary from 1 to 3. The comma subscript is used to denote differen-
tiation; for example, (�),a stands for the derivative of (�) with
respect to the coordinate (xa(x)) in which (x) is a general point.
Consider an arbitrary plate of thickness (h) has a domain (X) and
boundary (C) in the (xi) space. The (x1-x2) plane is assumed to be
located at the middle surface where (x3¼ 0). The notation
C x;::::ð Þ denotes the boundary C that contain points x;::::ð Þ; simi-
lar notation is also applicable for the domain (X). Part of this
boundary is CP xð Þ, at which traction is prescribed. The general-
ized strain-displacement relationships are [35,36]

vab yð Þ ¼ 1

2
ua;b yð Þ þ ub;a yð Þ
� �

(1)

w3a yð Þ ¼ ua yð Þ þ u3;a yð Þ (2)

where vab yð Þ;wa yð Þare the flexure and the transverse shear strains
at a point (y 2 X), respectively. The generalized stress resultants-
strains relationships are [35,36]

Mab yð Þ ¼ D 1� vð Þ vab yð Þ þ v

1� v
vcc yð Þdab

� �
þ vb3 yð Þ

1� vð Þk2
dab

(3)

Q3a yð Þ ¼ D
1� v

2
k2w3a yð Þ (4)

where Mab yð Þ;Q3a yð Þ are the bending and shear stress resultants,
respectively, D ¼ Eh3=12 1� v2ð Þ

� �
is the plate flexural rigidity,

(E) is Young’s modulus, vð Þ is Poisson’s ratio, k ¼
ffiffiffiffiffi
10
p

=h
� �

is the
shear factor [36], and b3 yð Þ is the distributed load per unit area
applied perpendicular to the plate domain. Without losing the gen-
erality, throughout this paper, b3 yð Þ is assumed constant. The
equilibrium equations are obtained by considering the equilibrium
of a differential plate element [35], to give

Mab;b yð Þ � Q3a yð Þ þ ba yð Þ ¼ 0 (5)

Q3a;a yð Þ þ b3 yð Þ ¼ 0 (6)

where ba yð Þ is the rotational body loads defined at a domain point
(y) in the direction x1(y) and x2(y).

The generalized Cauchy equations for boundary tractions are
[35]

pa xð Þ ¼ Mab xð Þnb xð Þ (7)

p3 xð Þ ¼ Q3b xð Þnb xð Þ (8)

where nb xð Þ are the components of the outward normal vector to
the plate boundary Cð Þ at point x 2 Cð Þ The fundamental solu-
tions, due to unit load at point (n) (the source point), are originally
obtained by Vander Weeën [28] and listed in the Appendix for the
sake of completeness.

3 Equivalency Between the Stationary Conditions

of the Energy Functional and the Governing Partial

Differential Equations

The purpose of this section is to demonstrate the equivalency
between the stationary conditions for the potential energy func-
tional and the governing partial differential equation (recall Eqs.
(5) and (6)). This is mainly done in order to derive the proposed
boundary integral equations in Sec. 5 based on such a functional.

The energy functional for the Reissner’s plate bending prob-
lems could be obtained as follows [20]:

P ua yð Þ; u3 yð Þð Þ

¼
ð

X yð Þ

1

2
Mab yð Þvab yð Þ þ Q3a yð Þw3a yð Þ
� �

dX yð Þ

�
ð

X yð Þ
ba yð Þua yð Þ þ b3 yð Þu3 yð Þð ÞdX yð Þ

�
ð

CP xð Þ
�pa xð Þ~ua xð Þ þ �p3 xð Þ~u3 xð Þð ÞdC xð Þ (9)

with the following subsidiary compatibility conditions:

ua xð Þ ¼ ~ua xð Þ on C xð Þ (10)

u3 xð Þ ¼ ~u3 xð Þ on C xð Þ (11)

and boundary conditions:

~ua xð Þ ¼ �ua xð Þ on Cu xð Þ (12)

~u3 xð Þ ¼ �u3 xð Þ on Cu xð Þ (13)

where

ua yð Þ : is the rotations at a domain point (y) in the directions
x1(y) and x2(y)

u3 yð Þ : is the deflection at a domain point (y) in the direction
x3(y)

pa yð Þ : is the moment tractions at a domain point (y) in the
directions x1(y) and x2(y)

p3 yð Þ : is the shear traction at a domain point (y) in the direc-
tion x3(y)

~ua xð Þ : is the rotations defined at a boundary point (x) in the
directions x1(x) and x2(x)

~u3 xð Þ : is the deflection defined at a boundary point (x) in the
direction x3(x)

~pa xð Þ : is the moment tractions defined at a boundary point (x)
in the directions x1(x) and x2(x)

~p3 xð Þ : is the shear traction defined at a boundary point (x) in
the direction x3(x)

�pa xð Þ : is the prescribed values of moment tractions defined at
boundary point (x) on part of the boundary C(P), in the
directions x1 (x) and x2 (x)

�p3 xð Þ : is the prescribed value of shear traction defined at a
boundary point (x on part of the (x) C(P), in the direction x3

(x), and
b3 yð Þ : is the body load defined at a domain point (y) in the

direction x3 (y)

Combining the boundary conditions in Eqs. (10) and (11) with
the energy functional in Eq. (9) using a set of Lagrange multi-
pliers ka xð Þ; k3 xð Þ, the following new functional is formed:
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P2 ua yð Þ; u3 yð Þ; ~ua xð Þ; ~u3 xð Þ; ka xð Þ; k3 xð Þð Þ

¼
ð

X yð Þ

1

2
Mab yð Þvab yð Þ þ Q3a yð Þw3a yð Þ
� �

dX yð Þ

�
ð

X yð Þ
ba yð Þua yð Þ þ b3 yð Þu3 xð Þð ÞdX yð Þ

�
ð

Cp xð Þ
�pa xð Þ~ua xð Þ þ �p3 xð Þ~u3 xð Þð ÞdC xð Þ

þ
ð

C xð Þ
ka xð Þ ~ua xð Þ � ua xð Þð ÞdC xð Þ

þ
ð

C xð Þ
k3 xð Þ ~u3 xð Þ � u3 xð Þð ÞdC xð Þ (14)

with the following admissible boundary conditions:

~ua xð Þ ¼ �ua xð Þ on Cu xð Þ (15)

~u3 xð Þ ¼ �u3 xð Þ on Cu xð Þ (16)

Consider the following relationships:

dMab yð Þvab yð Þ ¼ Mab yð Þdvab yð Þ (17)

and

dQ3a yð Þwa yð Þ ¼ Q3a yð Þdwa yð Þ (18)

where d �ð Þ denotes the first variational operator [20]. Substituting
Eq. (1) into Eq. (17), gives

Mab yð Þdvab yð Þ ¼ 1

2
Mab yð Þd ua;b yð Þþub;a yð Þ

� �
(19)

and considering the symmetry of moment tensor, then Eq. (19)
could be rewritten as follows:

Mab yð Þdvab yð Þ ¼ Mab yð Þdua;b yð Þ (20)

From variational calculus, the operator d can be swapped with the
derivative operator; hence Eq. (20) could be rewritten as follows:

Mab yð Þdvab yð Þ ¼ Mab yð Þ @

@xb yð Þ dua yð Þ (21)

In a similar way to moments, substituting Eq. (2) into Eq. (18),
gives

Q3a yð Þdw3a yð Þ ¼ Q3a yð Þd ua yð Þþu3;a yð Þ
� �

(22)

and, hence,

Q3a yð Þd ua yð Þ þ u3;a yð Þ
� �

¼ Q3a yð Þdua yð Þ

þ Q3a yð Þ @

@xb yð Þ du3 yð Þ (23)

Substituting Eqs. (21) and (23) into the first variation of Eq. (14) gives

dP2 ua yð Þ; u3 yð Þ; ~ua xð Þ; ~u3 xð Þ; ka xð Þ; k3 xð Þð Þ

¼
ð

X yð Þ
Mab yð Þ @

@xb
dua yð ÞdX yð Þ

þ
ð

X yð Þ
Q3a yð Þ @

@xb
du3 yð ÞdX yð Þ

�
ð

X yð Þ
ba yð Þdua yð Þ þ b3 yð Þdu3 yð Þ � Q3a yð Þdua yð Þð ÞdX yð Þ

þ
ð

CP xð Þ
ka xð Þ � �pa xð Þð Þd~ua xð ÞdC xð Þ

þ
ð

CP xð Þ
k3 xð Þ � �p3 xð Þð Þd~u3 xð ÞdC xð Þ

þ
ð

C xð Þ
dka xð Þ ~ua xð Þ � ua xð Þð ÞdC xð Þ

þ
ð

C xð Þ
dk3 xð Þ ~u3 xð Þ � u3 xð Þð ÞdC xð Þ

�
ð

C xð Þ
ka xð Þdua xð ÞdC xð Þ �

ð
C xð Þ

k3 xð Þdu3 xð ÞdC xð Þ (24)

The first two domain integral on the right hand side of Eq. (24)
could be converted into boundary integrals as follows [37]:ð

X yð Þ
Mab yð Þ @

@xb yð Þ dua yð ÞdX yð Þ

¼
ð

C yð Þ
Mab yð Þnb yð Þdua yð ÞdC yð Þ �

ð
X yð Þ

Mab;b yð Þdua yð ÞdX yð Þ

(25)

andð
X yð Þ

Q3a yð Þ @

@xb yð Þ du3 yð ÞdX yð Þ

¼
ð

C yð Þ
Q3a yð Þna yð Þdu3 yð ÞdC yð Þ �

ð
X yð Þ

Q3a;a yð Þdu3 yð ÞdX yð Þ

(26)

Substituting Eq. (7) into Eq. (25), the following integral form
could be obtained:ð

X yð Þ
Mab yð Þ @

@xb yð Þ dua yð ÞdX yð Þ

¼
ð

C yð Þ
pa yð Þdua yð ÞdC yð Þ �

ð
X yð Þ

Mab;b yð Þdua yð ÞdX yð Þ (27)

Substituting Eq. (8) into Eq. (26), the following integral form
could be also obtained:ð

X yð Þ
Q3a yð Þ @

@xb yð Þ du3 yð ÞdX yð Þ

¼
ð

C xð Þ
p3 yð Þdu3 yð ÞdC yð Þ �

ð
X yð Þ

Q3a;a yð Þdu3 yð ÞdX yð Þ (28)

Substituting Eqs. (27) and (28) into Eq. (24) and regrouping
terms, gives

dP2 ua yð Þ; u3 yð Þ; ~ua xð Þ; ~u3 xð Þ; ka xð Þ; k3 xð Þð Þ

¼
ð

C x;yð Þ
pa yð Þ � ka xð Þð Þdua yð ÞdC x; yð Þ

þ
ð

C x;yð Þ
p3 yð Þ � k3 xð Þð Þdu3 xð ÞdC x; yð Þ

þ
ð

CP xð Þ
ka xð Þ � �pa xð Þð Þd~ua xð ÞdC xð Þ

þ
ð

CP xð Þ
k3 xð Þ � �p3 xð Þð Þd~u3 xð ÞdC xð Þ

þ
ð

C xð Þ
dka xð Þ ~ua xð Þ � ua xð Þð ÞdC xð Þð Þ

þ
ð

C xð Þ
dk3 xð Þ ~u3 xð Þ � u3 xð Þð ÞdC xð Þð Þ

�
ð

X yð Þ
Mab;b yð Þ � Q3a yð Þ þ ba yð Þ
� �

dua yð ÞdX yð Þ

�
ð

X yð Þ
Q3a;a yð Þ þ b3 yð Þ
� �

du3 yð ÞdX yð Þ (29)
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The state of equilibrium is equivalent to the stationary condition
for the functional P2. This could be determined by setting the first
variation of P2 to zero (i.e., dP2 in Eq. (29) is set to zero), which
means

Mab;b yð Þ � Q3a yð Þ þ ba yð Þ ¼ 0 in X yð Þ (30)

Q3a;a yð Þ þ b3 yð Þ ¼ 0 in C yð Þ (31)

~ua xð Þ � ua xð Þ ¼ 0 in C xð Þ (32)

~u3 xð Þ � u3 xð Þ ¼ 0 in C xð Þ (33)

ka xð Þ � �pa xð Þ ¼ 0 in CP xð Þ (34)

k3 xð Þ � �p3 xð Þ ¼ 0 in CP xð Þ (35)

pa xð Þ � ka xð Þ ¼ 0 in C xð Þ (36)

p3 xð Þ � k3 xð Þ ¼ 0 in C xð Þ (37)

From Eqs. (34) and (35), it can be seen that ka xð Þ; k3 xð Þ represent
the traction on the boundary, i.e.,

ka xð Þ ¼ �pa xð Þ (38)

k3 xð Þ ¼ �p3 xð Þ (39)

It can be noted that Eqs. (30) and (31) are the same as Eqs. (5)
and (6); therefore, the stationary condition for the energy func-
tional in Eq. (9) is an integral form equivalent to the governing
partial differential equations. In what follows, the following nota-
tions are used:

�pa xð Þ ¼ ~pa xð Þ (40)

�p3 xð Þ ¼ ~p3 xð Þ (41)

Therefore,

ka xð Þ ¼ ~pa xð Þ (42)

k3 xð Þ ¼ ~p3 xð Þ (43)

4 The Proposed Variational Formulation

Substituting Eqs. (42) and (43) into Eq. (14) gives a functional
equivalent to the energy functional in Eqs. (9) or (14), as
follows:

P3 ua yð Þ; u3 yð Þ; ~ua xð Þ; ~u3 xð Þ; ~pa xð Þ; ~p3 xð Þð Þ

¼
ð

X yð Þ

1

2
Mab yð Þvab yð Þ þ Q3a yð Þw3a yð Þ
� �

dX yð Þ

�
ð

X yð Þ
ba yð Þua yð Þ þ b3 yð Þu3 yð Þð ÞdX yð Þ

�
ð

CP xð Þ
�pa xð Þ~ua xð Þ þ �p3 xð Þ~u3 xð Þð ÞdC xð Þ

þ
ð

C x;yð Þ
~pa xð Þ ~ua xð Þ � ua xð Þð ÞdC x; yð Þ

þ
ð

C x;yð Þ
~p3 xð Þ ~u3 xð Þ � u3 yð Þð ÞdC x; yð Þ (44)

From Eq. (1) and taking into consideration the symmetry of the
moment stress-resultant tensor, the following identity could be
obtained:

Mab yð Þvab yð Þ ¼ Mab yð Þua;b yð Þ (45)

and similarly for the shear stress-resultant tensor,

Q3a yð Þw3a yð Þ ¼ Q3a yð Þ ua yð Þ þ u3;a yð Þ
� �

(46)

Substituting Eqs. (45) and (46) into Eq. (44) gives

P3 ua yð Þ;u3 yð Þ;~ua xð Þ;~u3 xð Þ;~pa xð Þ;~p3 xð Þð Þ

¼
ð

X yð Þ

1

2
Mab yð Þua;bðyÞdX yð Þþ

ð
X yð Þ

1

2
Q3a yð Þ ua yð Þþu3;a yð Þ

� �
dX yð Þ

�
ð

X yð Þ
ba yð Þua yð Þþb3 yð Þu3 yð Þð ÞdX yð Þ

�
ð

CP xð Þ
�pa xð Þ~ua xð Þþ�p3 xð Þ~u3 xð Þð ÞdC xð Þ

þ
ð

C x;yð Þ
~pa xð Þ ~ua xð Þ�ua yð Þð ÞdC x;yð Þ

þ
ð

C x;yð Þ
~p3 xð Þ ~u3 xð Þ�u3 yð Þð ÞdC x;yð Þ (47)

The first two domain integrals on the right hand side of Eq. (47)
could be converted into boundary integrals, as follows [37]:ð

X yð Þ

1

2
Mab yð Þua;b yð ÞdX yð Þ ¼

ð
C yð Þ

1

2
Mab yð Þnb yð Þua yð ÞdC yð Þ

�
ð

X yð Þ

1

2
Mab;b yð Þua yð ÞdX yð Þ (48)

andð
X yð Þ

1

2
Q3a yð Þu3;a yð ÞdX yð Þ ¼

ð
C yð Þ

1

2
Q3a yð Þna yð Þu3 yð ÞdC yð Þ

�
ð

X yð Þ

1

2
Q3a;a yð Þu3 yð ÞdX yð Þ (49)

Substituting Eqs. (7) and (8) into Eqs. (48) and (49) gives

ð
X yð Þ

1

2
Mab yð Þua;b yð ÞdX yð Þ ¼

ð
C yð Þ

1

2
pa yð Þua yð ÞdC yð Þ

�
ð

X yð Þ

1

2
Mab;b yð Þua yð ÞdX yð Þ

(50)

and

ð
X yð Þ

1

2
Q3a yð Þu3;a yð ÞdX yð Þ ¼

ð
C yð Þ

1

2
p3 yð Þu3 yð ÞdC yð Þ

�
ð

X yð Þ

1

2
Q3a;a yð Þu3 yð ÞdX yð Þ (51)

Substituting Eqs. (50) and (51) into Eq. (47) gives

P3 ua xð Þ; u3 xð Þ; ~ua xð Þ; ~u3 xð Þ; ~pa xð Þ; ~p3 xð Þð Þ

¼
ð

C yð Þ

1

2
ui yð Þpi yð ÞdC yð Þ �

ð
X yð Þ

1

2
Mab;b yð Þua yð ÞdX yð Þ

�
ð

X yð Þ

1

2
Q3a;a yð Þu3 yð ÞdX yð Þ �

ð
X yð Þ

bi yð Þui yð ÞdX yð Þ

�
ð

Cp xð Þ
~ui xð Þ�pi xð ÞdC xð Þ þ

ð
C xð Þ

~pi xð Þ~ui xð ÞdC xð Þ

�
ð

C x;yð Þ
~pi xð Þui yð ÞdC x; yð Þ (52)

The first four integrals in Eq. (52) involve the domain varia-
blesui xð Þ; pi xð Þ. The following two integrals involve the boundary
variables ~pi xð Þ; ~ui xð Þ, and the last integral involves both the do-
main and boundary variables.
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5 The Proposed Boundary Element Model

In this section, a new variational boundary element formulation
for the Reissner plate bending model is obtained by representing
the three independent field variables ui ~; pi; ~ui via approximate
schemes. Hence variational principles are used to minimize the
functionalP3. The stationary condition (that corresponds to the
equilibrium condition) for such a functional represents an approxi-
mate integral equation of the problems.

5.1 Approximation of the Domain Variables. The purpose
of this section is to approximate the domain terms
(ui yð Þ;pi yð Þ in which y 2 X yð Þin the first four integrals in Eq.
(52). As in the indirect boundary element or the super-position
formulation for Reissner’s plate bending problems [5], the rotation
and the displacement components vector at any point (y) inside
the domain X could be approximated via a collection series. This
series contains the product of fundamental solution (U�ki y; nn

� �
)

and an unknown set of fictitious concentrated tractions (ck nnð Þ)
located at a set of arbitrary source points nnð Þ, as follows:

ui yð Þ¼ U�ki y; nn

� �
ck nnð Þ (53)

where the subscript (n) denotes an arbitrary set of source points
(its number could be taken later as the number of boundary nodes
N) in which the fictitious tractions are applied along the direction
(xk).

In a similar way, the traction components at any point (y) inside
the domain X could be approximated via a collection series con-
taining the products of fundamental solution P�kl y; nn

� �� �
and the

same unknown fictitious concentrated tractions (ck nnð Þ), which
are located at the same set of points nnð Þ, as follows:

pi yð Þ¼ P�ki y; nn

� �
ck nnð Þ (54)

Using the representation given in Eqs. (53) and (54), the first inte-
gral on the right hand side of Eq. (52) could be rewritten as
follows:ð

C yð Þ

1

2
ui yð Þpi yð ÞdC yð Þ

¼ 1

2
ck nnð Þ

ð
C yð Þ

U�ki y; nn

� �
P�mi y; nn

� �
dC yð Þ

" #
cm nnð Þ (55)

or in matrix formð
C yð Þ

1

2
ui yð Þpi yð ÞdC yð Þ ¼ 1

2
cf gT

1�3N F½ �3N�3N cf g3N�1 (56)

where

F½ �3N�3N¼
ð

C yð Þ
U�ki y; nn

� �
P�mi y; nn

� �
dC yð Þ (57)

in which (N) is the number of boundary points.
The second and third domain integrals on the right hand side of

Eq. (52) are set to zeros. This is done by making use of considered
approximations in Eqs. (53) and (54) and placing the source points
nnð Þ outside the plate boundary. Noting that in this case (recall

Eqs. (15) and (16), ba yð Þ ¼ d y; nn

� �
ea and b3 yð Þ ¼ d y; nn

� �
e3, in

which d y; nn

� �
is the Dirac d distribution and ei is a unit vector

along the xi direction; therefore,

ð
X yð Þ

1

2
Mab;b yð Þua yð ÞdX yð Þ ¼ 0 (58)

and

ð
X yð Þ

1

2
Q3a;a yð Þu3 yð ÞdX yð Þ ¼ 0 (59)

The last domain integral in Eq. (52) could be represented as
follows:

ð
X xð Þ

bi yð Þui yð ÞdX yð Þ ¼ ck nnð Þ
ð

X yð Þ
U�ki y; nn

� �
bi yð ÞdX yð Þ

" #

(60)

¼ cf gT
1�3N Bf g3N�1 (61)

where

Bf g3N�1¼
ð

X yð Þ
U�ki y; nn

� �
bi yð ÞdX yð Þ (62)

It has to be noted that the vector Bf g in Eq. (62) is similar to the
one that appears in the classical direct boundary element method
[18] and could be transformed to the boundary using similar ways
as those given by Rashed and Brebbia [37].

5.2 Approximation of the Boundary Variables. In this pa-
per, the boundary displacement and traction vectors denoted by
~uið Þ and ~pið Þare approximated using constant boundary elements;

therefore,

~ui xð Þ ¼ ui xeð Þ 8 x in Ce (63)

~pi xð Þ ¼ pi xeð Þ 8 x in Ce (64)

where ui xeð Þ and pi xeð Þ are vectors whose components are nodal
xeð Þ values for boundary displacements and boundary tractions,

respectively. It has to be noted that higher order boundary ele-
ments such as linear or quadratic elements could be used. How-
ever, the accuracy of constant elements, as it will be seen in the
example Sec. 8, is very good in most of the cases.

Using the representation given in Eqs. (63) and (64), the fifth
integral of Eq. (52) could be rewritten as follows:

ð
Cp xð Þ

~ui xð Þ�pi xð ÞdC xð Þ ¼
X

elements Ceð Þ
ui xeð Þ

ð
Ce xeð Þ

�pi xeð ÞdC xeð Þ

(65)

¼ uf gT
1�3N

�P
� �

3N�1
(66)

where

�P
� �

3N�1
¼
ð

Ce

�pidC xeð Þ (67)

in which (N) is the number of the used boundary elements. The
sixth integral of Eq. (52) could be rewritten as follows:

ð
C xð Þ

~pi xð Þ~ui xð ÞdC xð Þ ¼
X

elements Ceð Þ
pi xeð Þ

ð
Ce xeð Þ

dC xeð Þ
" #

ui xeð Þ

(68)

¼ pf gT
1�3N L½ �3N�3N uf g3N�1 (69)

where

L½ �3N�3N¼
ð

Ce

dC xeð Þ (70)
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The last integral of Eq. (52) could be approximated as follows:

ð
C xð Þ

~pi xð Þui xð ÞdC xð Þ

¼
X

elements Ceð Þ
pi xeð Þ

ð
Ce xeð Þ

U�ki xe; nnð ÞdC xeð Þ
" #

ck nnð Þ (71)

¼ pf gT
1�3N G½ �T3N�3N cf g3N�1 (72)

G½ �3N�3N¼
ð

C yð Þ
U�ki xe; nnð ÞdC yð Þ (73)

It has to be noted that the matrix G½ � in Eq. (73) is similar to the
one that appears in the classical direct boundary element method
[36].

6 Final System of Equations

Using the approximations in Eqs. (56), (58), (59), (61), (66),
(69), and (72), Eq. (52) could be rewritten as follows:

P3 ¼
1

2
cf gT

F½ � cf g

� uf gT �P
� �
þ pf gT

L½ � uf g � pf gT
G½ �T cf g � cf gT

Bf g
(74)

The final system of algebraic equations could be obtained by com-
puting the stationary conditions associate with P3 in Eq. (74). This
can be obtained by taking the first variation of Eq. (74) as follows:

dP3 ¼
1

2
dcf gT

F½ � cf g þ 1

2
cf gT

F½ � dcf g � duf gT �P
� �

þ dpf gT
L½ � uf g þ pf gT

L½ � duf g � dpf gT
G½ �T cf g

� pf gT
G½ �T dcf g � dcf gT

Bf g (75)

Rearranging Eq. (75) gives

dP3 ¼ dcf gT
�

F½ � cf g � G½ � pf g � Bf g
�

þ duf gT
L½ �T pf g � �pf g

� �
þ dpf gT

L½ � uf g � G½ �T cf g
� �

(76)

The functional P3 is stationary when its first variation dP3 van-
ishes for any arbitrary values of dc nnð Þ; du xð Þ and dp xð Þð Þ. There-
fore, the corresponding generalized Euler’s equations are

F½ � cf g � G½ � Pf g � Bf g ¼ 0 (77)

L½ �T pf g � �P
� �

¼ 0 (78)

L½ � uf g � G½ �T cf g ¼ 0 (79)

The unknown vectors cf g and Pf gare expressed in terms of the
vector Pf g to obtain a final system of equations involving only
the boundary unknown vector Pf g. Provided that the matrix G½ � is
not singular [36], Eq. (79) could be rewritten as follows:

cf g ¼ G½ �T
h i�1

L½ � uf g (80)

Substituting Eq. (80) into Eq. (77) gives

Pf g ¼ G½ ��1
F½ � G½ �T
h i�1

L½ � uf g � G½ ��1
Bf g (81)

Substituting Eq. (81) into Eq. (78) gives

L½ �T G½ ��1
F½ � G½ �T
h i�1

L½ � uf g � L½ �T G½ ��1
Bf g � �P

� �
¼ 0 (82)

Introducing the following definitions,

R½ � ¼ G½ �T
h i�1

L½ � (83)

and

R½ �T¼ L½ �T G½ ��1
(84)

hence, Eq. (82) could be rewritten as follows:

R½ �T F½ � R½ � uf g � R½ �T Bf g � �P
� �

¼ 0 (85)

Defining

K½ � ¼ R½ �T F½ � R½ � (86)

and

Qf g ¼ R½ �T Bf g þ �P
� �

(87)

hence, Eq. (85) could be rewritten as follows:

K½ �3N�3N uf g3N�1¼ Qf g3N�1 (88)

It has been noted that the obtained K½ � or the stiffness matrix is
symmetric, positive definite, and similar to the one obtained from
the finite element method [38]. The vectors uf g and Qf g are the
corresponding vectors of boundary displacements and forces.

7 Solution at Internal Points

After solving Eq. (88), the vector cf g is computed from Eq.
(80). Hence, the internal displacement vector at any point (y)
inside the domain Xð Þ is computed using Eq. (53) as follows:

ua yð Þ ¼ U�ka y; nn

� �
ck nnð Þ (89)

u3 yð Þ ¼ U�k3 y; nn

� �
ck nnð Þ (90)

Stress resultants at any point (y) inside the domain Xð Þ are com-
puted using Eqs. (3) and (4) after carrying out relevant derivatives
as follows:

ua;c yð Þ ¼ U�ka;c y; nn

� �
ck nnð Þ (91)

and

u3;c yð Þ ¼ U�k3;c y; nn

� �
ck nnð Þ (92)

Expanding the index (k) to (b) and (3) gives

ua;c yð Þ ¼ U�ba;c y; nn

� �
cb nnð Þ þ U�3a;c y; nn

� �
c3 nnð Þ (93)

and

u3;c yð Þ ¼ U�b3;c y; nn

� �
cb nnð Þ þ U�33;c y; nn

� �
c3 nnð Þ (94)

The new derivatives U�ab;c;U
�
3a;c;U

�
b3;c;U

�
33;c are given in the Ap-

pendix. It has to be noted that unlike the direct boundary element
method [28], all relevant derivatives herein are carried out with
respect to the coordinate of the field point xc yð Þ

� �
.
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8 Numerical Examples

In this section, four examples are presented to demonstrate the
accuracy and the validity of the proposed formulation. Constant
elements are used to approximate boundary values. The sources
points nnð Þ are chosen outside the plate boundary by a distance
equal to the boundary element length and changes according to
the used discretization. This is to avoid computing singular inte-
grals. The chosen number of source points is the same as the num-
ber of the used boundary elements. A fifth example is carried out
to study the effect of different locations of source points. It was
found that source locations do not greatly affect the solution accu-

racy as far as they are located in range between 0.50 to 1.50 of the
boundary element length.

8.1 Cantilever Plate Subjected to Edge Load. The 0.3 m
thickness plate shown in Fig. 1 is subjected to constant edge load
of intensity �6 t/m along its free edge. The Young’s modulus for
the plate material is E¼ 2.5� 107 t/m2 and Poisson’s ratiov is set
to zero to allow comparison against the analytical solutions of the
beam theory. The results for the generalized displacements at the
free edge middle point (A) are evaluated using different meshes
and presented in Table 1 together with analytical values and

Fig. 1 Cantilever plate subject to edge load

Table 1 Results of the generalized displacements at point (A)

u1(A) (analytical value¼ 1.92� 10�3 rad) u3(A) (analytical value¼ –7.68� 10�3 m)

n1� n2 Present Error Conventional Error Present Error Conventional. Error
mesh BEM % BEM [11] % BEM % BEM [11] %

1� 1 1.91336� 10�3 0.35 1.52811� 10�3 20.41 –7.58322� 10�3 1.26 –1.41511� 10�3 81.57
2� 2 1.91243� 10�3 0.39 1.56182� 10�3 18.66 –7.65727� 10�3 0.30 –3.41002� 10�3 55.60
3� 2 1.9179� 10�3 0.11 1.63808� 10�3 14.68 –7.67487� 10�3 0.07 –4.98529� 10�3 35.09
4� 4 1.91627� 10�3 0.19 1.59018� 10�3 17.18 –7.66863� 10�3 0.15 –6.02196� 10�3 21.59
5� 5 1.91567� 10�3 0.23 1.64894� 10�3 14.12 –7.67144� 10�3 0.11 –6.73783� 10�3 12.27
6� 5 1.91660� 10�3 0.18 1.72293� 10�3 10.26 –7.67622� 10�3 0.05 –7.18664� 10�3 6.42

Table 2 Results of the generalized displacements at point (B)

u1(B) (analytical value¼ 1.44� 10�3 rad) u3(B) (analytical value¼ –2.40� 10�3 m)

n1� n2 Present Error Conventional. Error Present Error Conventional. Error
mesh BEM % BEM [11] % BEM % BEM [11] %

1� 1 1.39831� 10�3 2.9 0.12244� 10�3 91.5 –2.33448� 10�3 2.73 –0.2427� 10�3 89.89
2� 2 1.43873� 10�3 0.09 1.57199� 10�3 9.17 –2.37845� 10�3 0.90 –1.21049� 10�3 49.56
3� 2 1.44045� 10�3 0.03 0.69934� 10�3 51.43 –2.39972� 10�3 0.01 –1.66951� 10�3 30.44
4� 4 1.43349� 10�3 0.45 1.55858� 10�3 8.23 –2.39643� 10�3 0.15 –1.97834� 10�3 17.57
5� 5 1.4342� 10�3 0.40 1.16345� 10�3 19.20 –2.39623� 10�3 0.16 –2.16139� 10�3 9.94
6� 5 1.43781� 10�3 0.15 1.52797� 10�3 6.11 –2.39829� 10�3 0.07 –2.28711� 10�3 4.70

Table 3 Results of the bending moment stress resultant at
point (B)

M11(B) (analytical value¼ 18 t�m/m)

n1� n2

mesh
Present
BEM

Error
%

Conventional
BEM [11]

Error
%

1� 1 18.71 3.94 2.04 88.67
2� 2 18.66 3.69 6.59 63.37
3� 2 17.68 1.75 11.38 36.79
4� 4 17.87 0.71 12.49 30.58
5� 5 18.11 0.63 18.15 0.86
6� 5 18.14 0.77 15.81 12.15

Table 4 Results of the shear stress resultant at point (B)

Q13(B) (analytical value¼ –6 t)

n1� n2

mesh
Present
BEM

Error
%

Conventional
BEM [11]

Error
%

1� 1 –3.71 38.12 3.14 152.35
2� 2 –6.96 15.97 –57.02 850.41
3� 2 –6.81 13.50 7.42 223.69
4� 4 –4.83 19.43 –42.33 605.57
5� 5 –5.06 15.60 9.70 261.72
6� 5 –6.55 9.23 –27.38 356.40

Journal of Applied Mechanics SEPTEMBER 2013, Vol. 80 / 051004-7

Downloaded From: https://appliedmechanics.asmedigitalcollection.asme.org on 06/28/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



results obtained from the conventional direct boundary element
method [11]. Results for the generalized displacements and
stresses results at internal point (B) are presented in Tables 2, 3,
and 4. The Error % presented in Tables 1–4 is computed as the
absolute value of (the numerical value – the analytical value)/ the
analytical value� 100%.

It can be seen from Tables 1 to 4 that results for the present
variational formulation is accurate with respect to the analytical
values even with coarse discretization. It has to be noted that,
despite the accuracy superiority of the present variational bound-
ary element over the conventional direct boundary element
method, values for shear forces might need the use of higher order
boundary elements, which will be considered as future work.

8.2 Cantilever Plate Subjected to Domain Load. The same
plate considered in the previous example is reconsidered herein.
In this example, the plate is loaded with uniform domain load of
intensity �2 t/m2. The results for the generalized displacements at
the free edge middle point (point (A)) are evaluated using differ-
ent meshes and presented in Table 5. Analytical values and values
computed based on the conversional direct boundary element
method [11] are also presented in Table 5. Results for the general-
ized displacements and stress resultants at internal point (B) are
presented in Tables 6–8.

Similar conclusions to those of the previous example could be
obtained from Tables 5–8.

8.3 Annular Thin Plate. The annular plate shown in Fig. 2
has an outer radius (a), inner radius (0.5 a), and thickness (0.02 a).
The Poisson’s ratio is taken to be 0.3. The inner boundary is sim-
ply supported and the outer one is free. The plate is loaded by
edge load (q) along its free outer boundary. The solution of this
plate using the convention direct boundary elements with constant
and quadratic elements is given by Rashed [11]. The present var-
iational boundary element results for the deflection at points (A)
and (B) and the shear forces at the support point (C) are presented
in Table 9. Such results are compared against the conventional

Table 5 Results of the generalized displacements at point (A)

u1(A) (analytical value¼ 1.28� 10�3 rad) u3(A) (analytical value¼ –5.76� 10�3 m)

n1� n2 Present Error Conventional Error Present Error Conventional Error
mesh BEM % BEM [11] % BEM % BEM [11] %

1� 1 1.26816� 10�3 0.93 1.01370� 10�3 20.81 –5.64952� 10�3 1.92 –1.00462� 10�3 82.56
2� 2 1.27143� 10�3 0.67 1.00632� 10�3 21.38 –5.73442� 10�3 0.44 –2.50394� 10�3 56.53
3� 2 1.2779� 10�3 0.16 1.06059� 10�3 17.14 –5.75549� 10�3 0.08 –3.67736� 10�3 36.16
4� 4 1.27632� 10�3 0.29 1.03202� 10�3 19.37 –5.74907� 10�3 0.19 –4.43966� 10�3 22.92
5� 5 1.27626� 10�3 0.29 1.07582� 10�3 15.95 –5.7522� 10�3 0.14 –4.97647� 10�3 13.60

Table 6 Results of the generalized displacements at point (B)

u1(B) (analytical value¼ 1.12� 10�3 rad) u3(B) (analytical value¼ –2.040� 10�3 m)

n1� n2 Present Error Conventional Error Present Error Conventional Error
mesh BEM % BEM [11] % BEM % BEM [11] %

1� 1 1.07725� 10�3 3.82 0.09471� 10�3 91.54 –1.93166� 10�3 5.31 –0.22147� 10�3 89.14
2� 2 1.11787� 10�3 0.19 1.19357� 10�3 6.57 –2.0178� 10�3 1.09 –0.96925� 10�3 52.49
3� 2 1.12031� 10�3 0.03 0.53248� 10�3 52.46 –2.04252� 10�3 0.12 –1.38588� 10�3 32.06
4� 4 1.11374� 10�3 0.56 1.18846� 10�3 6.11 –2.03938� 10�3 0.03 –1.64105� 10�3 19.56
5� 5 1.1145� 10�3 0.49 0.88918� 10�3 20.61 –2.03912� 10�3 0.04 –1.80521� 10�3 11.51
8� 5 1.14125� 10�3 1.9 1.20826� 10�3 7.88 –2.11183� 10�3 3.52 –2.14121� 10�3 4.96

Table 7 Results of the moment stress resultants at point (B)

M11(B) (analytical value¼ 9 t�m/m)

n1� n2 Present Error Conventional Error
mesh BEM % BEM [11] %

1� 1 10.87 20.82 0.84 90.66
2� 2 9.713 7.92 2.968 67.02
3� 2 8.700 3.33 5.319 40.90
4� 4 8.834 1.85 5.991 33.44
5� 5 9.144 1.60 8.877 1.36
8� 5 8.970 0.33 8.865 1.50

Table 8 Results of the shear stress resultant at point (B)

Q13(B) (analytical value¼ –6 t)

n1� n2

mesh
Present
BEM

Error
%

Conventional
BEM [11]

Error
%

1� 1 –3.81 36.54 2.12 135.28
2� 2 –6.89 14.83 –43.78 629.62
3� 2 –6.75 12.49 4.70 178.37
4� 4 –4.92 17.99 –32.58 443.07
5� 5 –5.14 14.37 6.00 199.92
8� 5 –5.88 2.07 –15.15 152.51

Fig. 2 Annular plate under edge load
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direct boundary element method results and analytical results in
the same Table 9.

It can be seen from Table 9 the accuracy superiority of the pres-
ent formulation results with constant elements even when com-
pared to the conventional direct formulation with quadratic
elements.

8.4 Assembled Plate Bending Problem. The former three
examples demonstrate the accuracy and the validity of the present

variational boundary element formulation. The purpose of this
example is to demonstrate the capability of the present formula-
tion in generating stiffness matrix, load vector, and carrying out
the solution procedure similar to those of the finite element
method [38]. The same plate in the first example is reconsidered
herein. In this example, the plate is subjected to a constant edge
load of �1 t/m at its free edge. The Young’s modulus for the ma-
terial is E¼ 2.21� 106 t/m2. The results are evaluated using two
ways. In the first way (way 1) the whole plate is considered as one
domain (similar solution to that of Sec. 8.1). The alternative way
(way 2) is to divide the plate into two subdomains (Part 1 and Part
2) as shown in Figure 3. The boundary element meshes used for
the two parts are presented in Figure 3. The degrees of freedom
associated with the discretization in Figure 3 is demonstrated in
Figure 4.

The stiffness matrix for each subdomain (super finite elements)
is computed from Eq. (86), and the associated traction vectors are
also computed. In a similar way to the well-known assembly pro-
cedure of the finite element method [38], the assembled stiffness
matrix and load vector for the two subdomains could be com-
puted. Hence, boundary conditions could be applied in a similar
way to the finite element procedures. Then the unknown boundary
displacements of each subdomain could be computed. The results
for the generalized displacements at the point (A) are computed
and listed in Table 9. Analytical values based on the beam theory
are also given in Table 10. Results for the generalized

Table 9 Results of the generalized displacements at points
(A), (B) and results of the shear stress resultant at point (C)

u3 Að Þ� 8D

qa3
u3 Bð Þ� 8D

qa3
Q Cð Þ��1

2q

Analytical values 3.0935 1.6106 1.0000

Present BEM 18 constant elements 3.0721 1.6190 0.9890
32 constant elements 3.0881 1.6129 1.0373
64 constant elements 3.0926 1.6115 1.0081

Conventional
direct. [11]

32 constant elements 2.6758 1.4608 1.0089
64 constant elements 2.9120 1.5347 1.0045

128 constant elements 3.0323 1.5840 1.0017
16 quadratic elements 3.0139 1.6395 0.9974
32 quadratic elements 3.0974 1.6131 0.9998

Fig. 3 The cantilever plate divided into two parts

Fig. 4 The considered degrees of freedom for each part

Table 10 Results of the generalized displacements at point (A)

u1(A) (analytical value¼ 3.62� 10�3 rad) u3(A) (analytical value¼ –1.45� 10�2 m)

Single domain
(2� 2 elements) way(1)

Error
%

Two sub
domains way(2)

Error
%

Single domain
(2� 2 elements) way(1)

Error
%

Two sub
domains way(2)

Error
%

3.606� 10�3 0.394 3.599� 10�3 0.576 –1.444� 10�2 0.296 –1.437� 10�2 0.755

Table 11 Results of the generalized displacements at point (B)

u1(A) (analytical value¼ 2.71� 10�3 rad) u3(B) (analytical value¼ –4.52� 10�3 m)

Single domain
(2� 2 elements) way(1)

Error
%

Two sub
domains way(1)

Error
%

Single domain
(2� 2 elements) way(1)

Error
%

Two sub
domains way(1)

Error
%

2.71� 10�3 0.116 2.70� 10�3 0.552 –4.48� 10�3 0.888 –4.49� 10�3 0.766
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displacements at the internal point (B) are presented in Table 11.
Shear and moment stress-resultants at the support point (C) are
presented in Table 12.

It has to be noted that the results for the assembled plate
(way 2) is a bit less accurate than those of the single domain plate
(way 1). This is predictable, because in the assembled plate (way
2), the values of generalized displacements and stress resultants
are forced to vary constantly along the connecting line (elements
9, 10). This is less accurate than (way 1), in which such values are
left to vary according to the governing partial differential equa-
tion. However, using the assembled plate solution (way 2) demon-
strates the capability of changing the thickness or/and material
properties for any of the plate subdomains. Moreover, the solution
using (way 2) is similar to the solution in the finite element
method. Therefore, this solution strategy (way 2) could be consid-
ered as a possible extension of the finite element method or an al-
ternative procedure to the subregion technique in the boundary
element method.

8.5 Effect of Source Point Location. The same plate consid-
ered in Sec. 8.2 is reconsidered herein. Two boundary discretiza-
tions were considered (1� 1) and (8� 5). The effect of source
point location is investigated. The source point location is varied
from 0.1 to 2 times the length of the used boundary element.

Figure 5 demonstrates the percentage error in the results of the
generalized displacements at point (A) by changing the source
point locations.

9 Conclusions

In this paper, a variational boundary element formulation of
Reissner’s plate bending problems was derived. The formulation
was based on minimizing the relevant energy functional. A collo-
cation based series is used to remove domain integrals. Hence, a
fully boundary integral equation is formulated. The formulation
was transformed into matrix equations using constant boundary
elements and was implemented into a computer code. Several
examples with different boundary conditions were tested. It was
demonstrated that the present formulation results were more accu-
rate compared to results obtained from the conventional direct
boundary elements, even with a fewer number of elements. In
addition, the present formulation produces a symmetric stiffness
matrix similar to that obtained from the finite element method.
Therefore, such formulation is very suitable to be coupled with
boundary and finite elements or to produce a new family of super
finite elements, which will be considered in future research.

Appendix

The expressions for the fundamental solution kernels U�ij are
[28]

U�ab ¼
1

8pD 1� vð Þ 8B krð Þ � 1� vð Þ 2 ln krð Þ � 1ð Þð ÞdabÞ
	

� 8A krð Þ þ 2 1� vð Þð Þr;ar;b� (A1)

U�a3 ¼ �U�3a ¼
1

8pD
2 ln krð Þ � 1ð Þrr;a (A2)

U�33 ¼
1

8pD 1� vð Þk2
1� vð Þ krð Þ2 ln krð Þ � 1ð Þ � 8 ln krð Þ

h i
(A3)

where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 xð Þ � x1 nð Þ½ �2þ x2 xð Þ � x2 nð Þ½ �2

q
(A4)

r;a ¼
@r

@xa xð Þ (A5)

A krð Þ ¼ K0 krð Þ þ 2 krð Þ�1
K1 krð Þ � krð Þ�1
h i

(A6)

B krð Þ ¼ K0 krð Þ þ krð Þ�1
K1 krð Þ � krð Þ�1
h i

(A7)

where K0, K1 are modified Bessel functions [39].
The expressions for the fundamental solution kernels P�ij are

[28]

P�ca ¼
�1

4pr
4A krð Þ þ 2K1 krð Þ þ 1� vð Þ dabr;n þ r;anc

� �	
þ 4A krð Þ þ 1� vð Þr;cna

�2 8A krð Þ þ 2 krð ÞK1 krð Þ þ 1� vð Þr;ar;cr;n



(A8)

P�c3 ¼
k2

2p
B krð Þnc � A krð Þr;cr;n
� �

(A9)

P�3a ¼
� 1� vð Þ

8p
2 1þ vð Þ

1� vð Þ ln krð Þ � 1

� �
na þ 2r;ar;n

� �
(A10)

P�33 ¼
�1

2pr
r;n (A11)

where

r;n ¼ r;ana (A12)

The expressions for the fundamental solution kernel derivatives
U�ij;k are

U�ba;c¼
1

8pD 1� vð Þ 8B;c krð Þ�2 1� vð Þ r;c
r

� �
dab�8A;c krð Þr;ar;b

n
� 8A krð Þþ2 1�vð Þ½ � dacr;bþdbcr;a�2r;ar;br;c

	 
o
(A13)

U�b3;c ¼ �U�3a;c ¼
1

8pD
2r;ar;c þ 2 ln krð Þ � 1ð Þdab
� �

(A14)

Table 12 Results of the shear and moment stress-resultants at point (C)

Q13(B) (analytical value¼ 1 t) M11(B) (analytical value¼ –6 t�m/m)

Single domain
(2� 2 elements) way(1)

Error
%

Two sub
domains way(1)

Error
%

Single domain
(2� 2 elements) way(1)

Error
%

Two sub
domains way(1)

Error
%

0.9982 0.1830 0.9981 0.1917 –5.9922 0.1308 –5.9743 0.4285

Fig. 5 Effect of source point location on results
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U�33;c ¼
1

8pD 1� vð Þ 1� vð Þ 2 ln krð Þ � 1ð Þ � 8

krð Þ2

 !
rr;c (A15)

where

A;c krð Þ ¼ �kr;cK1 krð Þ (A16)

B;c krð Þ ¼ �kr;c K0 krð Þ þ K1 krð Þ
kr

� �
(A17)
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