
Gossip Consensus and Averaging Algorithms with Quantization

Kai Cai and Hideaki Ishii

Abstract— We study distributed consensus problems of multi-
agent systems on directed networks and subject to quantized
information flow. For the communication among component
agents, particular attention is given to the gossip type, which
models their asynchronous behaviors; for quantization effects,
each agent’s state is abstracted to be an integer. The central
question investigated is how to design distributed algorithms
and what connectivity of networks that together lead to consen-
sus. This investigation is carried out for both general consensus
and average consensus; for each case, a class of algorithms is
proposed, under which a necessary and sufficient graphical
condition is derived to guarantee the corresponding consensus.
In particular, the obtained graphical condition ensuring average
consensus is weaker than those in the literature for either real-
valued or quantized states, in the sense that it does not require
symmetric (or balanced) network topologies.

Index Terms— Quantized consensus, average consensus, gos-
sip randomization.

I. INTRODUCTION

Distributed consensus problems of multi-agent systems are

of current research vitality in systems control. The problem

can be described as follows: Consider a system of networked

agents each possessing a numerical value, termed state; the

agents communicate only with their neighbors and update

their own states accordingly, in such a way that they even-

tually ‘agree’ on some common state. Such problems arise

naturally in motion coordination of multi-vehicle systems

[2], and are also closely related to oscillator synchronization

[16] and leader election [13]. In some other applications, the

average value of the total state sum may be of particular

interest; examples include information fusion in sensor net-

works and load balancing in processor networks [10]. Thus

being a special form of general consensus problems, average

consensus further requires that the agreed, common state be

the average of the initial states of all agents.

Substantial work on both general and average consensus

problems has been carried out in recent years, which may be

categorized in terms of distinct assumptions on state infor-

mation and network types. Early efforts focused primarily

on real-valued states and deterministic (but possibly time-

varying) networks; references include [2], [12], [15]. This ba-

sic setup has then been extended in two different directions.

One concerns quantized state information in deterministic

networks, due to practical considerations of agents’ physical

memories being of finite capacity and digital communication
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channels of limited data rate [5], [7], [14]. The other direction

adopts randomized time-varying networks with real-valued

states, a model that potentially captures a variety of random

behaviors exhibited in realistic networks [3], [17], [18]; see

also [8]. In the foregoing literature, particular attention has

been given to designing local control strategies for individual

agents, finding conditions on graphs/matrices that guarantee

consensus, and characterizing the tradeoffs between infor-

mation flow and system performance. For graph models, we

note that both directed and undirected (or bidirected) have

been extensively investigated.

The objective of this paper is to study both general and

average consensus problems in the setup where the states are

quantized and the networks are randomized. As to quantiza-

tion effects, following [10] we assume at the outset that the

states are integer-valued, an abstraction that subsumes a class

of quantization effects (e.g., uniform quantization). We note

that most work dealing with quantization has concentrated

on the scenario where the agents can transmit only quantized

(integer) values but store real values (see, e.g., [5], [6], [9],

[11]); by contrast, our assumption captures finite capacity

constraints in both communication channels and physical

memories, as in [10], [14]. On the other hand, for network

randomization we employ the gossip type [3], [6], [10].

This type specifies that, at each time instant, exactly one

agent updates its state based on the information transmit-

ted from only one of its neighbors. Although less general

than the random networks considered in [17], the gossip

type instead captures asynchronous behaviors of component

agents, a particularly important aspect in distributed systems.

In addition to the adopted setting for states and networks, we

focus solely on directed graphs, which is distinct from many

related works [6], [9]–[11], [18] that assume only undirected

graphs. As also argued in [15], directed networks potentially

require less amount of information flow and could perform

more robustly against link failures when compared to their

undirected counterparts.

We emphasize that the central investigation in this paper

is to derive connectivity conditions on graphs that ensure

general/average consensus. Our contributions are summa-

rized as follows. First, for general consensus we present a

necessary and sufficient condition on the network topology

that guarantees convergence to some common state, thereby

extending the results in [2], [12], [17] from real-valued to

quantized states. Second, for average consensus we propose

a novel class of algorithms and derive a necessary and suf-

ficient graphical condition ensuring convergence to the true

(quantized) average. This result extends the one in [10] from

undirected to directed graphs; the extension is challenging
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because with directed graphs of gossip type, the state sum,

and hence the average, need not be invariant at each iteration.

Also, the graphical condition we find is weaker than those

for both real-valued and quantized states in [5], [15], [17],

since we do not require maintaining symmetric (or balanced)

topologies in random time-varying networks. As a tradeoff,

however, the convergence rate of the proposed algorithm may

not be fast. Lastly, our result is scalable compared to [6], [7],

[14] in the sense that the true average is always achieved

regardless of the number of agents.

The rest of the paper is organized as follows. First, we

formulate both general and average consensus problems in

Section II, and then present their solutions in Sections III

and IV, respectively. Finally, we state our conclusion in

Section V.

II. PROBLEM FORMULATION

For a network of n (> 1) agents, we model their commu-

nication structure by directed graphs (or simply digraphs)

G = (V, E), called communication digraphs. Each node in

V = {1, ..., n} stands for an agent, and a directed edge (i, j)
in E ⊆ V × V , pointing from i to j, indicates that i is a

neighbor of j and thus j communicates to i. Notice that the

information flow over the edge (i, j) is only from j to i.
Owing to quantization in information flow, we assume that

at time k ∈ Z+ (nonnegative integers), each agent has an

integer-valued state xi(k) ∈ Z, i ∈ V; the aggregate state is

denoted by x(k) = [x1(k) · · ·xn(k)]T . Define the minimum

and maximum states by m(k) := mini∈V xi(k), M(k) :=
maxi∈V xi(k). We will design algorithms with which every

agent updates its state such that all xi(k) eventually converge

to a common value.

To address asynchronous communication between the

agents, we adopt the gossip type of randomized networks.

Specifically, at each time instant k exactly one edge, say

(i, j), is activated independently from all earlier instants

and with a positive probability pij ∈ (0, 1) such that
∑

(i,j)∈E
pij = 1. In other words, every edge in E has a

positive probability to be activated at each time, and these

probabilities sum to one. Along this activated edge, node j
sends information to i, while node i receives the information

and makes an update accordingly.

In the first part of this paper, we consider the general

consensus problem as described below. Let a subset C of

Z
n be the set of consensus states:

C := {x : x1 = · · · = xn}. (1)

Definition 1: The agents are said to achieve quantized

consensus almost surely if for every initial condition x(0),
x(k) → C as k → ∞ with probability one.

Problem 1: Design distributed algorithms and find graph-

ical connectivity such that the agents achieve quantized

consensus almost surely.

For this problem, in Section III we will propose a class of

algorithms, and derive a necessary and sufficient graphical

condition that ensures almost sure quantized consensus.

In the second part, we extend the above problem to

average consensus by further requiring that the consensus

value be the average of the initial state sum. Formally, let

S := x(0)T 1, where 1 = [1 · · · 1]T is the vector of 1s.

Hence the average of the initial states is S/n, a number that

need not be an integer in general. We can, however, always

write S = nL + R, where L and R are both integers with

0 ≤ R < n. Thus, either L or L + 1 (the latter if R > 0)

may be viewed as an integer approximation of the average

S/n. Henceforth we refer to x∗ := L1 or (L + 1)1 as the

true (quantized) average.

To ensure converging to the average, the algorithms re-

ported in the literature (e.g., [10], [15]) rely on a key

property that the state sum xT 1 remains invariant at each

iteration. Unfortunately, this property in general fails in our

gossip digraph setup where only one agent is allowed to

update its state at each time. To overcome this difficulty,

we propose associating to each agent an additional variable

to record the changes in individual states; then the agents

communicate these ‘records’ to their neighbors such that

this important information can be utilized for state updates.

We call these additional variables surpluses, and view them

as augmented state components. The rules of how to use

these surpluses mark the distinctive feature of our averaging

algorithm compared to those in the literature; the concrete

description is deferred to Section IV.

Formally, let the surplus of agent i at time k be si(k) ∈ Z;

thus the aggregate surplus is s(k) = [s1(k) · · · sn(k)]T ,

the initial value of which is set to be s(0) = [0 · · · 0]T .

As described, the surplus is introduced so as to make the

quantity (x+s)T 1 invariant during iterations, i.e., for k ≥ 0,

(x(k) + s(k))T 1 = (x(0) + s(0))T 1 = nL + R. (2)

Consequently, sT 1 = R (≥ 0) if x = L1, and R − n (< 0)

if x = (L + 1)1. Now define the set of average consensus

states, which is a subset A of Z
n × Z

n, by

A :=

{

AL, if R = 0;

AL ∪ AL+1, if 0 < R < n,
(3)

where

AL := {(x, s) : xi = L & si ≥ 0, i = 1, ..., n},

AL+1 := {(x, s) : xi = L + 1 & si ≤ 0, i = 1, ..., n}.

Definition 2: The agents are said to achieve quantized

average almost surely if for every initial condition (x(0), 0),
(x(k), s(k)) → A as k → ∞ with probability one.

Problem 2: Design distributed algorithms and find graph-

ical connectivity such that the agents achieve quantized

average almost surely.

To solve this problem, in Section IV we will propose a

novel class of algorithms, under which we derive a necessary

and sufficient graphical condition that guarantees almost sure

quantized average.

III. QUANTIZED CONSENSUS

In this section we solve Problem 1, the almost sure quan-

tized consensus. We start by presenting a class of algorithms,
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called quantized consensus (QC) algorithm. Then we provide

the convergence result under a certain graphical condition.

A. QC Algorithm

Here we present QC algorithm. Suppose the edge (i, j) ∈
E , i, j ∈ V , is activated at time k. Along the edge node j
sends to i its state information, xj(k), but does not perform

any update, i.e., xj(k+1) = xj(k). On the other hand, node

i receives j’s state xj(k) and updates its own as follows:

(R1) If xi(k) = xj(k), then xi(k + 1) = xi(k);
(R2) if xi(k) < xj(k), then xi(k + 1) ∈ (xi(k), xj(k)];
(R3) if xi(k) > xj(k), then xi(k + 1) ∈ [xj(k), xi(k)).

In words, node i stays put if its own state is the same as the

received one; otherwise, it updates the state in the direction

of diminishing the difference.

B. Convergence Result

First, we need to review some notions from standard graph

theory (e.g., [1]). In a digraph a node i is reachable from

a node j if there exists a path from j to i which respects

the direction of the edges. In particular, a node is reachable

from itself. A digraph is strongly connected if every node is

reachable from every other node. Now let G = (V, E) be a

digraph, and U a nonempty subset of V . The subset U is said

to be closed if every node v in V −U is not reachable from

any node u in U . Intuitively, there is no edge pointing out

from the subset U . Also, the digraph GU = (U , E∩(U×U)) is

called the induced subdigraph by U . A strong component of

G is a maximal induced subdigraph of G which is strongly

connected. Note that a maximal induced subdigraph need

not be unique in general. Lastly, a node v ∈ V is called a

globally reachable node if v is reachable from every other

node [12, p.15]. Clearly the digraph G is strongly connected

if and only if every node is globally reachable.

We present the main result of this section.

Theorem 1: Using QC algorithm, the agents achieve

quantized consensus almost surely if and only if their com-

munication digraph G has a globally reachable node.

It has been known (e.g., [12], [17]) that the existence

of a globally reachable node is a necessary and sufficient

graphical condition which ensures consensus in the case of

real-valued states. In this respect, Theorem 1 extends this

result to the setting where both stored and communicated

states are quantized.

Our analysis technique is a blend of graph-theoretic and

probabilistic arguments, which differs from the typical one

(e.g., [15], [17]) that exploits the spectral properties of

stochastic matrices associated to the graph structure. Indeed,

owning to our integer state setup, the overall system does not

enjoy a linear representation, and consequently the matrix

approach cannot be applied.

Also, notice that the rules (R2) and (R3) of QC algorithm

can be chosen so that the algorithm is similar to those for the

real-valued case. Hence, we conjecture that the convergence

rate of QC algorithm may be close to that of real-valued

algorithms. The rigorous analysis of this conjecture is left

open for future work.

To prove Theorem 1 we need a key lemma from [12, The-

orem 2.1], which establishes an important relation between

digraph connectivity and its structure.

Lemma 1: A digraph has a globally reachable node if and

only if it has a unique closed strong component. Further-

more, this unique closed strong component is the induced

subdigraph by the set of all globally reachable nodes.

Proof of Theorem 1: (Necessity) Suppose G does not have

a globally reachable node. By Lemma 1, G has at least two

distinct closed strong components, say V1 and V2. Consider

some initial condition x(0) such that all nodes in V1 have the

same state a ∈ Z and all nodes in V2 have b ∈ Z, but a 6= b.

Then the quantized consensus is achieved almost never (with

probability 0), for both V1 and V2 are closed.

(Sufficiency) Due to space limitation, we refer to [4]. ¥

IV. QUANTIZED AVERAGE

We move on to solve Problem 2, the quantized average

consensus, by appropriately extending QC algorithm. A

direct application of QC algorithm in general fails to ensure

convergence to the true average, because the state sum need

not be invariant at each iteration, hence causing the shift

of the average. To handle this average shift, we propose

associating to each agent an additional variable, termed

surplus. These surpluses are used to keep track of the state

changes of individual agents, so that the information of the

amount of average shift is not lost but kept locally in these

variables. Then the agents communicate the surpluses to their

neighbors for state updates in such a way that the average

of the initial states may be recovered. Furthermore, to assist

the use of surpluses, two more auxiliaries are needed, which

we call threshold and local extrema. We use these three

augmented elements to make the extension of QC algorithm.

In the sequel, we first present the extended algorithm,

called quantized average (QA) algorithm, and then provide

the convergence result under a certain graphical condition.

Further, we discuss suitable values for the threshold, and

demonstrate the result using two numerical examples.

A. QA Algorithm

First, we introduce the three augmented elements.

1. Surplus. Every agent is associated with a surplus

variable to record its state changes. Recall from Section II

that the surplus of agent i is denoted by si ∈ Z. Thus the

aggregate surplus is s = [s1 · · · sn]T ∈ Z
n, whose initial

value is set to be s(0) = [0 · · · 0]T . The rules of specifying

how these surpluses are updated locally and communicated

over the network form the core of QA algorithm.

2. Threshold. All agents have a common threshold number,

denoted by δ ∈ Z+. This (constant) number is involved in

deciding whether or not to update a state using available

surpluses. A proper value for the threshold will be found

crucial to ensure that the set A (defined in (3)) is the unique

equilibria set under QA algorithm. We shall determine the

range of such threshold values in Section IV-C. To keep the

presentation clear, in this section we fix δ = n, the total

number of agents in the network.
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3. Local extrema. Each agent i is further assigned two

variables, mi and Mi ∈ Z, to record respectively the minimal

and maximal states among itself and its neighbors. These

local extrema will be used to prevent a state, when updated

by available surpluses, from exceeding the interval of all

initial states (i.e., [m(0),M(0)]). As to the initial values of

local extrema, we set mi(0) = Mi(0) = xi(0), for each

i ∈ V. We will design updating rules for mi and Mi as part

of QA algorithm.

Thus, we have augmented the state of each agent i from

a single xi to a tuple of four elements (xi, si,mi,Mi). In

addition, a common threshold δ needs to be stored. It is

also worth noting that only xi and si will be involved in

communication.

We are now ready to present QA algorithm. Suppose that

edge (i, j) ∈ E , i, j ∈ V , is activated at time k. Along the

edge, node j sends to i its state information, xj(k), as well as

its surplus, sj(k). While it does not perform any update on its

state (nor on its local minimum and maximum), node j does

always set its surplus to be 0 after transmission, meaning that

the surpluses, if any, are entirely passed onto its neighbor i;
that is,

mj(k + 1) = mj(k), Mj(k + 1) = Mj(k),

xj(k + 1) = xj(k), sj(k + 1) = 0.

On the other hand, node i receives the information from j,

namely xj(k) and sj(k), and performs the following updates.

1. For local minimum and maximum,

mi(k + 1) = min{mi(k), xj(k)},

Mi(k + 1) = max{Mi(k), xj(k)}.

2. State and surplus are updated as follows:

(R1) If xi(k) = xj(k), then there are three cases:

(i) If si(k) + sj(k) ≥ δ and xi(k) 6= Mi(k), then

xi(k + 1) = xi(k) + 1,

si(k + 1) = si(k) + sj(k) − 1.

(ii) If si(k) + sj(k) ≤ −δ and xi(k) 6= mi(k), then

xi(k + 1) = xi(k) − 1,

si(k + 1) = si(k) + sj(k) + 1.

(iii) Otherwise (i.e., |si(k) + sj(k)| < δ or

si(k) + sj(k) ≥ δ & xi(k) = Mi(k) or

si(k) + sj(k) ≤ −δ & xi(k) = mi(k)),

xi(k + 1) = xi(k),

si(k + 1) = si(k) + sj(k).

(R2) If xi(k) < xj(k), then

xi(k + 1) ∈ (xi(k), xj(k)],

si(k + 1) = si(k) + sj(k) −
(

xi(k + 1) − xi(k)
)

.

(R3) If xi(k) > xj(k), then

xi(k + 1) ∈ [xj(k), xi(k)),

si(k + 1) = si(k) + sj(k) −
(

xi(k + 1) − xi(k)
)

.

1 2

3

e1

e2

e3e4

Fig. 1. Illustration of features of QA algorithm

In the algorithm, first observe that the surplus is updated

such that for every k ≥ 0, (x(k + 1) + s(k + 1))T 1 =
(x(k) + s(k))T 1 = x(0)T 1. That is, the quantity (x + s)T 1

stays invariant at each iteration, and thus equals the initial

state sum. Also, notice that the updates of state xi in (R2)

and (R3) are exactly the same as those in QC algorithm.

The difference, however, lies in (R1): Even when the state xi

coincides with xj , it is still updated if the sum of surpluses,

si + sj , exceeds the interval (−δ, δ); here this interval is

(−n, n). This is because, when the surpluses are more than

n (resp., less than −n), the true average must be at least xi+1
(resp., xi − 1). Indeed, these surpluses should be distributed

over the network such that every agent’s state increases by

at least 1 (resp., decreases by 1). An exception, however,

is when the state xi equals its local maximum (resp., local

minimum), since in that case, xi might undesirably exceed

the interval [m(0),M(0)]. We illustrate these features of QA

algorithm in the following example.

Example 1: Consider three agents with communication

network in Fig. 1. Let the initial condition be as follows:

agent i xi(0) si(0) mi(0) Mi(0)
1 0 0 0 0
2 3 0 3 3
3 3 0 3 3

Hence the true average is x∗ = 21. Suppose that at k = 0,

edge e1 is activated with a positive probability; then (R2) of

QA algorithm applies since x1(0) < x2(0). For the possible

update values (x1(0), x2(0)] we let x1(1) = x2(0); the

corresponding state change, x1(1) − x1(0), is recorded in

the surplus s1(1). Thus we obtain that

agent i xi(1) si(1) mi(1) Mi(1)
1 3 −3 0 3
2 3 0 3 3
3 3 0 3 3

Now the agents reach consensus at value 3. If QC algorithm

is used, then no further update will take place, and conse-

quently the true average cannot be achieved. However, that

agent 1 has surplus −3 (= −n) indicates that this amount

should be distributed among the three agents, thereby each

decreasing its state by 1. One way to distribute the surplus is

to select the edges e4, e2, and e3 sequentially; the probability

of this selection is positive. It can then be readily verified

that (R1)(ii), (R3), and again (R3) of QA algorithm will

sequentially apply, and that at k = 4 we have

agent i xi(4) si(4) mi(4) Mi(4)
1 2 0 0 3
2 2 0 2 3
3 2 0 2 3

Therefore, the true average is achieved, and there is no

further update because only (R1)(iii) will apply.
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B. Convergence Result

We present the main result of this section.

Theorem 2: Using QA algorithm, the agents achieve

quantized average almost surely if and only if their com-

munication digraph G is strongly connected.

First of all, Theorem 2 can be seen as an extension of the

main result in [10] from undirected to directed graphs. The

problem of achieving quantized average with directed graphs

is, however, more difficult than its undirected counterpart in

that the state sum need not be invariant at each iteration.

Our proposed QA algorithm handles this difficulty, by an

essential augment of surplus variables.

Second, without augmenting extra elements, it is well

known (e.g., [15], [17]) that a necessary and sufficient

graphical condition for average consensus is that the com-

munication digraph is both strongly connected and balanced

(or, equivalently, the system matrix is doubly stochastic). A

balanced digraph is one where every node has the same

number of incoming and outgoing edges. However, this

condition can be difficult to be maintained when the com-

munication is asynchronous. By contrast, our condition on

digraphs does not require the balanced property, since only

one edge is activated at a time. An exemplification was given

in Example 1, where the digraph that is strongly connected

but not balanced achieves average consensus.

Finally, we note that in some quantized consensus al-

gorithms (e.g., [6], [7], [14]), the agents converge to the

average with an error which could undesirably get large as

the number of agents increases. To address this unscalable

situation, several approaches are proposed using special

graph topologies [7], finer quantizers [14], and probabilistic

quantizers [6]. In contrast, our result ensures, for a general

(strongly connected) graph and a fixed (deterministic) quan-

tizer, that the quantized average is always achieved regardless

of the number of agents.

The foregoing merits, however, come with some costs

which are twofold: For one, the convergence rate of QA

algorithm is in general slower than QC algorithm due

to averaging. This requires additional processing based on

surpluses even after the agents achieve consensus (not at

the average). For the other, as to local memories each

agent needs to update, in addition to its state, another three

variables — surplus, local minimum, and local maximum —

and needs to store a constant threshold. The corresponding

updating computations are, however, purely local and fairly

simple. Moreover, each agent has to transmit surpluses, along

with its state, through communication channels, which could

double the network loads. Nevertheless, we can show that

Theorem 2 holds even if the surpluses are transmitted one

unit at each time; namely, the transmitted surpluses may take

values only from the set {−1, 0, 1}. Therefore, the additional

transmission of surpluses requires merely two bits increase

in communication.

We now provide the proof of Theorem 2.

Proof of Theorem 2: (Necessity) Suppose that G is not

strongly connected. Then at least one node of G is not

globally reachable. Let V∗
g denote the set of non-globally

0 (β̄ − 1)n Threshold

Invariant set

⌊n

2
⌋+1 n

· ·
·

· ·
·

L − ᾱ

L + β̄

L

L + 1

L − 1

L + 2

δ

Fig. 2. The relation between threshold values and the invariant set (β̄ > ᾱ).

reachable nodes; thus V∗
g 6= ∅, and write its cardinality

|V∗
g | = r, r ∈ V . If r = n, then G does not have a globally

reachable node. Thus similar to the proof of Theorem 1,

quantized average is achieved almost never. Now consider

the case r ∈ [1, n−1]. Let Vg := V−V∗
g denote the set of all

globally reachable nodes, and thus |Vg| = n− r. By Lemma

1, Vg is the unique closed strong component in G. Consider

some initial condition (x(0), 0) such that all nodes in Vg

have the same state a ∈ Z and the state sum of the nodes in

V∗
g is n+ ar. It can be readily checked that the total sum of

all initial states is (a + 1)n; hence, the quantized average is

a+1. However, no state or surplus update is possible for the

nodes in Vg for it is closed. Hence, the quantized average is

achieved almost never.

(Sufficiency) Due to space limitation, we refer to [4]. ¥

C. Threshold Range

So far, we have assumed the threshold δ to be the total

number n of agents in the network. If the agents’ commu-

nication digraph G is strongly connected, then Theorem 2

suggests that A (defined in (3)) is the unique invariant

set where all trajectories converge. Now we proceed to

investigate the systemic behavior when δ 6= n. In particular,

we aim at finding the range of threshold values necessary

and sufficient to ensure that A is the unique invariant

set to which all trajectories converge. This investigation is

important because if the threshold δ has to be exactly n in

order to guarantee average consensus, then QA algorithm

may not be robust in applications where some agents could

fail and/or new agents could join.

For this investigation we have the following result: The

range of suitable threshold values turns out to be
[

⌊n
2 ⌋+1, n

]

,

which is fairly large in practice.

Theorem 3: Suppose that QA algorithm is used and the

digraph G is strongly connected. Then A is the unique

invariant set to which all trajectories converge if and only

if the threshold δ ∈
[

⌊n
2 ⌋ + 1, n

]

.

For the proof, see [4].

Now let ᾱ := L − m(0) and β̄ := M(0) − L, where

m(0),M(0) are respectively the minimum and maximum

initial states. For α ∈ [1, ᾱ], β ∈ [2, β̄], define the following

subsets of Z
n × Z

n
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Fig. 3. Cyclic digraph of 30 agents
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Fig. 4. Complete digraph of 30 agents

AL−α := {(x, s) : xi = L − α & si ≥ 0, i = 1, ..., n},

AL+β := {(x, s) : xi = L + β & si ≤ 0, i = 1, ..., n}.

Then we obtain the general relation between threshold values

and the invariant set (as displayed in Fig. 2): For all pairs

(x(k), s(k)), (i) when the threshold is δ ∈
[

0, ⌊n
2 ⌋

]

, there

is no invariant set; (ii) when δ ∈
[

⌊n
2 ⌋ + 1, n

]

, A is the

unique invariant set; (iii) when δ ∈
[

n+1,∞
)

, the invariant

set expands as δ increases, but lower bounded by L − ᾱ and

upper bounded by L + β̄. The justification of this result can

be found in [4].

D. Numerical Examples

We present two numerical examples to demonstrate QA

algorithm. First, we consider a cyclic digraph of 30 agents,

whose states are randomly initialized from a uniform dis-

tribution on the interval [−10, 10]; we do the same for the

second example. In Fig. 3 we display the case where the

initial state sum is
∑30

i=1 xi(0) = 40, hence the true average

being either 1 or 2. The trajectories show that all states

converge to 1, and the corresponding total surplus settles at

10. Two immediate observations are respectively that it takes

rather long time to converge to the true average, and that

in the transient rather large surpluses are generated. These

phenomena may be together due to the limited choices for

inter-agent communications caused by the cyclic topology.

To obtain better performance in terms of convergence

time and transient surplus amount, we consider a com-

plete digraph of 30 agents. Fig. 4 exhibits the case where
∑30

i=1 xi(0) = −10, thus the true average being either 0 or

−1. The trajectories show that all states converge to 0, and

the corresponding total surplus settles at −10. Compared to

the cyclic case, the performance contrasts in convergence

time and surplus peak are noticeable, which indeed match

the intuition on the tradeoffs between communication costs

and achievable performances.

V. CONCLUSION

We have studied distributed consensus problems in the

setup where the states are quantized and the networks are

directed and randomized. Specifically, we have derived nec-

essary and sufficient graphical conditions that ensure general

and average consensus. In future work, we are interested in

analyzing the convergence rate of the proposed algorithms.

In addition, the issue of finding other faster consensus

algorithms deserves further investigation.
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