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Abstract

Commonly, post-processing techniques are employed to calibrate a model fore-

cast. Here, we present a probabilistic post-processor thatprovides calibrated prob-

ability and quantile forecasts of precipitation on the local scale. The forecasts are

based on large-scale circulation patterns of the 12h forecast from the NCEP High

Resolution Global Forecast System. The censored quantile regression is used to es-

timate selected quantiles of the precipitation amount and the probability of the oc-

currence of precipitation. The approach accounts for the mixed discrete-continuous

character of daily precipitation totals. The forecasts areverified using a new verifi-

cation score for quantile forecasts, namely the censored quantile verification (CQV)

score.

The forecast approach is as follows. First, a canonical correlation is employed

to correct systematic deviations in the GFS large-scale patterns compared to the

NCEP or ERA40 reanalysis. Secondly, the statistical quantile model between the

large-scale circulation and the local precipitation quantile is derived using NCEP

and ERA40 reanalysis data. Then, the statistical quantile model is applied to 12h

forecasts provided by the GFS forecast system. The probabilistic forecasts are re-

liable and the relative gain in performance of the quantile as well as the probability

forecasts compared to the climatological forecasts range between 20% and 50%.

The importance of the various parts of the post-processing are assessed, and the

performance is compared to forecasts based on the direct precipitation output from

the ECMWF forecast system.

1



1. Introduction

Quantitative forecasts of precipitation including its extremes are of high socio-economic

interest. Although present-day global weather forecast models provide reliable forecasts of the

atmospheric large-scale circulation, they cannot providerealistic descriptions of local weather

variability. This is due to the horizontally restricted resolution (30-100km at best for global

models), but also due to missing cloud dynamical and microphysical processes. For this reason,

a description and forecast of local weather phenomena and particularly extreme events can only

be achieved through a combination of dynamical and statistical analysis methods, where a stable

and significant statistical model based on a-priori physical reasoning establishes a-posterior a

calibrated model between the local condition and the large-scale circulation.

The perfect prog method (PP) (Klein 1971) and model output statistics (MOS) (Glahn and

Lowry 1972) have been successfully applied in numerical weather prediction to re-calibrate

the direct model output to local conditions. In contrast to MOS, PP ignores the model forecast

error, but has the advantage of available large data sets. Kalnay (2003) and Marzban et al. (2005)

discuss the pros and cons of both approaches. They propose a combination of PP and MOS,

which uses reanalysis for the development of the regressionequations and denote this approach

RAN as an acronym for reanalysis. MOS is generally based on multiple linear regression and

therefore applies to the post-processing and forecasting of expectation values. Other approaches

use statistical correction based on the analog method (Zorita and von Storch 1998; Hamill and

Whitaker 2006). Vislocky and Young (1989) used different PPmodels based on an analog

model and logistic regression as predictors in an MOS approach. Bremnes (2004) was the first

who applied quantile regression for precipitation forecasts in the context of numerical weather

prediction.

The stochastic character of weather requires a probabilistic treatment. Furthermore, proba-

bilistic forecasts provide a measure of uncertainty that might be important for decision makers.

Statistical post-processing of deterministic model forecasts should thus also provide probabilis-

tic forecast measures. Here, our focus is on daily precipitation totals. Of interest are e.g. the

probability of the occurrence of precipitation, and the expected amount. Particular attention is

also given to extreme precipitation events.

A complete probabilistic description of a variable is obtained by an estimate of the con-

ditional distribution function - conditional on the large-scale model forecast. However, there

is no general agreement that precipitation can be adequately modeled by a single parametric

distribution. Vrac and Naveau (2007) proposed a mixture of Gamma and Generalized Pareto
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distribution for modeling precipitation and combined thiswith a non-homogeneous stochastic

weather typing approach for statistical downscaling. Instead of a parametric estimate of the

conditional distribution function, the conditional distribution function can be estimated at given

values or thresholds. One possibility to do so is to use the logistic multiple regression (Hamill

et al. 2004), which gives an estimate of the conditional probability that an a-priori fixed thresh-

old is exceeded. This is a valuable approach for a-priori defined thresholds, particularly for the

zero precipitation threshold. Another approach would be toestimate the conditional quantile

function at a given probabilityτ . The method estimates the precipitation amount that is ex-

ceeded with a probability of1 − τ . In that case, there is no need to a-priori define thresholds

which could be very site- or user-specific, but representative quantiles such as the 0.5 quantile

(median), bounds for ”normal” conditions such as the 0.25 and 0.75 quantiles, and extreme

quantiles, e.g. the 0.05 and 0.95 quantiles can be used.

Here we demonstrate a probabilistic forecast approach thatderives such probabilistic mea-

sures from the output of a single deterministic model forecast. The probabilistic measures

are the probability of precipitation above zero, and the quantile function at given probabili-

ties τ . The method employs censored quantile regression (QR) (Koenker 2005; Powell 1986)

and logistic regression (Fahrmeir and Tutz 1994). Our statistical post-processing estimates the

probability of precipitation and selected quantiles conditional on the forecasts of the large-scale

circulation.

The forecast approach follows Friederichs and Hense (2007)(hereafter FH), who presented

a downscaling approach for daily station rainfall data using NCEP reanalysis data. Downscal-

ing, or more general statistical post-processing, seeks for a statistical model between the local

variable and the large-scale model output. In FH it is shown how the statistical post-processing

derives conditional quantiles of precipitation at one station given the large-scale circulation of

the NCEP reanalysis.

In this paper we will extend and modify the post-processing in several ways. The condi-

tional quantile model is trained on either the NCEP or the ERA40 reanalysis data, and then

applied to GFS model 12h forecasts. A canonical correlationanalysis (CCA) is used to correct

for systematic model forecast errors relative to the reanalysis in the large-scale circulation pat-

terns. As this approach uses reanalysis for the training of the probabilistic model, we denote

this approach RAN approach as in Marzban et al. (2005), although they use multiple linear

regression instead of CCA.

Forecast skill is assessed using the censored quantile verification (CQV) score (FH) and the
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Brier score. A skill score is defined with respect to a climatological forecast. The performance

of various approaches is compared. Those approaches are theRAN approach, a PP approach

where no calibration of the large-scale patterns is applied, a probabilistic MOS approach (P-

MOS), where the training of the statistical post-processing relies on 5 years of short-term GFS

model forecasts, and a downscaling (D) approach which is similar to the PP approach but uses

reanalysis instead of forecasts. The differences assess the role of the various steps in the RAN

post-processing. The results are also compared to a somewhat simpler approach that uses cal-

ibrated precipitation forecasts from the ECMWF direct model output. The comparison should

provide some reference skill in order to rank the skill obtained with the RAN approach. For

comparability, the calibration of the ECMWF direct model output again uses censored quantile

regression, but no information of the large scale circulation is included.

Section 2 shortly describes the censored quantile regression approach. For a detailed de-

scription the reader is referred to FH. Section 3 introducesthe data used in this study, and the

forecast approach is presented in section 4. Section 5 presents the results using NCEP and

ERA40 reanalysis, and compares the various alternative approaches. Section 6 concludes the

article. An appendix discusses in more detail the quantile regression and the QV score.

2. Censored quantile regression

Our forecast approach employs censored quantile regression. The concept of quantile re-

gression (QR) has been developed by Koenker and Bassett (1978) as a comprehensive strategy

in order to complete the regression picture. While standardregression estimates conditional

mean surfaces, QR gives conditional quantile estimates, and thus a more complete measure of

the conditional distribution particularly in the case of non-normality. The conditional quantile

model coefficients are estimated such that they minimize a loss function derived from the abso-

lute deviations (least absolute deviation (LAD) orL1 method) (Appendix A). This is equivalent

to the maximization of the likelihood function of the data, which can be formulated by in-

dependently distributed asymmetric Laplace densities (Yuand Moyeed 2001). In this section,

censored QR is introduced in a nutshell. For more insight seeFH, and references herein. A very

comprehensive description of quantile regression and related subjects is given in the monograph

by Koenker (2005). Calculations are performed using the R programming language (R Devel-

opment Core Team 2003).

In order to account for the mixed discrete-continuous character of daily precipitation totals,
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precipitation is represented by a so-called censored variable. Censoring is a term, that originates

from survival analysis. In the case of life data, the variable of interest is the time until failure. If

the failure occurs during the test period, the value is complete. However, if the test ends before

the failure has occurred, the value is incomplete and is saidto be censored. The censoring line

is the end time of the test period and represents an upper bound of observation, although the

underlying process has no upper bound.

In the case of precipitation we assume a hypothetic processY ∗ that is observed through the

amount of precipitationY . The zero precipitation line is assumed to represent a censoring line,

which acts as a lower bound of observation. The hypothetic process could well have values

below zero, although it is not observed through the observable ’precipitation’. Note that this is

a statistical construct and does not assume a real physical process.

Let Y be the univariate censored response variable (e.g., daily precipitation totals) andX

the conditioning multivariate variable. Then the statistical censored linear model is

Y |X = max(0, βT
X + γT

X ǫ), ǫ ∼ IID . (1)

The non-censored processY ∗ is modeled byY ∗|X = βT
X+γT

X ǫ, where~β are the unknown

regression coefficients of the model, and identical to~β in (1). The termγT
X u is an error

term that accounts for a linear dependency of the square rooterror variance on the covariateX

(heteroscedasticity). Censoring is applied using the maximum function by taking only values

of zero and above, so that censoring is expressed asY = max(0, Y ∗).

As far as the ordering of the data is not changed, or more general, for every non-decreasing

functionh, the equality

Qh(y∗)(τ |X) = h(Qy∗(τ |X)) (2)

holds. This property of the quantile function is used in censored quantile regression. The

conditional quantile functionQy(τ |X) at a probabilityτ is derived by

ŷτ = Q̂y(τ |X) = Q̂max(0,y∗)(τ |X) = max(Qy∗(τ |X)) = max(0, β̂T
τ X). (3)

The coefficientsβ̂τ are estimated by minimizing a piecewise linear censored least absolute

deviation function (LAD) (Powell 1986)

β̂τ = arg min
∑

n

ρτ [yn − max(0, βT
τ xn)], (4)

whereρτ (u) is the so-called check function, withρτ (u) = τu if u ≥ 0, andρτ (u) = (τ − 1)u

if u < 0. The indexn denotes the members of the training sample. More details on the quantile

function and its relation to the optimization problem are given in Appendix A.
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The minimization of (4) is much more complex than minimizingthe LAD function of the

non-censored QR model
∑

n ρτ [yn − βT
τ xn]. We thus use a 3-step approach following Cher-

nozhukov and Hong (2002) which is described in more detail inFH. This approach estimates

the non-censored QR model, but on a sub-sample for which the estimated conditional probabil-

ity of the occurrence of precipitation is larger than the respective probabilityτ . The procedure

is as follows. First, the probability of the occurrence of precipitationP (y > 0|X) is estimated

using a logistic regression (with a probit function). A sub-sample{yn} is selected defined by

{y|P (y > 0|X) > τ}. In a second step, theβτ coefficients are estimated minimizing the non-

censored LAD function over the sub-sample{yn}. A third step repeats the second step, but

now on an updated sub-sample{yn} defined by{y|β̂T
τ X > 0}. The coefficientsβτ are updated

minimizing the non-censored LAD function on the new sub-sample. Optionally, this step can

be repeated several times. Thus, besides the conditionalτ -quantile, the method also estimates

the probability of non-censoring, hence the conditional probability of precipitation above zero,

which is estimated in step one.

Additionally, the censored quantile regression naturallyprovides a scoring rule, the censored

quantile verification (CQV) score

CQV =
∑

n

ρτ [yn − max(0, β̂T
τ xn)], (5)

whereyn andxn, n = 1, . . . , N , are taken from the forecast and verification sample ofY and

X. Further explication on the separation of training and forecast samples is given in Section 4.

The CQV score is a proper scoring (Gneiting and Raftery 2007;Bröcker and Smith 2007),

which discourages hedging on the part of the forecaster (Murphy 1973). The CQV score is a

positive definite function, and its expected minimum is obtained if the forecasts correspond to

the conditionalτ -quantile (see Appendix A). Its expectation is zero only if the forecast is perfect

and the underlying process deterministic. In order to assess the relative gain in performance of a

forecast with respect to a reference forecast, we constructa skill score analogously to the Brier

skill score as

CQVSS(τ) = 1 −
CQV(τ)

CQVref(τ)
. (6)

The CQVSS can takes values on the half-open interval(−∞, 1]. A zero CQVSS indicates

no gain with respect to the reference forecast, while a valueof one indicates a perfect and

deterministic forecast. Likewise, the probability forecast of the occurrence of precipitation is

verified using the Brier skill score (Brier 1950). Note that the CQVSS as well as the Brier skill

score are only asymptotically proper for very large samples(Murphy 1973).
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3. Data

A very common problem to model output statistic is the lack ofa sufficiently long and

homogeneous training data set. We have access to 5 years (2001-2005) of forecasts produced

for the 12h period after the 0000UTC initialization time from the NCEP High Resolution Global

Forecast System (GFS) (NOAA-EMC 2003). The data were archived at and kindly provided

by WetterOnline GmbH. The analysis (0h forecast) was not stored, so no analysis with the GFS

model are available. Three variables of the GFS forecasts are available over a region of1◦E-

20◦E and45◦N-59◦N over western Europe: precipitable water (PWat), relativevorticity (ζ850)

on the 850hPa pressure level, and vertical velocity (ω) on the 850hPa pressure level.

Our study aims at providing reliable forecasts of daily totals of precipitation at German

weather stations. The daily totals are measured from 7.30 GMT to 7.30 GMT of the next

day. The observational period thus starts 7.30 hours after the initialization of the model fore-

casts. Observations at German weather stations are provided by the German Weather Service

(DWD) within the priority project ’Quantitative precipitation forecasts’ of the German Research

Foundation. We have chosen 50 stations in the region of Rhineland-Palatinate, that are almost

complete for the forecast period from 2002 to 2005, and that have a sufficient data coverage

for the training period from 1958 to 2000. In order to accountfor seasonal non-stationarities,

the data are divided into a cold season, November to March (winter), and warm season, May to

September (summer).

The statistical post-processing is derived on the basis of reanalysis data, both from the NCEP

re-analysis project (Kalnay and et al. 1996) and ERA40 re-analysis project (Uppala and et

al. 2005). Unfortunately, no GFS precipitation forecasts are available. Instead, we used 5

years of the deterministic ECMWF precipitation forecasts (European Centre for Medium-Range

Weather Forecasts 2006) over Germany for the period from 2001 to 2005. The ECMWF forecast

system provides precipitation forecasts on a 0.4◦×0.4◦ horizontal grid. As a predictor we use the

6h-30h accumulated precipitation of the 0000UTC initial time forecast, which approximately

corresponds to the observational accumulation period. TheECMWF forecasts are intended to

provide some reference skill in order to rank the skill obtained with the RAN approach.

4. The forecast approach

Except when using ECMWF forecasts, the forecast approachesare based on a combined

phase state vector (XGFS, XRe) of ζ850, ω850, and PWat at grid points in the area of1◦E-20◦E
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and45◦N-59◦N. In order to give equal weight to the different meteorological variables, the time

series have to be weighted. This is done by multiplying each variable with the inverse of its

spatial mean temporal standard deviation, which is of order10−4s−1 for ζ850, 10−1 Pas−1 for

ω850, and50kg m−2 for PWat. The ECMWF state vectorXEC contains the total precipitation

amount at 4 neighboring grid points.

In order to assess the importance of the different parts in the post-processing, we apply

several approaches additional to the RAN approach. All approaches are summarized in Table

1. For the reason of comparability, the verification period always extends from 2002 to 2005.

The quantile forecasts are verified using the CQV and the Brier score. A skill score is derived

with respect to a climatological forecast. The climatological probability of precipitation and

the climatological quantiles are estimated from the forecast period from 2002 to 2005 for the

respective season. The climatology is estimated for each station separately, to avoid artificial

skill (Hamill and Juras 2007). The sampling error of the skill scores is estimated using the

bootstrap method (Efron and Tibshirani 1993).

a. The RAN approach

Our forecast approach follows the RAN approach of Marzban etal. (2005), i.e. it uses re-

analysis for the development of the censored QR model. The access to a large training data

base is important for the estimation of a stable QR model as shown in FH. The RAN fore-

cast approach is illustrated in Fig. 1. In a first step, a canonical correlation analysis (CCA)

is performed to derive patterns (denoted as canonical patterns) in the GFS forecasts and the

NCEP/ERA40 reanalysis with the maximum correlation. Priorto the CCA, a reduction of spa-

tial degrees of freedom is needed for the gridded data sets (NCEP reanalysis, ERA40 reanalysis,

GFS forecasts). This reduction is performed using a principal component analysis (Barnett and

Preisendorfer 1987). The CCA patterns are derived for the daily fields of the respective season

in the year 2001 (Fig. 1). The CCA model between the GFS forecasts and the reanalysis (Re)

reads as follows

U EReXRe = V EGFSXGFS + ǫCCA, (7)

whereXRe andXGFS are the gridded and scaled data of reanalysis and GFS forecasts, ERe

and EGFS are the matrices composed by empirical orthogonal functions, andEReXRe and

EGFSXGFS constitute the corresponding principal components (PCs) or new variables.ǫCCA

denotes the error term of the CCA model.U andV are matrices containing the canonical pattern

or transformations from the CCA. The transpose is denoted byT and matrices are bold. The
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estimateŝU, V̂, and ÊGFS are derived from the daily data of the year 2001, whereasÊRe is

derived from the reanalysis period 1948/1958-2001.

In a second step, the NCEP/ERA40 reanalysis of the period from 1948/1958 to 2000 are

projected onto the canonical patterns from step 1. This period serves as the training period

for the censored QR model between the projections of the NCEP/ERA40 reanalysis onto their

canonical patterns (U) and the DWD station precipitation totals at a selected station, notably

the estimation of the coefficientsβτ . The QR model reads

Y |XRe = max(0, βT
τ Û ÊReXRe + ǫτ ), (8)

whereǫτ accounts for the error in the QR model. The model coefficientsβτ are estimated using

data from the training period 1948/1958 to 2000.

The third step is the forecast step for the remaining period from 2002 to 2005. The forecast

first corrects for systematic errors in the large-scale variables in the GFS forecasts using the

CCA model. Then the censored QR model is applied to derive estimates of the conditional

τ -quantile of the station precipitationy. So the forecasts of the conditionalτ - quantiles of

precipitation are derived as

ŷτ = Q̂y(τ |XGFS) = max(0, β̂T
τ V̂ ÊGFSXGFS), (9)

for the remaining period from 2002 to 2005. The RAN approaches are denoted asRAN

ERA40/GFS and RAN NCEP/GFS. Note, that the CCA model avoids the interpolation of

the data onto a common grid.

b. The perfect prog approach

Here we want to assess the importance of the CCA correction. The reanalysis derived model

is directly applied to the GFS forecasts without the CCA step. As both, the ERA40 and the

NCEP grid, have lower resolution than the GFS forecasts, theGFS forecasts are interpolated

onto the respective reanalysis grid. The QR model is now trained between the first leading EOFs

of the reanalysis data and the DWD station precipitation. The forecasts are estimated through

ŷτ = max(0, β̂T
τ ÊReXGFS). (10)

Here, the systematic model and forecast errors are ignored (prefect prog), hence the approaches

are denoted asPP ERA40/GFSandPP NCEP GFS. Differences in skill are due to forecasts

errors as well as to systematic differences between reanalysis and interpolated GFS forecasts.
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c. The downscaling approach

Another approach is included that is obtained for downscaled precipitation using the NCEP

reanalysis. The approach is denoted asD NCEP. The training of the QR model is based on the

NCEP reanalysis from 1948-2001. The quantile estimates forthe period from 2002 to 2005 are

obtained from

ŷτ = max(0, β̂T
τ ÊReXRe). (11)

The differences in skill between RAN NCEP/GFS and D NCEP are mainly due to forecast

errors.

d. The P-MOS approach

In order to emphasize the benefit of the RAN approach we included a probabilistic MOS ap-

proach, where only the relatively short GFS forecasts are used for training the post-processing.

The training and verification only uses the GFS forecasts, and is denoted asP-MOS GFS. The

forecasts are derived using cross-validation, where one target season (NDJFM or MJJAS) is

withheld from the training data, and the forecast

ŷτ = max(0, β̂T
τ EGFSXGFS). (12)

is derived for each target season in the period from 2002 to 2005. The training data also include

the data from the year 2001.

e. Using precipitation (ECMWF) as predictor

This censored QR approach, denoted asDMO ECMWF , uses only precipitation forecasts.

As no GFS precipitation forecasts were available, we use theECMWF forecasts instead. This

approach assesses the skill obtained using direct precipitation forecasts. This approach is not

directly comparable with the GFS forecasts based on the large-scale information only, as it

introduces a new model with a higher resolution. Rather it should give some reference to rank

the obtained skill scores.

The covariate to derive the forecast is again a multivariatecovariate, however, it only con-

sists of forecasts of total precipitation at the four nearest grid points around the respective sta-

tion, therefore no reduction of degrees of freedom is needed. However, a simple calibration is

needed to derive probabilities and quantiles from the deterministic DMO, which are compara-

ble. As for the P-MOS GFS approach we use cross-validation for training and verification. The
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conditional quantiles of the target season are estimated as

ŷτ = max(0, β̂T
τ XEC). (13)

XEC now is a 5-dimensional vector containing the forecasts of total precipitation at the four

grid points nearest to the station location and the one.

5. Results

We first discuss the results obtained with the RAN post-processing. In order to present

meaningful results, the sensitivity of the quantile forecasts and the CQV skill scores to different

settings has to be assessed. First, the optimal number of EOFand canonical patterns that enter

the QR model has to be defined. It turned out that an optimal number of EOF is of the order of

12 to 14, and the QR model then gives best results with about the same number of CCA modes

(not shown). We have chosen 14 EOFs to represent the GFS forecasts and the NCEP/ERA40

reanalysis in the CCA model. All 14 CCA modes enter the QR model. Although the length of

the training period for the CCA correction is only one year, about 150 days for each season, it

turned out to suffice for our purpose. A longer period (2 seasons) for the CCA correction in turn

reduces the period for the verification and did not significantly increase the skill.

Figure 2 shows as an example the CQV skill scores for 4 stations in Rhineland-Palatinate,

Wachtberg-Berkum (50.62◦N, 7.13◦E, 220m), Schmelz-Hüttersdorf(49.42◦N, 6.83◦E, 223m),

Helmbach-Düttling (50.60◦N, 6.55◦E, 380m), and Hermeskeil (49.65◦N, 6.93◦E, 480m). Wachtberg-

Berkum (Helmbach-Düttling) represents the station with lowest, and Schmelz-Hüttersdorf (Her-

meskeil) with largest skill in winter (summer). Skill in winter is generally larger than in summer.

The Brier skill score ranges between 23% (19%) and 50% (40%) in winter (summer). The CQV

skill score is generally largest for the 0.9 or 0.95 quantileand is of the order of the Brier skill

score. The CQV skill score of the 0.99 quantile is smaller andhas a large uncertainty. Least

skill is obtained for the 0.25 quantile. However, this quantile lies only above the zero line, if

the probability of precipitation is above 0.75. The error bars given in Fig. 2 represent the 95%

confidence interval of the CQV skill score estimate derived by a bootstrap approach. No sig-

nificant differences exist between the forecasts that are derived either using ERA40 or NCEP

reanalysis.

Figure 2 also represents the CQV skill score obtained using the calibrated DMO ECMWF

forecasts. For all stations, the DMO ECMWF approaches outperforms the RAN approaches.

The CQV skill score reaches 70% (50%) for some stations in winter (summer). The sampling
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error of the CQV skill score is comparable to that of the RAN approaches. Further studies are

needed in order to assess whether the differences are due to the different model performance

(e.g. due to the higher horizontal resolution of the ECMWF forecasts), or the choice of the

covariates, or both.

In order to further verify the quantile forecasts, we investigated, whether the quantile fore-

casts are reliable, i.e. show systematic errors (Fig. 3). Ifa quantile forecast is reliable then

it is expected that a fractionτ of the observed precipitation values lies below the conditional

τ -quantiles. This fraction divided by the total number of observations is denoted as the empir-

ical probability. Note that the empirical probabilities can only be estimated for those forecasts,

where the conditional quantile forecast is above zero. If the quantile forecast is censored, which

means that it is set to zero, and the observation is also zero,then it is not possible to decide

whether it is below or above the quantile forecasts. Counting the zero quantile forecasts induces

an artificial bias to the reliability, which is particularlystrong for the lower quantiles, as they

are more often censored. The reliability of the censoring, i.e. the reliability of the categorical

forecast of precipitation above zero, should be assessed separately.

Fig. 3 compares the theoretical (horizontal lines) and the empirical probabilities (dots) of the

conditionalτ -quantile forecasts. The 95% sampling error intervals of the empirical probability

estimates are indicated by vertical lines. They are estimated from a 1000 member bootstrap

sample. Although some significant deviations from the theoretical values occur, particularly

for the 0.25-quantile forecasts, aχ2-tests for count data (Wilks 1995) does not reject the null-

hypothesis of reliability for any of the forecast approaches. Similarly, the mean occurrence of

precipitation lies within the uncertainty of the mean forecast occurrence (not shown).

As the conditional quantiles are estimated independently for the different levels ofτ , it

may occur that the quantile forecasts cross (i.e. the conditional 0.9 quantile is larger than 0.95

quantile). This would constitute an invalid distribution.FH have shown, that oversampling

and a short training data set can lead to an increased number of crossing quantiles. For the four

stations shown in Fig. 2, and for the six quantile forecasts for each day of the winter and summer

seasons from 2002 to 2005 (1217 days), crossing occurred fivetimes for the GFS/ERA40, never

for the GFS/NCEP forecast approach, and 333 times for the forecasts using the QR model based

on the ECMWF precipitation forecasts. Even though, the ECMWF forecast approach provides

more skillful quantile forecasts, it predicts significantly more often an invalid distribution than

the GFS/ERA40 (GFS/NCEP) reanalysis approach. These results are completely consistent

with FH.
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We now want to investigate the importance of the different parts of the RAN approach.

Therefore, the CQV skill score of the remaining forecast approaches are displayed in Fig. 4. The

PP ERA40/GFS and PP NCEP/GFS approaches highlight the benefit from the CCA correction,

which should correct for systematic errors in the forecastsof the large-scale circulation, that

are due to the forecast errors as well as to systematic differences between the reanalysis and the

GFS model. For all stations and seasons, the skill of PP ERA40/GFS is comparable to RAN

ERA40/GFS. The spatial resolution of both models is comparable (1.25◦ for ERA40 and1.0◦

for GFS), hence the systematic differences between the ERA40 and GFS large-scale patterns as

well as systematic forecast errors seem small. In contrast,the performance of PP NCEP/GFS

is reduced compared to RAN NCEP/GFS for all stations and seasons. This suggests that the

systematic model differences are larger between NCEP (2.5◦ resolution) and GFS.

Similar conclusions are suggested by the performance of thedownscaling approach (D

NCEP). The skill for the downscaling, which should not contain forecast errors, is compara-

ble to those of the RAN approaches. Thus, the systematic model errors have a larger effect on

the skill than the forecast errors. Note, that the forecast lead time is 12h, and that the forecast

error will certainly be more pronounced with increasing lead time.

Finally, we assess the benefit of having large training samples. As the training of the P-MOS

GFS approach only relies on 4 seasons of daily data, the data reduction of the large-scale fields

uses the first leading 10 EOFs. The skill is reduced for almostall stations compared to the RAN

ERA40/GFS or RAN NCEP/GFS approaches. More importantly, the uncertainty of the quantile

forecasts is largely increased due to the short training period, which results in highly variable

CQV and Brier skill scores. The amount of crossing quantileswhich is of the order of 1/1000

is only slightly increased compared to the RAN approaches.

Fig. 5 shows an example of forecasts derived using the GFS/ERA40 approach for January

(Fig. 5 a)) and August 2002 (Fig. 5 b)). The winter and summer climatologies of the daily

precipitation totals as estimated from the period 2002 to 2005 are indicated in a box on the

left-hand side of the panels. The climatological probability of precipitation amounts to 0.56

in winter and 0.44 in summer. In summer, the climatological 0.25 and 0.50 quantiles lie on

the zero precipitation line. The 0.9 quantile amounts to 8.7mm (8.2mm) and the 0.99 quantile

to 26.5mm (27.9mm) in winter (summer). The black dots indicate the observed precipitation

amount. The first 10 days of January 2002 were very dry. Accordingly, the probability of

precipitation estimated for those days lies below 0.2. In the second half of January 2002, the

probability of precipitation was much higher, with a probability reaching almost one on January
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27. On that day, the value that could be exceeded with a probability of 0.1 amounts to 24mm,

and the 0.99 quantile lies at 40mm. The observed value amounts to 17mm. The forecasts

follow the observations and capture nicely the range of variance of the daily precipitation totals.

Similar good correspondence is obtained for August 2002 at the station Schmeltz-Hüttersdorf.

The forecast captures the dry period from August 13th to August 18th as well as the extreme

rainfall on August 20th of about 40mm.

We now look more closely at January 27, 2002 and August 20, 2002. During both days,

one winter and one summer day, the total precipitation exceeded 40mm at one station. Figs.

6 a,c show the observed precipitation totals at 50 stations in Rhineland-Palatinate on January

27, 2002 and August 20, 2002. On January, 27th small cyclonespassed over Germany within

a distinct west-south-west drift. The situation on August,20th was marked by two small low

pressure systems coming from France that transported warm and humid air from the south-west

leading to shower and thunderstorms. On both days, the observed precipitation totals strongly

vary between the station with values ranging from 1.5mm (0.7mm) to 44.7mm (41mm) on

January 27 (August 20).

The 0.95 quantile forecasts for the respective winter and summer days are shown in the

right panels of Fig. 6. On January 27, the 0.95 quantile forecasts range between 14.7mm

and 37.7mm. In contrast to the observed precipitation totals, the quantile forecasts are much

smoother in space. But this can be expected since quantiles similar to expectation values char-

acterize the probability distributions, while the observations constitute a sample of realizations

of those distributions. The 0.95 quantile forecasts on August, 20th show even smaller spatial

variance than in January and range around 20mm.

6. Conclusions

We presented a probabilistic post-processing that derivesprobabilistic measures of daily

precipitation on the basis of the large-scale circulation patterns of a single deterministic model

forecast. Here, 12h forecasts are taken from the NCEP High Resolution Global Forecast Sys-

tem (GFS). Observations are daily precipitation totals at 50 weather stations in the region of

Rhineland-Palatinate, Germany, provided by the German Weather Service. The post-processing

employs canonical correlation analysis, logistic regression, and censored quantile regression. It

constitutes a probabilistic extention to standard model output statistics.

As Friederichs and Hense (2007) pointed out, a sufficiently long training period is needed in
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order to reduce the probability of an invalid distribution forecast. Following the RAN approach

of Marzban et al. (2005), the training of the probabilistic model, namely the censored quantile

model, is derived on reanalysis data, either from ERA40 or NCEP. On the basis of more than

40 years of daily data a stable and meaningful QR model is estimated. A CCA corrects for

systematic differences due to different grids and systematic model and forecast errors between

the large-scale circulation patterns of the reanalysis andthe GFS forecasts.

Forecast skill is assessed using the CQV and Brier skill score, where the reference forecast

constitutes an estimate of the climatological distribution of precipitation. The reliability of the

quantile forecasts is good, and the occurrence of crossing quantile forecasts is negligible. Skill

is generally larger in winter than in summer, and ranges between 20% to 50% depending on the

respective quantile, season and station. Although NCEP reanalysis have a lower resolution than

the ERA40 data, no significant differences are obtained whenusing NCEP or ERA40 for the

training of the quantile model.

The performance of the probabilistic RAN approach, which isbased on the large-scale at-

mospheric patterns is compared to a DMO approach, that uses precipitation forecasts from the

ECMWF forecast system. The ECMWF DMO approach provides significantly more skill than

the RAN approach. Further studies are needed to assess thosedifferences. Other forecasts vari-

ables should be investigated and particularly the GFS precipitation forecasts should be included.

The occurrence of crossing quantiles of the DMO ECMWF forecasts is small but not negligible.

It indicates that although the skill is large, the data basisis not large enough to estimate a stable

QR model.

Several other forecast approaches are tested in order to assess the effect of the different

components of the RAN approach. The advantage of the CCA correction is that an interpolation

on a common grid is not necessary. It turns out, that the CCA correction of the large-scale patters

is important when using NCEP reanalysis to train the censored QR model, whereas no skill

is lost when using ERA40 reanalysis. So a correction of the systematic differences between

the NCEP and GFS large-scale patterns is important. The forecast error seems small for the

12h forecasts, as the performance of the RAN approach is comparable to the performance of

downscaling based on NCEP reanalysis. A P-MOS approach thatrelies solely on the large-

scale patterns of the GFS forecasts provides a less stable and less meaningful statistical post-

processing, as the training period is too short. Here, the RAN approach is clearly outperforming

the P-MOS approach.

The objective of this study was to draw attention to the method of censored quantile re-
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gression that provides a tool to formulate a probabilistic post-processing of numerical weather

forecasts. The utilization of reanalysis for the training of a probabilistic MOS system together

with the RAN-type approach is appropriate to avoid problemsdue to the data shortage prob-

lem. The RAN approach represents a valuable and efficient post-processing to derive local

probabilistic precipitation forecasts from a single deterministic model forecast.
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APPENDIX A

Quantiles and the quantile verification (QV) score

This appendix gives some preliminaries about quantile estimation, notably, that the quantiles

can be expressed as the solution of an optimization problem (Koenker 2005). Standard linear

regression minimizes the least square error, and the solution of an optimization problem that

aims at minimizing the expected square error is the expectation value. And so the mean square

error is an adequate measure of the performance of such a forecast. Analogously, quantile

regression minimizes a function of the least absolute differences. This optimization problem is

the basic principle for quantile regression, and the solution is the conditional quantile function

at a probabilityτ . Likewise, the optimization problem defines a verification score, the quantile

verification (QV) (or censored quantile verification (CQV))score, which is discussed in some

detail here.

Let Y be a univariate random variate with distributionF (y) = Prob(Y ≤ y). The quantile

function is defined as

Q(τ) = F−1(τ) = inf{y|F (y) ≥ τ}, (A1)

andF−1(τ) = yτ is called theτ -quantile. Quantiles arise from a simple optimization problem,

that is defined through the so-called check function

ρτ (u) = u(τ − I(u < 0)) = (τ − 1)uI(u < 0) + τuI(u ≥ 0) for some τ ∈ (0, 1). (A2)

The check functionρτ (u) is a function of the least absolute deviations withu = y − ŷτ and is

displayed in Fig. 7.I(.) is an indicator function, which takes the value 1 if the condition in the

bracket is valid, and 0 if the condition is not valid. The estimateŷτ should be determined such

that it minimizes the expected loss (E[.] indicates the expectation underF (y))

E[ρτ (Y − ŷτ )] =
∫ ŷτ

−∞

(τ − 1)(y − ŷτ)dF (y) +
∫

∞

ŷτ

τ(y − ŷτ)dF (y). (A3)

Differentiating with respect tôyτ results in

∂

∂ŷτ

E[ρτ (y − ŷτ )] = (1 − τ)
∫ ŷτ

−∞

dF (y) − τ

∫

∞

ŷτ

dF (y) = F (ŷτ ) − τ
!
= 0, (A4)

so a necessary condition ofŷτ to minimize the loss function is thatF (ŷτ) = τ , which is indeed

theτ -quantile. Analogously, it can be shown that the value that minimizesE[(Y − ŷ)2] is the

expectation valueE[Y ] of Y .
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The loss functionρτ (y − ŷτ ) is proposed as a scoring rule for quantile forecast verification,

the QV score (for censored data CQV score). It will be shown inthe following, that the expected

loss attains a minimum if the forecast is perfect. This proves that the QV score is proper, but

also thatŷτ = F−1(τ) is a necessary and sufficient condition for a minimum of the expected

loss. We first recall the definition of a proper score (for details see Gneiting and Raftery (2007)).

Let S(y, ŷτ) = ρτ (y − ŷτ ) denote the QV score of a forecastŷτ of theτ -quantile of the random

variateY ∼ F (y). Let yτ be theτ -quantile, withF (yτ) = τ or yτ = F−1(τ), thenS(y, .) is

proper if for eacĥyτ

E[S(Y, ŷτ )] ≥ E[S(Y, yτ)], (A5)

and strictly proper if equality is only obtained ifŷτ = yτ . The expectation of each score can be

trivially decomposed into

E[S(Y, ŷτ)] = E[S(Y, yτ )] + {E[S(Y, ŷτ)] − E[S(Y, yτ)]} . (A6)

If S(Y, .) is a proper score, then the term in the braces is positive definite. Such a decomposition

for the QV score can be derived as follows.

E[ρτ (y − ŷτ )] =
∫

∞

−∞

ρτ (y − ŷτ )dF (y)

=
∫ ŷτ

−∞

(τ − 1)(y − ŷτ )dF (y) +
∫

∞

ŷτ

τ(y − ŷτ )dF (y)

=
∫

∞

−∞

τ(y − yτ )dF (y)−
∫ ŷτ

−∞

(y − yτ)dF (y)

−
∫

∞

−∞

τ(ŷτ − yτ)dF (y) +
∫ ŷτ

−∞

(ŷτ − yτ )dF (y)

=
∫

∞

−∞

τ(y − yτ )dF (y)−
∫ yτ

−∞

(y − yτ)dF (y) −
∫ ŷτ

yτ

(y − yτ )dF (y)

−τ(ŷτ − yτ )
∫

∞

−∞

dF (y) + (ŷτ − yτ )
∫ ŷτ

−∞

dF (y)

= E ρτ (Y − yτ ) +

{

(F (ŷτ) − τ)(ŷτ − yτ ) −
∫ ŷτ

yτ

(y − yτ)dF (y)

}

(A7)

Due to the mean value theorem for integration, the integral in the braces is bounded by

0 ≤
∫ ŷτ

yτ

(y − yτ )dF (y) ≤ (ŷτ − yτ)(F (ŷτ) − τ). (A8)

As F (y) is a positive definite and monotonically increasing function of y, the term in the brack-

ets is positive definite. Thus the QV score is a proper score.
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FIG. 1. Illustration of the three step RAN forecast approaches (GFS/ERA40 and GFS/NCEP).
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FIG. 2. CQV and Brier skill score for censored QR forecasts for 4 DWD stations for a) winter

months and b) summer months. Training of QR model is performed on ERA40 and NCEP

reanalysisζ850, ω850, and PWat, and on ECMWF precipitation forecasts. Forecast is performed

on the basis of GFS (GFS/ERA40, GFS/NCEP) or ECMWF precipitation forecasts (see Table

1). The shading of the Brier skill score for the probability forecast of the occurrence of precipi-

tation is dark, the CQV skill score is shown for the 0.25, 0.5,0.75, 0.90, 0.95, and 0.99 quantile

forecast with grey shading. The error bars indicate the sampling errors of the CQV and Brier

skill score.
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FIG. 3. Reliability for censored QR forecasts for 4 DWD stationsfor a) winter months and

b) summer months. Training and forecast approaches as in Fig. 2. Horizontal lines indicate

the theoretical probability, and the gray dots the empirical probability of conditional quantile

forecasts (τ -values as in Fig. 2). The vertical bars represent the 95% error interval of the

empirical probabilities estimated from a 1000 member bootstrap sample.
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FIG. 4. CQV and Brier skill score for censored QR forecasts for 4 DWD stations for a) winter

months and b) summer months as in Fig. 2), but for different forecast approaches (see Table 1).
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FIG. 5. Example of censored QR forecasts at station Schmelz-Huettersdorf for the months a)

January 2002 and b) August 2002 using ERA40 reanalysis and GFS forecast. The outer left

part of the panels shows the climatological forecast. Grey bars give the forecast probability

of precipitation (right axis), black circles are the observed precipitation sums, and the Box-

Whisker graphs indicate the 0.25, 0.50, and 0.75 quantiles as well as the extreme quantiles

0.90, 0.95, 0.99 as indicated for the climatological forecast. The left axis is in mm.
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FIG. 6. Observed precipitation for all 50 stations on a) January27, 2002 and c) August 20,

2002, and 0.95 quantile forecasts at 50 stations, b) January27, 2002 and d) August 20, 2002.
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FIG. 7. Check functionρτ (u).
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TABLE 1. Forecast approaches employed in this study.

Acronym Training QR model Forecast of quantiles Variables

RAN ERA40/GFS ERA40 1958-2000 GFS 2002-2005 14 CCA modes (ζ850, ω850, PWat)
between ERA40 and GFS (2001)

RAN NCEP/GFS NCEP 1948-2000 GFS 2002-2005 14 CCA modes (ζ850, ω850, PWat)
between NCEP and GFS (2001)

PP ERA40/GFS ERA40 1958-2001 GFS 2002-2005 14 EOFs (ζ850, ω850, PWat)
(interpol. on ERA40 grid) of ERA40 (1958-2001)

PP NCEP/GFS NCEP 1948-2001 GFS 2002-2005 14 EOFs (ζ850, ω850, PWat)
(interpol. on NCEP grid) of NCEP (1948-2001)

D NCEP NCEP 1948-2001 NCEP 2002-2005 14 EOFs (ζ850, ω850, PWat)
of NCEP

P-MOS GFS GFS 2001-2005 GFS 2002-2005 10 EOFs (ζ850, ω850, PWat)
of GFS (cross-validation)

DMO ECMWF ECMWF 2001-2005 ECMWF 2001-2005 4 grid points of ECMWF
precipitation (cross-validation)
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