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Abstract

Commonly, post-processing techniques are employed torasdi a model fore-
cast. Here, we present a probabilistic post-processoptoatdes calibrated prob-
ability and quantile forecasts of precipitation on the lestzle. The forecasts are
based on large-scale circulation patterns of the 12h fetdoam the NCEP High
Resolution Global Forecast System. The censored quaegjiession is used to es-
timate selected quantiles of the precipitation amount aedgtobability of the oc-
currence of precipitation. The approach accounts for thediiscrete-continuous
character of daily precipitation totals. The forecastsvargied using a new verifi-
cation score for quantile forecasts, namely the censoradtde verification (CQV)
score.

The forecast approach is as follows. First, a canonicaktation is employed
to correct systematic deviations in the GFS large-scaleipet compared to the
NCEP or ERA40 reanalysis. Secondly, the statistical gleanmbdel between the
large-scale circulation and the local precipitation quans derived using NCEP
and ERA40 reanalysis data. Then, the statistical quantildaiis applied to 12h
forecasts provided by the GFS forecast system. The prost@biiorecasts are re-
liable and the relative gain in performance of the quanslevall as the probability
forecasts compared to the climatological forecasts ramg@den 20% and 50%.
The importance of the various parts of the post-processiagassessed, and the
performance is compared to forecasts based on the diregpjation output from
the ECMWF forecast system.



1. Introduction

Quantitative forecasts of precipitation including itsrexnes are of high socio-economic
interest. Although present-day global weather forecastetsoprovide reliable forecasts of the
atmospheric large-scale circulation, they cannot prowéddistic descriptions of local weather
variability. This is due to the horizontally restricted o&gion (30-100km at best for global
models), but also due to missing cloud dynamical and migrsighal processes. For this reason,
a description and forecast of local weather phenomena atidydarly extreme events can only
be achieved through a combination of dynamical and stedisinalysis methods, where a stable
and significant statistical model based on a-priori physieasoning establishes a-posterior a
calibrated model between the local condition and the |agde circulation.

The perfect prog method (PP) (Klein 1971) and model outpitssics (MOS) (Glahn and
Lowry 1972) have been successfully applied in numericaltiexaprediction to re-calibrate
the direct model output to local conditions. In contrast t0®] PP ignores the model forecast
error, but has the advantage of available large data selsa)Ké2003) and Marzban et al. (2005)
discuss the pros and cons of both approaches. They propasalanation of PP and MOS,
which uses reanalysis for the development of the regressjoations and denote this approach
RAN as an acronym for reanalysis. MOS is generally based dtipteulinear regression and
therefore applies to the post-processing and forecastiexpectation values. Other approaches
use statistical correction based on the analog methodtéZand von Storch 1998; Hamill and
Whitaker 2006). Vislocky and Young (1989) used different iraRBdels based on an analog
model and logistic regression as predictors in an MOS agproBremnes (2004) was the first
who applied quantile regression for precipitation forésas the context of numerical weather
prediction.

The stochastic character of weather requires a probabiiisatment. Furthermore, proba-
bilistic forecasts provide a measure of uncertainty thahnbe important for decision makers.
Statistical post-processing of deterministic model fasts should thus also provide probabilis-
tic forecast measures. Here, our focus is on daily precipitaotals. Of interest are e.g. the
probability of the occurrence of precipitation, and theented amount. Particular attention is
also given to extreme precipitation events.

A complete probabilistic description of a variable is ob&d by an estimate of the con-
ditional distribution function - conditional on the largeale model forecast. However, there
is no general agreement that precipitation can be adeguatadleled by a single parametric
distribution. Vrac and Naveau (2007) proposed a mixture aim@a and Generalized Pareto
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distribution for modeling precipitation and combined thigh a non-homogeneous stochastic
weather typing approach for statistical downscaling. dadtof a parametric estimate of the
conditional distribution function, the conditional disution function can be estimated at given
values or thresholds. One possibility to do so is to use thestic multiple regression (Hamill

et al. 2004), which gives an estimate of the conditional pholity that an a-priori fixed thresh-
old is exceeded. This is a valuable approach for a-priornééfthresholds, particularly for the
zero precipitation threshold. Another approach would bediimate the conditional quantile
function at a given probability. The method estimates the precipitation amount that is ex-
ceeded with a probability of — 7. In that case, there is no need to a-priori define thresholds
which could be very site- or user-specific, but represergajuantiles such as the 0.5 quantile
(median), bounds for "normal” conditions such as the 0.28 @75 quantiles, and extreme
guantiles, e.g. the 0.05 and 0.95 quantiles can be used.

Here we demonstrate a probabilistic forecast approactdirates such probabilistic mea-
sures from the output of a single deterministic model fosecal' he probabilistic measures
are the probability of precipitation above zero, and thengjleafunction at given probabili-
ties7. The method employs censored quantile regression (QR)nk&e2005; Powell 1986)
and logistic regression (Fahrmeir and Tutz 1994). Ourstte#il post-processing estimates the
probability of precipitation and selected quantiles ctindial on the forecasts of the large-scale
circulation.

The forecast approach follows Friederichs and Hense (20@rgafter FH), who presented
a downscaling approach for daily station rainfall data gNMCEP reanalysis data. Downscal-
ing, or more general statistical post-processing, seaka &tatistical model between the local
variable and the large-scale model output. In FH it is shoauu the statistical post-processing
derives conditional quantiles of precipitation at oneistagiven the large-scale circulation of
the NCEP reanalysis.

In this paper we will extend and modify the post-processmgeaveral ways. The condi-
tional quantile model is trained on either the NCEP or the ERAeanalysis data, and then
applied to GFS model 12h forecasts. A canonical correlaimalysis (CCA) is used to correct
for systematic model forecast errors relative to the rgemain the large-scale circulation pat-
terns. As this approach uses reanalysis for the trainingeptrobabilistic model, we denote
this approach RAN approach as in Marzban et al. (2005), aithdhey use multiple linear
regression instead of CCA.

Forecast skill is assessed using the censored quantifeagdn (CQV) score (FH) and the



Brier score. A skill score is defined with respect to a clin@gacal forecast. The performance
of various approaches is compared. Those approaches arRAthepproach, a PP approach
where no calibration of the large-scale patterns is apphegrobabilistic MOS approach (P-
MOS), where the training of the statistical post-procegsalies on 5 years of short-term GFS
model forecasts, and a downscaling (D) approach which igasiho the PP approach but uses
reanalysis instead of forecasts. The differences assesslthof the various steps in the RAN
post-processing. The results are also compared to a sorhsiniyer approach that uses cal-
ibrated precipitation forecasts from the ECMWF direct maméput. The comparison should
provide some reference skill in order to rank the skill oteal with the RAN approach. For
comparability, the calibration of the ECMWF direct modetpmut again uses censored quantile
regression, but no information of the large scale circatais included.

Section 2 shortly describes the censored quantile regresgiproach. For a detailed de-
scription the reader is referred to FH. Section 3 introdubesdata used in this study, and the
forecast approach is presented in section 4. Section 5rmisetiee results using NCEP and
ERA40 reanalysis, and compares the various alternativebappes. Section 6 concludes the
article. An appendix discusses in more detail the quargdeassion and the QV score.

2. Censored quantile regression

Our forecast approach employs censored quantile regres$ize concept of quantile re-
gression (QR) has been developed by Koenker and Basse&)(@a9a comprehensive strategy
in order to complete the regression picture. While standegdession estimates conditional
mean surfaces, QR gives conditional quantile estimatebstrars a more complete measure of
the conditional distribution particularly in the case ohaeormality. The conditional quantile
model coefficients are estimated such that they minimizesfienction derived from the abso-
lute deviations (least absolute deviation (LAD)Iarmethod) (Appendix A). This is equivalent
to the maximization of the likelihood function of the datahieh can be formulated by in-
dependently distributed asymmetric Laplace densitiesapMill Moyeed 2001). In this section,
censored QR is introduced in a nutshell. For more insighEsgeand references herein. A very
comprehensive description of quantile regression anteékubjects is given in the monograph
by Koenker (2005). Calculations are performed using thedgm@amming language (R Devel-
opment Core Team 2003).

In order to account for the mixed discrete-continuous attaraof daily precipitation totals,



precipitation is represented by a so-called censoredblari€ensoring is a term, that originates
from survival analysis. In the case of life data, the vaeatflinterest is the time until failure. If
the failure occurs during the test period, the value is ceteplHowever, if the test ends before
the failure has occurred, the value is incomplete and istedi@ censored. The censoring line
is the end time of the test period and represents an uppedbafusbservation, although the
underlying process has no upper bound.

In the case of precipitation we assume a hypothetic procéshkat is observed through the
amount of precipitationy’. The zero precipitation line is assumed to represent a cegsline,
which acts as a lower bound of observation. The hypotheticgss could well have values
below zero, although it is not observed through the obséevakecipitation’. Note that this is
a statistical construct and does not assume a real phy sz $s.

Let Y be the univariate censored response variable (e.g., datygitation totals) anK
the conditioning multivariate variable. Then the statisticensored linear model is

Y|X = max(0,3"X +~v"X e), e~ 1ID. (1)

The non-censored procegs is modeled byy *|X = 87X + 47X ¢, wheref3 are the unknown
regression coefficients of the model, and identicaﬁtm (1). The termy”X « is an error
term that accounts for a linear dependency of the squareeromt variance on the covariake
(heteroscedasticity). Censoring is applied using the mari function by taking only values
of zero and above, so that censoring is expresséd-asnax(0, Y*).

As far as the ordering of the data is not changed, or more gktfier every non-decreasing
functionh, the equality

Qny) (T1X) = h(Qy- (7|X)) (2)

holds. This property of the quantile function is used in cegaed quantile regression. The

conditional quantile functio, (7|X) at a probabilityr is derived by

Ur = Qy(T|X) = Qmax(o,y*)(ﬂX) = max(Qy-(7]X)) = max(0, BfX) (3)

The coefficients3, are estimated by minimizing a piecewise linear censorest labsolute
deviation function (LAD) (Powell 1986)

BT = arg mlnz pT[yn - max(O, ﬁzxn)L (4)

wherep, (u) is the so-called check function, wifh (u) = 7u if w > 0, andp,(u) = (1 — 1)u
if u < 0. The indexn denotes the members of the training sample. More detailseguantile
function and its relation to the optimization problem anreegiin Appendix A.
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The minimization of (4) is much more complex than minimizihg LAD function of the
non-censored QR mod&t, p, [y, — BLx,]. We thus use a 3-step approach following Cher-
nozhukov and Hong (2002) which is described in more detaiHi This approach estimates
the non-censored QR model, but on a sub-sample for whichstiraaed conditional probabil-
ity of the occurrence of precipitation is larger than thepezgive probabilityr. The procedure
is as follows. First, the probability of the occurrence ofgipitationP(y > 0|X) is estimated
using a logistic regression (with a probit function). A ssdmple{y,} is selected defined by
{y|P(y > 0|X) > 7}. In a second step, th@, coefficients are estimated minimizing the non-
censored LAD function over the sub-samglg,}. A third step repeats the second step, but
now on an updated sub-samglg, } defined by{y|37X > 0}. The coefficients3, are updated
minimizing the non-censored LAD function on the new sub4si@nOptionally, this step can
be repeated several times. Thus, besides the conditiegantile, the method also estimates
the probability of non-censoring, hence the conditionabjability of precipitation above zero,
which is estimated in step one.

Additionally, the censored quantile regression natugaibvides a scoring rule, the censored

guantile verification (CQV) score

CQV = Z pr[Yn — max(0, Bzxn)]v (5)

wherey,, andx,,, n = 1,..., N, are taken from the forecast and verification sampl& @nd
X. Further explication on the separation of training anddast samples is given in Section 4.

The CQV score is a proper scoring (Gneiting and Raftery 280@¢ker and Smith 2007),
which discourages hedging on the part of the forecaster gMuf973). The CQV score is a
positive definite function, and its expected minimum is oled if the forecasts correspond to
the conditional-quantile (see Appendix A). Its expectation is zero onljéd forecast is perfect
and the underlying process deterministic. In order to asbesrelative gain in performance of a
forecast with respect to a reference forecast, we congrskill score analogously to the Brier
skill score as

CQV(7)

CQVSS7r) =1— oV (6)

The CQVSS can takes values on the half-open intefvab, 1]. A zero CQVSS indicates
no gain with respect to the reference forecast, while a vafuene indicates a perfect and
deterministic forecast. Likewise, the probability forstaf the occurrence of precipitation is
verified using the Brier skill score (Brier 1950). Note thas ICQVSS as well as the Brier skill
score are only asymptotically proper for very large sam@asphy 1973).



3. Data

A very common problem to model output statistic is the lackadsufficiently long and
homogeneous training data set. We have access to 5 yeatls2ZRP08) of forecasts produced
for the 12h period after the 0000UTC initialization timerfrohe NCEP High Resolution Global
Forecast System (GFS) (NOAA-EMC 2003). The data were aechat and kindly provided
by WetterOnline GmbH. The analysis (Oh forecast) was naesico no analysis with the GFS
model are available. Three variables of the GFS forecasta\ailable over a region dfE-
20°E and45°N-59°N over western Europe: precipitable water (PWat), relatweicity ((sso)
on the 850hPa pressure level, and vertical velocityan the 850hPa pressure level.

Our study aims at providing reliable forecasts of daily kotaf precipitation at German
weather stations. The daily totals are measured from 7.3 &M7.30 GMT of the next
day. The observational period thus starts 7.30 hours dfeemitialization of the model fore-
casts. Observations at German weather stations are pdobidethe German Weather Service
(DWD) within the priority project 'Quantitative precipiti@n forecasts’ of the German Research
Foundation. We have chosen 50 stations in the region of RiridePalatinate, that are almost
complete for the forecast period from 2002 to 2005, and thaela sufficient data coverage
for the training period from 1958 to 2000. In order to accolantseasonal non-stationarities,
the data are divided into a cold season, November to Marahtéwi and warm season, May to
September (summer).

The statistical post-processing is derived on the basesasfalysis data, both from the NCEP
re-analysis project (Kalnay and et al. 1996) and ERA40 @dyais project (Uppala and et
al. 2005). Unfortunately, no GFS precipitation forecasts available. Instead, we used 5
years of the deterministic ECMWF precipitation forecagisrbpean Centre for Medium-Range
Weather Forecasts 2006) over Germany for the period frorh 80P005. The ECMWF forecast
system provides precipitation forecasts on & Q(34° horizontal grid. As a predictor we use the
6h-30h accumulated precipitation of the 0000UTC initiadei forecast, which approximately
corresponds to the observational accumulation period. ERBIRIWF forecasts are intended to

provide some reference skill in order to rank the skill oiéal with the RAN approach.

4. The forecast approach

Except when using ECMWEF forecasts, the forecast approamteebased on a combined

phase state vectoX(;rs, Xr.) Of (s50, wss0, and PWat at grid points in the areal6E-20°E
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and45°N-59°N. In order to give equal weight to the different meteorotadjvariables, the time
series have to be weighted. This is done by multiplying eafable with the inverse of its
spatial mean temporal standard deviation, which is of otfefs=! for (gs9, 10~! Pas~! for
wsso, andb0kg m 2 for PWat. The ECMWF state vect -~ contains the total precipitation
amount at 4 neighboring grid points.

In order to assess the importance of the different parts enptbst-processing, we apply
several approaches additional to the RAN approach. All@ggres are summarized in Table
1. For the reason of comparability, the verification peribwdags extends from 2002 to 2005.
The quantile forecasts are verified using the CQV and ther Bdere. A skill score is derived
with respect to a climatological forecast. The climatotagiprobability of precipitation and
the climatological quantiles are estimated from the fosegeriod from 2002 to 2005 for the
respective season. The climatology is estimated for eatlostseparately, to avoid artificial
skill (Hamill and Juras 2007). The sampling error of the Iskdores is estimated using the
bootstrap method (Efron and Tibshirani 1993).

a. The RAN approach

Our forecast approach follows the RAN approach of Marzbaal.§2005), i.e. it uses re-
analysis for the development of the censored QR model. Tbesado a large training data
base is important for the estimation of a stable QR model as/ishn FH. The RAN fore-
cast approach is illustrated in Fig. 1. In a first step, a carabrorrelation analysis (CCA)
is performed to derive patterns (denoted as canonicalrpajtén the GFS forecasts and the
NCEP/ERA40 reanalysis with the maximum correlation. Praothe CCA, a reduction of spa-
tial degrees of freedom is needed for the gridded data s€ER\reanalysis, ERA40 reanalysis,
GFS forecasts). This reduction is performed using a praldpmponent analysis (Barnett and
Preisendorfer 1987). The CCA patterns are derived for tiilg fi@lds of the respective season
in the year 2001 (Fig. 1). The CCA model between the GFS fetsand the reanalysis (Re)
reads as follows

UEgrcXre =V EgrsXars + €cca, (7)

where X, and X5rs are the gridded and scaled data of reanalysis and GFS ftscEas
and Eqrg are the matrices composed by empirical orthogonal funsti@amdE . X . and
EcrsXars constitute the corresponding principal components (P€sew variables.ecca
denotes the error term of the CCA modélandV are matrices containing the canonical pattern
or transformations from the CCA. The transpose is denotetl &yd matrices are bold. The
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estimatedJ, V, andEqrg are derived from the daily data of the year 2001, whekeasis
derived from the reanalysis period 1948/1958-2001.

In a second step, the NCEP/ERA4O0 reanalysis of the periad 848/1958 to 2000 are
projected onto the canonical patterns from step 1. Thisodeserves as the training period
for the censored QR model between the projections of the NER&R40 reanalysis onto their
canonical patternsl{) and the DWD station precipitation totals at a selectedmstanotably

the estimation of the coefficient$.. The QR model reads
Y|X-R€ - maX(O, BZ O ERe)(Re + 67)7 (8)

wheree, accounts for the error in the QR model. The model coefficiBntare estimated using
data from the training period 1948/1958 to 2000.

The third step is the forecast step for the remaining perioch 2002 to 2005. The forecast
first corrects for systematic errors in the large-scalealdeis in the GFS forecasts using the
CCA model. Then the censored QR model is applied to derivenatds of the conditional
T-quantile of the station precipitation So the forecasts of the conditional quantiles of

precipitation are derived as
Jr = Qy(11Xgrs) = max(0, 87 V EgrsXors), 9)

for the remaining period from 2002 to 2005. The RAN approachee denoted aRAN
ERA40/GFS and RAN NCEP/GFS. Note, that the CCA model avoids the interpolation of
the data onto a common grid.

b. The perfect prog approach

Here we want to assess the importance of the CCA correctioardanalysis derived model
is directly applied to the GFS forecasts without the CCA stép both, the ERA40 and the
NCEP grid, have lower resolution than the GFS forecasts(GiR8 forecasts are interpolated
onto the respective reanalysis grid. The QR model is nowehbetween the first leading EOFs

of the reanalysis data and the DWD station precipitatiore fOinecasts are estimated through
§r = max(0, B EpXgrs). (10)

Here, the systematic model and forecast errors are ignprete€t prog), hence the approaches
are denoted aBP ERA40/GFSandPP NCEP GFS Differences in skill are due to forecasts
errors as well as to systematic differences between resisapnd interpolated GFS forecasts.
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c. The downscaling approach

Another approach is included that is obtained for downsktptecipitation using the NCEP
reanalysis. The approach is denotedddCEP. The training of the QR model is based on the
NCEP reanalysis from 1948-2001. The quantile estimateth&®period from 2002 to 2005 are
obtained from

Jr = max(0, BT Ep.Xge). (11)

The differences in skill between RAN NCEP/GFS and D NCEP aainin due to forecast

errors.

d. The P-MOS approach

In order to emphasize the benefit of the RAN approach we ird@dprobabilistic MOS ap-
proach, where only the relatively short GFS forecasts agd t@ training the post-processing.
The training and verification only uses the GFS forecastsjadenoted aB-MOS GFS. The
forecasts are derived using cross-validation, where ometgdeason (NDJFM or MJJAS) is

withheld from the training data, and the forecast
§r = max(0, B EgrsXars). (12)

is derived for each target season in the period from 2002®5 20he training data also include
the data from the year 2001.

e. Using precipitation (ECMWEF) as predictor

This censored QR approach, denoted®0 ECMWF , uses only precipitation forecasts.
As no GFS precipitation forecasts were available, we us&@RIWF forecasts instead. This
approach assesses the skill obtained using direct pratiguitforecasts. This approach is not
directly comparable with the GFS forecasts based on the-secgle information only, as it
introduces a new model with a higher resolution. Ratherausthgive some reference to rank
the obtained skill scores.

The covariate to derive the forecast is again a multivagateariate, however, it only con-
sists of forecasts of total precipitation at the four neiageisl points around the respective sta-
tion, therefore no reduction of degrees of freedom is neeHiedvever, a simple calibration is
needed to derive probabilities and quantiles from the detestic DMO, which are compara-
ble. As for the P-MOS GFS approach we use cross-validatiotmdming and verification. The
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conditional quantiles of the target season are estimated as
g, = max(0, 87 Xge). (13)

Xrc how is a 5-dimensional vector containing the forecasts ta#l forecipitation at the four
grid points nearest to the station location and the one.

5. Results

We first discuss the results obtained with the RAN post-@sicg. In order to present
meaningful results, the sensitivity of the quantile forgsand the CQV skill scores to different
settings has to be assessed. First, the optimal number ollB@Eanonical patterns that enter
the QR model has to be defined. It turned out that an optimabeunmf EOF is of the order of
12 to 14, and the QR model then gives best results with abewgdime number of CCA modes
(not shown). We have chosen 14 EOFs to represent the GFSQ$tseand the NCEP/ERA40
reanalysis in the CCA model. All 14 CCA modes enter the QR rhofléhough the length of
the training period for the CCA correction is only one ye&pat 150 days for each season, it
turned out to suffice for our purpose. A longer period (2 seasfor the CCA correction in turn
reduces the period for the verification and did not signifigaeincrease the skill.

Figure 2 shows as an example the CQV skill scores for 4 swtioRhineland-Palatinate,
Wachtberg-Berkum (50.6RI, 7.13E, 220n), Schmelz-Huttersdorf(49.4R, 6.83E, 223n),
Helmbach-Dittling (50.6N, 6.55E, 380n), and Hermeskeil (49.65l, 6.93E, 480n). Wachtberg-
Berkum (Helmbach-Dittling) represents the station wothést, and Schmelz-Huttersdorf (Her-
meskeil) with largest skill in winter (summer). Skill in wir is generally larger than in summer.
The Brier skill score ranges between 23% (19%) and 50% (48%j)riter (summer). The CQV
skill score is generally largest for the 0.9 or 0.95 quardild is of the order of the Brier skill
score. The CQV skill score of the 0.99 quantile is smaller hasl a large uncertainty. Least
skill is obtained for the 0.25 quantile. However, this quiarites only above the zero line, if
the probability of precipitation is above 0.75. The errorsbgiven in Fig. 2 represent the 95%
confidence interval of the CQV skill score estimate derivgdlbootstrap approach. No sig-
nificant differences exist between the forecasts that argedeeither using ERA40 or NCEP
reanalysis.

Figure 2 also represents the CQV skill score obtained usiagalibrated DMO ECMWF
forecasts. For all stations, the DMO ECMWF approaches ofapas the RAN approaches.
The CQV skill score reaches 70% (50%) for some stations inexigsummer). The sampling
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error of the CQV skill score is comparable to that of the RANm@@aches. Further studies are
needed in order to assess whether the differences are dhe thfferent model performance
(e.g. due to the higher horizontal resolution of the ECMWFeasts), or the choice of the
covariates, or both.

In order to further verify the quantile forecasts, we inigestied, whether the quantile fore-
casts are reliable, i.e. show systematic errors (Fig. 3a dliantile forecast is reliable then
it is expected that a fraction of the observed precipitation values lies below the coodl
T-quantiles. This fraction divided by the total number of @vstions is denoted as the empir-
ical probability. Note that the empirical probabilitiesxcanly be estimated for those forecasts,
where the conditional quantile forecast is above zero.dighantile forecast is censored, which
means that it is set to zero, and the observation is also #ezn,it is not possible to decide
whether it is below or above the quantile forecasts. Cogrthie zero quantile forecasts induces
an artificial bias to the reliability, which is particulartrong for the lower quantiles, as they
are more often censored. The reliability of the censorirgg,the reliability of the categorical
forecast of precipitation above zero, should be assesgedately.

Fig. 3 compares the theoretical (horizontal lines) and thgigcal probabilities (dots) of the
conditionalr-quantile forecasts. The 95% sampling error intervals efempirical probability
estimates are indicated by vertical lines. They are estichetbom a 1000 member bootstrap
sample. Although some significant deviations from the tbtcal values occur, particularly
for the 0.25-quantile forecasts,\@-tests for count data (Wilks 1995) does not reject the null-
hypothesis of reliability for any of the forecast approach8imilarly, the mean occurrence of
precipitation lies within the uncertainty of the mean fasicoccurrence (not shown).

As the conditional quantiles are estimated independentiyttfe different levels ofr, it
may occur that the quantile forecasts cross (i.e. the condit0.9 quantile is larger than 0.95
guantile). This would constitute an invalid distributioRH have shown, that oversampling
and a short training data set can lead to an increased nurhb®rssing quantiles. For the four
stations shown in Fig. 2, and for the six quantile forecamtséch day of the winter and summer
seasons from 2002 to 2005 (1217 days), crossing occurretirfies for the GFS/ERA40, never
for the GFS/NCEP forecast approach, and 333 times for tleeésts using the QR model based
on the ECMWEF precipitation forecasts. Even though, the EGMW@fecast approach provides
more skillful quantile forecasts, it predicts significamnthore often an invalid distribution than
the GFS/ERA40 (GFS/NCEP) reanalysis approach. Thesetses@ completely consistent
with FH.
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We now want to investigate the importance of the differentgaf the RAN approach.
Therefore, the CQV skill score of the remaining forecastapphes are displayed in Fig. 4. The
PP ERA40/GFS and PP NCEP/GFS approaches highlight the tieaefithe CCA correction,
which should correct for systematic errors in the forecasthe large-scale circulation, that
are due to the forecast errors as well as to systematic eliféers between the reanalysis and the
GFS model. For all stations and seasons, the skill of PP ER2498 is comparable to RAN
ERA40/GFS. The spatial resolution of both models is comgaré.25° for ERA40 and1.0°
for GFS), hence the systematic differences between the BRAd GFS large-scale patterns as
well as systematic forecast errors seem small. In contifestperformance of PP NCEP/GFS
is reduced compared to RAN NCEP/GFS for all stations andossasThis suggests that the
systematic model differences are larger between NCEP (esolution) and GFS.

Similar conclusions are suggested by the performance ofithenscaling approach (D
NCEP). The skill for the downscaling, which should not camt@recast errors, is compara-
ble to those of the RAN approaches. Thus, the systematic Ineoaes have a larger effect on
the skill than the forecast errors. Note, that the foreczed time is 12h, and that the forecast
error will certainly be more pronounced with increasingli¢éiane.

Finally, we assess the benefit of having large training sasa@s the training of the P-MOS
GFS approach only relies on 4 seasons of daily data, the edt&tion of the large-scale fields
uses the first leading 10 EOFs. The skill is reduced for alralbstations compared to the RAN
ERA40/GFS or RAN NCEP/GFS approaches. More importantéyuticertainty of the quantile
forecasts is largely increased due to the short trainingp@ewhich results in highly variable
CQV and Brier skill scores. The amount of crossing quantitbgh is of the order of 1/1000
is only slightly increased compared to the RAN approaches.

Fig. 5 shows an example of forecasts derived using the GESIERpproach for January
(Fig. 5 a)) and August 2002 (Fig. 5 b)). The winter and sumntieratologies of the daily
precipitation totals as estimated from the period 2002 t052ére indicated in a box on the
left-hand side of the panels. The climatological prob&piif precipitation amounts to 0.56
in winter and 0.44 in summer. In summer, the climatologic2b0and 0.50 quantiles lie on
the zero precipitation line. The 0.9 quantile amounts te8./(8.2mm) and the 0.99 quantile
to 26.5nm (27.9nm) in winter (summer). The black dots indicate the observettipitation
amount. The first 10 days of January 2002 were very dry. Adnglyl the probability of
precipitation estimated for those days lies below 0.2. mghcond half of January 2002, the

probability of precipitation was much higher, with a probiépreaching almost one on January
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27. On that day, the value that could be exceeded with a pildlgadd 0.1 amounts to 2m,
and the 0.99 quantile lies at #0n. The observed value amounts tonla. The forecasts
follow the observations and capture nicely the range ofwee of the daily precipitation totals.
Similar good correspondence is obtained for August 200Beastation Schmeltz-Huttersdorf.
The forecast captures the dry period from August 13th to Au@8th as well as the extreme
rainfall on August 20th of about 4@m.

We now look more closely at January 27, 2002 and August 202.20Qring both days,
one winter and one summer day, the total precipitation ede#®d0nm at one station. Figs.
6 a,c show the observed precipitation totals at 50 statior®®hineland-Palatinate on January
27, 2002 and August 20, 2002. On January, 27th small cyclpassed over Germany within
a distinct west-south-west drift. The situation on Aug@€ith was marked by two small low
pressure systems coming from France that transported wadrwmid air from the south-west
leading to shower and thunderstorms. On both days, thewsberecipitation totals strongly
vary between the station with values ranging frommlu® (0.7mm) to 44.7mm (41lmm) on
January 27 (August 20).

The 0.95 quantile forecasts for the respective winter amdnser days are shown in the
right panels of Fig. 6. On January 27, the 0.95 quantile fstcrange between 14:7n
and 37.7nm. In contrast to the observed precipitation totals, the tleaforecasts are much
smoother in space. But this can be expected since quaritiddarsto expectation values char-
acterize the probability distributions, while the obséivas constitute a sample of realizations
of those distributions. The 0.95 quantile forecasts on Atig20th show even smaller spatial

variance than in January and range arounek20

6. Conclusions

We presented a probabilistic post-processing that depvelkabilistic measures of daily
precipitation on the basis of the large-scale circulatiatiggns of a single deterministic model
forecast. Here, 12h forecasts are taken from the NCEP HigolR&on Global Forecast Sys-
tem (GFS). Observations are daily precipitation totalsatvgather stations in the region of
Rhineland-Palatinate, Germany, provided by the Germartge&ervice. The post-processing
employs canonical correlation analysis, logistic regmegsand censored quantile regression. It
constitutes a probabilistic extention to standard modglaistatistics.

As Friederichs and Hense (2007) pointed out, a sufficientigltraining period is needed in
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order to reduce the probability of an invalid distributi@mdcast. Following the RAN approach
of Marzban et al. (2005), the training of the probabilistioarl, namely the censored quantile
model, is derived on reanalysis data, either from ERA40 oERCOn the basis of more than
40 years of daily data a stable and meaningful QR model isnastid. A CCA corrects for
systematic differences due to different grids and systematdel and forecast errors between
the large-scale circulation patterns of the reanalysishadFS forecasts.

Forecast skill is assessed using the CQV and Brier skillesaghere the reference forecast
constitutes an estimate of the climatological distribatd precipitation. The reliability of the
guantile forecasts is good, and the occurrence of crossiagtde forecasts is negligible. Skill
is generally larger in winter than in summer, and ranges eeitvw20% to 50% depending on the
respective quantile, season and station. Although NCERahgsis have a lower resolution than
the ERA40 data, no significant differences are obtained wisamy NCEP or ERA4O for the
training of the quantile model.

The performance of the probabilistic RAN approach, whichdsed on the large-scale at-
mospheric patterns is compared to a DMO approach, that ueefppation forecasts from the
ECMWEF forecast system. The ECMWF DMO approach providesifsogimtly more skill than
the RAN approach. Further studies are needed to assesdglifiesences. Other forecasts vari-
ables should be investigated and particularly the GFS jpitation forecasts should be included.
The occurrence of crossing quantiles of the DMO ECMWF foseses small but not negligible.
It indicates that although the skill is large, the data besmot large enough to estimate a stable
QR model.

Several other forecast approaches are tested in order éssaise effect of the different
components of the RAN approach. The advantage of the CCAction is that an interpolation
on a common grid is not necessary. It turns out, that the CCGrhecton of the large-scale patters
is important when using NCEP reanalysis to train the cems@® model, whereas no skill
is lost when using ERA40 reanalysis. So a correction of ttetesyatic differences between
the NCEP and GFS large-scale patterns is important. Thedstesrror seems small for the
12h forecasts, as the performance of the RAN approach is a@hle to the performance of
downscaling based on NCEP reanalysis. A P-MOS approachréhes solely on the large-
scale patterns of the GFS forecasts provides a less stathllessmeaningful statistical post-
processing, as the training period is too short. Here, thE Bpproach is clearly outperforming
the P-MOS approach.

The objective of this study was to draw attention to the metbbcensored quantile re-
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gression that provides a tool to formulate a probabilististgprocessing of numerical weather
forecasts. The utilization of reanalysis for the trainiiggrobabilistic MOS system together
with the RAN-type approach is appropriate to avoid problelms to the data shortage prob-
lem. The RAN approach represents a valuable and efficieritggosessing to derive local
probabilistic precipitation forecasts from a single detistic model forecast.

Acknowledgments.

We greatfully acknowledge fruitful discussions with Mar@oeber, Armin Mathes and Jan
Keller. Special thanks are also due to three anonymouswevsefor their detailed comments,
and to WetterOnline GmbH for providing us with the GFS fomtsa Parts of the research has
been carried out within the DFG funded project PP1167-PQ@Raathe Interdisciplinary Centre
of Complex Systems (1ZKS) of the University of Bonn.

16



APPENDIX A

Quantiles and the quantile verification (QV) score

This appendix gives some preliminaries about quantilengton, notably, that the quantiles
can be expressed as the solution of an optimization probe@arnker 2005). Standard linear
regression minimizes the least square error, and the solofian optimization problem that
aims at minimizing the expected square error is the expentaalue. And so the mean square
error is an adequate measure of the performance of such @&dreAnalogously, quantile
regression minimizes a function of the least absolute idiffees. This optimization problem is
the basic principle for quantile regression, and the soifuis the conditional quantile function
at a probabilityr. Likewise, the optimization problem defines a verificatioorg, the quantile
verification (QV) (or censored quantile verification (CQ\pore, which is discussed in some
detail here.

Let Y be a univariate random variate with distributibiy) = Prob(Y < y). The quantile
function is defined as

Q(r) = F~'(r) = inf{y|F(y) > 7}, (A1)
and F~1(7) = y, is called ther-quantile. Quantiles arise from a simple optimization peaf

that is defined through the so-called check function
pr(u) =u(t—I(u<0))=(r—1ul(u<0)+7ul(u>0) forsome 7ec (0,1). (A2)

The check functiom. (u) is a function of the least absolute deviations with- y — ¢, and is
displayed in Fig. 7.1(.) is an indicator function, which takes the value 1 if the cdiodiin the
bracket is valid, and O if the condition is not valid. The e=itey, should be determined such

that it minimizes the expected losB/(] indicates the expectation undefy))

Bl v — i) = [ 6Dl i)dF @) + [ rly—3)dFw). (AY

—o0 ir

Differentiating with respect tg.. results in

s Elo-y =i = (=) [" ar)— 7 [Tarw) =P -7 Lo, (4

so a necessary condition @f to minimize the loss function is thdt(y,.) = 7, which is indeed
the r-quantile. Analogously, it can be shown that the value thaimizes E[(Y — 7)?] is the
expectation valué’[Y] of Y.

17



The loss function.-(y — .) is proposed as a scoring rule for quantile forecast verifinat
the QV score (for censored data CQV score). It will be showthétollowing, that the expected
loss attains a minimum if the forecast is perfect. This psovet the QV score is proper, but
also thatj, = F'~!(7) is a necessary and sufficient condition for a minimum of theeeted
loss. We first recall the definition of a proper score (for detee Gneiting and Raftery (2007)).
LetS(y, 9.) = p-(y — §,) denote the QV score of a forecastof the r-quantile of the random
variateY ~ F(y). Lety, be ther-quantile, withF'(y,) = 7 ory, = F~!(7), thenS(y,.) is
proper if for eachy.,

E[S(Y,4-)] = E[S(Y, y:)], (A5)

and strictly proper if equality is only obtainedijf = y,. The expectation of each score can be
trivially decomposed into

EIS(Y,47)] = E[S(Y,y-)] + {E[S(Y,§-)] = E[S(Y,y-)]}- (A6)

If S(Y,.)is aproper score, then the term in the braces is positiveitieftbuch a decomposition

for the QV score can be derived as follows.

E[pT(y - QT)] = /_O:O pT(y - @T)dF(y)

— /y (r — Dy — §,)dF (y) + /yoo 7(y — 9-)dF (y)

—00

_ /°° m(y — y,)dF (y )—/_QT (y — yr)dF (y)
[ e~ v %-/ — y-)dF (y)
= [Tty %MF(%1ﬁéy—%MF@%1fYy—%MF@)

Yr

i o) [ AP )+ e~y [ Q)

= By =)+ { ) =)= 00 - [ = uar ) @7

Due to the mean value theorem for integration, the integrdié braces is bounded by

0< [ (= y)dF(y) < (G, — y) (F () — 7). (A8)

Yr

As F(y) is a positive definite and monotonically increasing functdy, the term in the brack-
ets is positive definite. Thus the QV score is a proper score.
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TABLE 1. Forecast approaches employed in this study.

Acronym Training QR model Forecast of quantiles Variables
RAN ERA40/GFS| ERA40 1958-2000 GFS 2002-2005 14 CCA modes(yso, wsso, PWat)
between ERA40 and GFS (2001)
RAN NCEP/GFS | NCEP 1948-2000 GFS 2002-2005 14 CCA modes(sso, wsso, PWat)
between NCEP and GFS (2001)
PP ERA40/GFS | ERA40 1958-2001 GFS 2002-2005 14 EOFs (s50, wss0, PWat)
(interpol. on ERA40 grid) of ERA40 (1958-2001)
PP NCEP/GFS NCEP 1948-2001 GFS 2002-2005 14 EOFs (s50, wss0, PWat)
(interpol. on NCEP grid) of NCEP (1948-2001)
D NCEP NCEP 1948-2001 NCEP 2002-2005 14 EOFs (s50, wss0, PWat)
of NCEP
P-MOS GFS GFS 2001-2005 GFS 2002-2005 10 EOFs (s50, wss0, PWat)
of GFS (cross-validation)
DMO ECMWF ECMWF 2001-2005 ECMWEF 2001-2005 4 grid points of ECMWF
precipitation (cross-validation)
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