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Abstract

H−matrices play an important role in the theory and applications of Numerical Linear
Algebra. So, it is very useful to know whether a given matrix A ∈ Cn,n, usually the coefficient
of a complex linear system of algebraic equations or of a Linear Complementarity Problem
(A ∈ Rn,n, with aii > 0 for i = 1, 2, . . . , n in this case), is an H−matrix; then, most of the
classical iterative methods for the solution of the problem at hand converge. In recent years the
set of H−matrices has been extended to what is now known as the set of General H−matrices,
and a partition of this set in three different classes has been made. The main objective of this
work is to develop an algorithm that will determine the H−matrix character and will identify
the class to which a given matrix A ∈ Cn,n belongs; in addition, some results on the classes of
general H−matrices and a partition of the non-H−matrices set are presented.

AMS (MOS) Subject Classifications: Primary 65F10
Keywords: Comparison matrix, H−matrices, General H−matrices, irreducible and reducible

matrices, Frobenius normal form.

1 Introduction

The class of H−matrices (see, e.g., [4], [8], [13]) play a very important role in Numerical Analysis,
in Optimization Theory and in other Applied Sciences. Suppose that A ∈ Cn,n is the coefficient
of a linear system of algebraic equations. Then, A being an H−matrix constitutes a sufficient
condition for a classical iterative method, like Jabobi, Gauss-Seidel, etc., to converge (see, e.g.,
[4], [13]). Also, given a Linear Complementarity Problem (LCP) whose matrix coefficient is a real
H−matrix with a positive diagonal (H+−matrix) guarantees that the LCP in question possesses a
unique solution (see, e.g., [1], [4]).

For the identification of the H−matrix character of an A ∈ Cn,n in the Ostrowski’s sense [10]
(see, e.g., Varga [13]) many direct and iterative Algorithms have been developed. We mention
those by Alanelli and Hadjidimos [2] and [3] and the references therein. However, in recent years
this definition for H−matrices has been extended to encompass a wider set known as the set of
general H−matrices. In a recent paper, [5], a partition of the general H−matrix set, H, into three

∗The present work is dedicated to Hans Schneider on the occasion of his 82nd birthday.
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mutually exclusive classes was obtained: the Invertible class, HI , where all general H-matrices are
nonsingular, the Singular class, HS , formed only by singular H-matrices, and the Mixed class, HM ,
in which singular and nonsingular H−matrices coexist. General H−matrices that are nonsingular
have different properties when they belong to one of the classes HI or HM . The same is true for
general H−matrices that are singular and belong to the HS or the HM class. Consequently, some
results referring to “nonsingular H−matrices”, that is H−matrices that are nonsingular, and to
“singular H−matrices”, that is H−matrices that are singular must be revised.

The algorithm presented in [2], AH (Algorithm H), determines the H−matrix character of a
given irreduciblematrix A if it belongs to the invertible classHI , whileAH2 [3] covered the reducible
case as well. These algorithms, based in the Ostrowski’s definition for H−matrices, determine
bounds for the spectral radius of the Jacobi iteration matrix associated with the comparison matrix
of A. As will be seen, AH can also identify irreducible general H−matrices in the mixed class HM .
General H−matrices in the singular class HS can not be determined using the aforementioned
algorithms since their Jacobi iteration matrix does not exist. Also, the general non-H−matrix
character in the reducible case remains to be settled. To the best of our knowledge no Algorithm
to identify a general H−matrix has been given so far and this is the main objective of the present
work. However, in order to simplify the terminology and clarify the notation, from now on, the
term H−matrices will refer to general H−matrices.

In this work we construct a new Algorithm, exploiting AH, which identifies the H−matrix
character of A ∈ Cn,n, that may be singular and/or reducible, makes the distinction among the
three classes, as in [5], and the identification is made in a very efficient way.

To obtain the H−matrix character of a reducible matrix A, it suffices to study the character of
the irreducible diagonal submatrices of its Frobenius normal form (Fnf) (see [5]). Our algorithm
will use only the diagonal blocks of an Fnf and will not need to compute the Fnf itself. For this,
some techniques are applied, combining irreducibility and H−matrix properties, avoiding at the
same time unnecessary computations.

Apart from some initial and intermediate steps, our Algorithm consists of three main parts:
i) In the first part, it finds the irreducible/reducible character of a given matrix A ∈ Cn,n.
ii) In the second part, which is skipped when A is irreducible, it finds a block permutation of

the block diagonal, bdFnf, of an Fnf of A.
iii) In the third part, a slight modification of AH [2] is applied, if needed, to identify the H−

or non-H−matrix character and the class to which A belongs.
It should be pointed out that in case A is reducible this modification of AH is applied, if needed,

to one or more irreducible diagonal blocks of order ≥ 2 of a bdFnf of A instead of to A itself. This
reduces drastically the operations required for part (iii) and, in view of part (ii), our algorithm
becomes more stable since fewer calculations are performed.

Note that to find an Fnf of a reducible A is not necessary when we are concerned with the
localization of the eigenvalues of a reducible matrix by the Geršgorin Circles, by the Brauer’s Ovals
of Cassini or by the Brualdi Lemniscates, etc. (see Varga [15]) since only a bdFnf suffices. Using
part (ii) unnecessary searches are avoided and a bdFnf is determined.

The outline of this work is as follows: In Section 2, basic notation and definitions are given
and the required background material is presented. Also, some new results on classes of H− and
non-H−matrices are established. In Section 3, parts (i) and (ii) of our algorithm are theoretically
developed. In Section 4, collecting all previous results and using AH, if needed, it is found out to
which specific class of H− or non-H−matrices a certain A ∈ Cn,n belongs. In Section 5, numerical
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examples are given in support of our theory while Section 6 concludes our work with some remarks.

2 Preliminaries and Basic Background Material

We begin with some notation, definitions and results, most of which can be found in [4] or [8]. Let
A ∈ Cn,n. For n ∈ N, let N := {1, 2, 3, · · · , n}. The symbol |X| , X ∈ Cn,n, denotes the matrix
whose elements are the moduli of the corresponding elements of X. The expression A ≥ 0 (A > 0)
denotes that A is a nonnegative (positive) matrix, i.e., aij ≥ 0 (aij > 0, respectively), i, j ∈ N .
The Comparison Matrix of A ∈ Cn,n is defined as M(A) with elements mii = |aii| for all i ∈ N
and mij = − |aij | for all i ̸= j ∈ N. The set of equimodular matrices associated with A is the set
Ω(A) := {B ∈ Cn,n : M(B) = M(A)} [14]. If DA = diag(A) is invertible, the Jacobi iteration
matrix associated with A is denoted by JA = I −D−1

A A. Further, in this case, the Jacobi iteration
matrix associated with M (A) also exists and is the nonnegative matrix

JM(A) =
∣∣D−1

A A
∣∣− I = |JA| . (2.1)

With these notations, if τ := maxi{aii}, the comparison matrix M (A) can be written as
M (A) = τI − C where the matrix C is nonnegative (C ≥ 0).

To the best of our knowledge, it was Schneider [11] who first extended the class of nonsingular
M−matrices to the class of singular M−matrices which, in turn, led naturally to the class of
general M−matrices (see [4]). So, based on all this we can give the definition for an H−matrix in
the general sense (general H−matrix) as follows:

Definition 2.1. A matrix A ∈ Cn,n is an H−matrix iff

M (A) = sI −B with B ≥ 0 and s ≥ ρ(B), (2.2)

with ρ(·) denoting spectral radius. Particularly, if A = M (A), A is said to be an M−matrix.

Note that, in equation (2.2), B ≥ O ⇔ s ≥ τ = maxi |aii|.
In [5], a partition of the H−matrix set into three mutually exclusive classes was made as follows

H = HI ∪HM ∪HS

and the main results related to our objective are summarized below.
(i) HI: Invertible class. This class is characterized by the non-singularity of all matrices in
the equimodular set. Among other interesting characterizations in [4], it is determined by s > ρ(B)
in (2.2), and, using the associated Jacobi iteration matrix we have:

A ∈ HI ⇔ DA is nonsingular and ρ (|JA|) < 1. (2.3)

Note that although this class contains only nonsingular H−matrices it does not contain all nonsin-
gular ones. Nevertheless, it contains all nonsingular M−matrices.
(ii) HM: Mixed class. This class is characterized with the observation that the equimodular
set contains singular and nonsingular matrices (for n > 1 1). This class can also be characterized

1If n = 1 there exist only two classes: [0] ∈ HS and [x] ∈ HI for x ̸= 0
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(see Table 1 of [5] ) by: DA is nonsingular and s = ρ(B) in (2.2). Moreover, M (A) is a singular
M−matrix, and we will also use their Jacobi iteration matrix characterization:

A ∈ HM ⇔ DA is nonsingular and ρ (|JA|) = 1. (2.4)

In this class there exist some singular H−matrices (comparison matrices and others) but also there
exist a larger number of nonsingular ones as we comment later.
(iii) HS: Singular class. This class is characterized by the singularity of all matrices in the
equimodular set and it is determined by: DA is singular and M (A) is a singular M−matrix.
Since the Jacobi iteration matrix JA for these H−matrices does not exist, we will made a different
characterization in Section 2.1 (Theorem 2.1).

Remark: In [6] the following result is established: if A ∈ HM is irreducible
B ∈ Ω(A) is singular ⇔ B = D1M (A)D2, where D1 and D2 are diagonal unitary matrices.
So, in the equimodular set Ω(A) the subset of singular H−matrices consists only of matrices
diagonally equivalent to M (A). Let us see why the number of nonsingular H−matrices in HM is
much larger than that of singular ones. Consider a totally dense singular M−matrix A = M (A) ∈
HM . Taking all possible combinations of ± signs for each element of A, it is checked that there exist
another 2n

2 − 1 real matrices in Ω(A). However, by considering all possible products D1M(A)D2,
where D1, D2 are real diagonal unitary matrices, it is found that 1

22
n × 2n = 22n−1 of them are

singular matrices. Taking the ratio 22n−1

2n
2 = 1

2(n−1)2
it is realized that, especially when the number

n is large, the singular matrices constitute only a small percentage of the total number of real
equimodular H−matrices of the HM class.

From the exposed partition of the H−matrix set, we conclude a particular characterization of
some non-H−matrices:

ρ (|JA|) > 1 ⇔ A ∈ nH ̸ 0, (2.5)

where nH ̸ 0 denotes the subset of the non-H−matrix set, nH, whose main diagonal is nonsingular.
This set is different from the non-H−matrices that have some null diagonal entry. The latter
subset is denoted by nH0.

Then, considering the results of [2], we can conclude that Algorithm H, AH, can determine
H−matrices in HI , irreducible matrices in HM and non-H−matrices in nH ̸ 0. So, we need to
distinguish H−matrices in HS and non-H−matrices in the subset nH0. To do this we summarize
some results related to H−matrices and reducibility.

2.1 Reducible H−matrices

As it is known any A ∈ Cn,n, n ≥ 2, can be put, by a similarity permutation, in an upper triangular
block form (Frobenius normal form (Fnf)), not necessarily unique, as follows:

F(A) = PAP T =



F11 F12 F13 · · · F1,q−1 F1q

0 F22 F23 · · · F2,q−1 F2q

0 0 F33 · · · F3,q−1 F3q
...

...
...

. . .
...

...
0 0 0 · · · Fq−1,q−1 Fq−1,q

0 0 0 · · · 0 Fqq


, (2.6)
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where Fii ∈ Cni,ni for i ∈ Q := {1, 2, . . . , q} such that
∑q

i=1 ni = n and where each Fii is irreducible
unless it is a 1× 1 zero block. If q = 1 and A ̸= [0], A is irreducible, otherwise it is reducible.

We recall the following results from [5] on reducible H−matrices:
Let A ∈ Cn,n be a reducible matrix. Then, A is an H−matrix iff in the block form of the Fnf of
A, F(A) = [Fij ] (2.6), each diagonal block Fii is an H−matrix for all i ∈ Q. In addition, if A ∈ H,
A ∈ HI ⇔ Fii ∈ HI ∀i ∈ Q; A ∈ HS ⇔ at least one Fii ∈ HS ; and A ∈ HM ⇔
Fii ̸∈ HS ∀i ∈ Q and at least one Fii ∈ HM .

From [5, Theorem 3] we can readily determine a particular subset of non-H−matrices:

Lemma 2.1. Let A ∈ Cn,n be irreducible such that DA is singular. Then A ∈ nH0.

Consequently, a matrix A ∈ HS is necessarily reducible. Moreover, null diagonal entries deter-
mine null 1× 1 diagonal blocks in the Fnf of A and the remainder diagonal blocks are irreducible
H−matrices:

Theorem 2.1. Let A ∈ Cn,n and let ZD = {i : aii = 0}. Then, A ∈ HS iff card(ZD) = s ≥ 1, A
is reducible and the diagonal blocks Fii of the Fnf of A (2.6) are in general of two types:
(a) Fii = [0] = [ajj ] such that j ∈ ZD, and this holds for precisely s diagonal blocks. If s = n, then
q = n and F(A) is an upper triangular matrix with null main diagonal.
(b) If s < n, for each i ∈ Q\ZD, JFii exists and ρ (|JFii |) ≤ 1.

Summarizing, we can characterize the non-H−matrices set nH:
A ∈ nH ⇔ either the main diagonal of Fii is singular or ρ (|JFii |) > 1

for at least one irreducible diagonal block Fii of the Fnf of A.
Nevertheless, since both conditions may hold in a matrix and some 1 × 1 diagonal blocks can

also be null, we make a partition of nH into three mutually exclusive classes:

Theorem 2.2. If A is not an H−matrix, it belongs to one, and only one, of the following classes:
A ∈ nH ̸0 ⇔ DA is nonsingular and ρ(|JA|) > 1.
A ∈ nH0

S ⇔ DA is singular and A is reducible with each zero diagonal entry forming a 1 × 1
diagonal block of the Fnf of A, and, if Fii is an irreducible diagonal block, the Jacobi iteration
matrix associated with M (Fii), JM(Fii) = |JFii |, exists and there exist(s) some irreducible diagonal

block such that ρ
(
|JFi0i0

|
)
> 1. All matrices in this class are singular and belong to nH0.

A ∈ nH0
N ⇔ DA is singular with at least one null diagonal entry in an irreducible diagonal block

Fii of the Fnf of A (2.6) (If A is irreducible, Fii = A). This is the complementary class of nH0
S in

nH0. The matrices in this class can be singular/reducible or not.
Hence, we have the following partitions of the non-H−matrix set:

nH = nH ̸ 0 ∪ nH0 = nH ̸ 0 ∪ nH0
S ∪ nH0

N .

Proof: The proof follows by noting that nH0
S ∩ nH0

N = ∅. 2

So, in order to distinguish the classes nH0
N and nH0

S , we state and prove the following lemma.

Lemma 2.2. Let A ∈ Cn,n be reducible with DA singular. Then

aii = 0 and

n∑
k=1

|aikaki| > 0 ⇒ A ∈ nH0
N . (2.7)
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Proof: aii = 0 and
∑n

k=1 |aikaki| > 0 ⇒ aikaki ̸= 0 for some k ̸= i. Then aii = 0 is a diagonal
entry of some irreducible diagonal block of the Fnf of A. By Lemma 2.1, A is not an H−matrix
and, particularly, A belongs to the class nH0

N defined in Theorem 2.2. 2

Condition (2.7) does not constitute a characterization of matrices in nH0
N as the following

example shows.

Example 1.

A =


7 1 2 3

0 0 1 0
0 0 2 1
0 1 1 3

 ∈ nH0
N

This matrix A is reducible and is written in Fnf. F11 = [a11] = [7] ∈ HI and F22 ∈ nH0
N by Lemma

2.1. Note that A and F22 ∈ nH0
N but

∑n
k=1 |a2kak2| =

∑n
k=2 |a2kak2| = 0. In Section 3 we will give

a complete characterization, Lemma 3.2, of 1× 1 null diagonal blocks in the Fnf of a matrix A.
In the sequel we present some Examples where all possible cases of interest will be exhibited.

For simplicity we consider matrices that coincide with their comparison counterparts and their
entries are selected in a convenient way so that immediate conclusions can be drawn. Reducible
matrices undergone a similarity permutation beforehand such that their Fnf is shown.

Example 2 (H−matrices: A1 ∈ HI , A2 ∈ HM , A3 ∈ HS).

A1 = M(A1) =


4 −1 −1 −1

−1 4 −1 −1
−1 −1 4 −1
−1 −1 −1 4

 = 4I −


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


︸ ︷︷ ︸

B1

: s1 = 4 > ρ(B1) = 3

A2 = M(A2) =


3 −1 −1 −1

−1 3 −1 −1
0 −2 3 −1
0 −1 −2 3

 = 3I −


0 1 1 1
1 0 1 1
0 2 0 1
0 1 2 0


︸ ︷︷ ︸

B2

: s2 = 3 = ρ(B2) = 3

A3 = M(A3) =


2 −2 −1 −1

−2 2 0 −1
0 0 0 −1
0 0 0 5

 = 5I −


3 2 1 1
2 3 0 1
0 0 5 1
0 0 0 0


︸ ︷︷ ︸

B3

: s3 = 5 = ρ(B3) = 5

Note that A1 is irreducible and nonsingular. The Jacobi iteration matrix associated with A1 is
J1 =

1
4B1 and ρ(|J1|) = 3

4 < 1. Then, all matrices in Ω(A1) are nonsingular H−matrices.
A2 is a singular M−matrix but its Jacobi iteration matrix is J2 = 1

3B2 and ρ(|J2|) = 1. The
distinction between A2 and A3, despite that in both we have s = ρ(B), is that A3 is reducible,
already in its Fnf, and has one 1 × 1 zero diagonal block. Note that in Ω(A2) there exist some
nonsingular matrices: |A2| is an example of such a nonsingular matrix. On the contrary, all
matrices in Ω(A3) are singular matrices. One notes that the bdFnf of its Fnf consists of the blocks

F11 =

[
2 −2

−2 2

]
∈ HM , F22 = [0] ∈ HS and F33 = [5] ∈ HI . Theorem 2.1 states that A3 ∈ HS .
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Example 3 (Non-H−matrices: A4 ∈ nH ̸ 0, A6 ∈ nH0
S , A5, A7 ∈ nH0

N ).

A4 = M(A4) =

 2 −1 −3
−4 4 −2
0 −9 7

 = 7I −

 5 1 3
4 3 2
0 9 0


︸ ︷︷ ︸

B4

: s4 = 7 < ρ(B4) = 9

A5 = M(A5) =

 4 −1 −1
−2 0 −2
−1 −1 4

 = 4I −

 0 1 1
2 4 2
1 1 0


︸ ︷︷ ︸

B4

: s4 = 4 < ρ(B4) = 5

A6 = M(A6) =

[
[0] − |X|
0 A4

]
= 7I −

[
[7] |X|
0 B4

]
︸ ︷︷ ︸

B6

: s6 = 7 < ρ(B6) = 9 ∀X ∈ C1,3

A7 = M(A7) =

[
[|a|] − |X|
0 A5

]
= 4I−

[
[4− |a|] |X|

0 B5

]
︸ ︷︷ ︸

B7

: s7 = 4 < ρ(B7) = 5
∀X ∈ C1,3

|a| ≤ 4

Matrices of Example 3 are different in nature although for all of them there holds s < ρ(B), then all
are non-H−matrices. Firstly, the first two matrices are irreducible matrices and the other are not.
Secondly, the particular difference between A4 and A5 matrices is the existence of a null diagonal
entry in A5. Then, the non-H−matrix character of A4 may be concluded using its Jacobi iteration
matrix, ρ(|J4|) > 1, but the non-H−matrix character of A5 follows from Lemma 2.1 since it is
irreducible. Thirdly, the remainder matrices are reducible matrices and their diagonal matrices are
singular. Then, to determine the non-H−matrix character, without computing ρ(B), one needs to
know their Fnf’s. Fourthly, A6 is in nH0

S since the only null diagonal entry is in a 1× 1 block and
we can compute the Jacobi iteration matrix of the other diagonal block, being again ρ(|J4|) > 1.
Finally, A7 belong to nH0

N since one diagonal entry belongs to an irreducible diagonal block. Note
that a = 0 in the matrix A7 determines a null diagonal block in the Fnf of A7 but this is not a
contradiction.

The discussion so far reveals that in order to make the desired identification for a given A ∈ Cn,n

one has to know whether A is irreducible or reducible. If it is irreducible, the identification is
straightforward: either DA is singular, A ∈ nH0

N , or, otherwise, one can determine, using AH, if
ρ(|JA|) is less than, equal to, or greater than 1 to conclude that A belongs to HI , HM or nH ̸ 0,
respectively. If A is reducible, one needs to know a bdFnf in order to determine to which class of
H− or non-H−matrices it belongs, applying, if needed, AH to one or more irreducible diagonal
blocks of order ≥ 2 having in mind the results exposed.

3 Irreducible diagonal blocks

3.1 Is A ∈ Cn,n Irreducible or Reducible?

A statement that enables us to decide about the irreducibility of a given A ∈ Cn,n is the one below
which is stated and proved in Lemma 2.2 of [13]. Specifically:

Lemma 3.1. Let A ∈ Rn,n be irreducible with A ≥ 0, then (I +A)n−1 > O.
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Based on the above lemma, we can easily prove the following theorem:

Theorem 3.1. A matrix A ∈ Cn,n is irreducible iff (I + |A|)n−1 > O.

Proof: If A is irreducible then so is |A| (≥ O) and Lemma 3.1 applies. Conversely, let (I +
|A|)n−1 > O and A be reducible. Then, there exists a permutation matrix P such that F =

PAP T =

[
F11 F12

O F22,

]
, where Fii ∈ Cni,ni , i = 1, 2, with n1 + n2 = n. Forming (I + |F |)n−1 we

have

(I + |F |)n−1 =

[
In1 + |F11| |F12|

O In2 + |F22|

]n−1

=

[
(In1 + |F11|)n−1 |G12|

O (In2 + |F22|)n−1

]
≥ O.

Hence (I+|A|)n−1 = (I+P T |F |P )n−1 = P T (I+ |F |)n−1P ≥ O, with strict inequality not holding,
which contradicts our assumption. 2

Since we are only interested in the nonzero pattern of the powers of I + |A|, we may use
1’s in the place of the nonzero elements of I + |A|. (Note: The last suggestion was made to
the third of the authors by Professor Richard Varga [16].) So, using the notation spones(·) for the
replacement of the nonzero elements of a matrix by 1’s, we may write C ≡ C(A) = spones(I+|A|) =
spones(I + spones(A)). Also, to avoid unnecessary calculations in forming Ck for all k ∈ N\{n},
we form only C2, C4, C8, · · · , C(2l), with l = ⌈ log(n−1)

log 2 ⌉. For the same reason as before, we replace

C2k with spones
(
C2k

)
for each k. We stop forming C(2m), 1 ≤ m ≤ l, as soon as the number

of nonzero elements (nnz) of any C(2m) is n2, in which case A is irreducible, or when a possible
equality nnz(C(2m−1)) = nnz(C(2m)) < n2 occurs, in which case A is reducible. That is, from
Theorem 3.1 we conclude the following result:

Corollary 3.1. Let A ∈ Cn,n, l = ⌈ log(n−1)
log 2 ⌉, C0 = spones (I + |A|) and Ck = spones

(
C2
k−1

)
,

k = 1, 2, . . . l. Then, A is reducible iff either nnz(Ck) = nnz(Ck−1) < n2 for some k < l or
nnz(Cl) < n2. In other words, A is irreducible if and only if nnz(Ck) = n2 for some k ≤ l.

Proof: If nnz(Ck) = nnz(Ck−1) < n2, then Cl = Ck = Ck−1. Hence nnz(Cl) < n2 and the proof
follows. 2

Example 4. For the matrix A below we form the matrices Ck as in Corollary 3.1 concluding that
A is a reducible matrix.

A =



0.8 0 0 0 −1.2 0
0 0.9 0 0.6 0 0
0 0 0.7 0 0 0
0 0 0.1 0.5 0 −0.1

0.3 0 −1.0 0 0.6 0
0 1.1 0 0 −0.7 1.0

 ⇒ C0 =



1 0 0 0 1 0
0 1 0 1 0 0
0 0 1 0 0 0
0 0 1 1 0 1
1 0 1 0 1 0
0 1 0 0 1 1

 .

Since n = 6, l = ⌈ log(n−1)
log 2 ⌉ = ⌈2.3219⌉ = 3, we should form C1, C2 and C3. Since nnz(C3) =

nnz(C2) = 25 < 62 = 36 is obtained, A is reducible.
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Then, if A is a reducible matrix, using the notation of Corollary 3.1, the last matrix computed
is the densest between the powers of C0 and coincides with Cl. This matrix will be used in Section
3.2. The matrix Cl obtained in Example 4 is

Cl = C3 = spones(C2
2 ) = C2 =



1 0 1 0 1 0
1 1 1 1 1 1
0 0 1 0 0 0
1 1 1 1 1 1
1 0 1 0 1 0
1 1 1 1 1 1

 . (3.1)

Example 5. Let

A =



0.1 0 0 0 0 0 0 −0.2 0
1 9 8 5 4 3 6 2 7
0.7 0 −0.8 0 0 0 0 0 0
0 0 0 −0.1 0 0 0.2 0 0
0 0 0 0.8 −0.7 0 0 0 0
0 0 0 0 −0.6 0.5 0 0 0
0 0 0 0 0 0 0.3 0 −0.4
0 0 0 0 0 0.4 0 −0.3 0
0 0 0.6 0 0 0 0 0 −0.5


∈ R9,9.

Computing the matrices Ck as in Example 4 for k = 0, 1, 2, 3 we obtain that A is reducible since
nnz(C3) = 73 < l2 = 81. In this example nnz(C2) = 49 < nnz(C3).

Then, the first part of the new algorithm (IRR-algorithm), whose purpose is to determine the
irreducible character of a square complex matrix, is the following:

Algorithm 3.1 (IRR).
1. ZD = {i : aii = 0}, NH = 0, IRR = 0, C = I + spones(A)
2. FOR i ∈ ZD : IF

∑
k |aikaki| ≠ 0 : “A ∈ nH0

N”, NH = 1 END OF TOTAL PROCESS
3. IF nnz(C) = n2 : “A is irreducible”, IRR = 1, END

4. l = ⌈ log(n−1)
log 2 ⌉, k = 0

5. WHILE NH = 0 and IRR = 0 :
6. p = nnz(C), B = C2, q = nnz(B), k = k + 1
7. FOR i ∈ ZD : IF bii > 1 : “A ∈ nH0

N”, NH = 1 END OF TOTAL PROCESS
8. IF q = n2 AND ZD ̸= ∅ : “A ∈ nH0

N”, NH = 1 END OF TOTAL PROCESS
9. ELSE IF q = n2 AND ZD = ∅ “A is irreducible”, IRR = 1, END
10. ELSE IF p = q (< n2) OR k = l : “A is reducible”, IRR = −1, SAVE matrix C, END
11. ELSE : C = spones(B) (RETURN TO STEP 5)

According to Corollary 3.1 the natural end of the algorithm is IRR = 1 (irreducible) or IRR =
−1 (reducible). Nevertheless, since our main objective is to determine the H−matrix character,
the test of some conditions for null diagonal entries is added: In Step 2 following Lemma 2.2, in
Step 8 Lemma 2.1, and in Step 7 following the lemma below.
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Lemma 3.2. Let A ∈ Cn,n, ZD = {i : aii = 0} ̸= ∅ and G = I + spones(A). Then, the following
two conditions are equivalent:
1. [aii] = [0], for i ∈ ZD, is a diagonal block of the Fnf of A.
2. The xii diagonal entry of Gk satisfies xii = 1 for k = 1, 2, 3, . . . , n.

Proof: The Fnf’s of A and of G have the same structure, that is, they have the same block sizes
and the same index subsets that determine diagonal blocks. The same holds true for the Fnf’s of
Gk, k = 1, 2, . . . , since G ≥ 0 (no new zero entry can appear in the successive powers of G).
1 ⇒ 2: Note that, aii = 0 ⇔ gii = 1. Moreover, if k = 2, the diagonal entry xii of G

2 is

xii =
∑
k

gikgki = 1 +
∑
k ̸=i

gikgki = 1

because [gii] is a 1 × 1 diagonal block. Computing the successive powers of G we conclude that
[aii] = [0] is a diagonal block of the Fnf of A and hence [xii] = [1] is a diagonal block of the Fnf of
Gk for all k.

2⇒ 1: Suppose that i = 1 and that an irreducible diagonal block of the Fnf ofG is the submatrix
M = [gij ] for i, j = 1, 2, . . . , n1 such that 1 < n1 ≤ n. By Theorem 3.1, Mn1−1 = [mij ] > 0, and
mij ≥ 1. Then the x11 entry of Gn1 is x11 ≥

∑n1
j=1m1jmj1 ≥ n1 > 1 which is a contradiction. 2

We show the above results in the following example.

Example 6. Let A =

 0 1 0
0 2 1
1 1 3

 ∈ nH0
N the diagonal block F22 of the matrix of Example 1.

Applying IRR-algorithm we have for k = 1, p = nnz(C) = nnz(spones(I + |A|)) = 6 < n2 = 9.
For k = 2 we compute

B = C2 =

 1 2 1
1 2 2
2 3 2


such that b11 = 1 and nnz(B) = 9 = n2. Then A is an irreducible matrix but A ∈ nH0

N since
ZD ̸= ∅.
However, if we compute G = C3, the first diagonal entry of G is x11 = 2 > 1 as Lemma 3.2 predicts.
Applying IRR-algorithm to the matrix A of Example 1, we have, for k = 1,

C1 = C2
0 =


1 3 4 3
0 1 2 1
0 1 2 2
0 2 3 2


such that nnz(B) = 13 < n2 and b22 = 1. Then, we compute C2 = spones(C2

1 ), such that
nnz(C2) = 13 = nnz(C1), then A is reducible, but now b22 = 3 > 1 and then A ∈ nH0

N since b22 > 1
⇒ a22 does not determine a 1× 1 diagonal block (Lemma 3.2).

Summarizing, IRR-Algorithm concludes as follows:
1. If ZD = ∅ (⇔ DA is nonsingular), then

either IRR = 1, hence A is irreducible and the matrices B and C are not used any further,

10



or IRR = −1, hence A is reducible and the final matrix C computed coincides with
Cl = spones(I + |A|)n−1 and it is saved for further use.

2. If ZD ̸= ∅ (⇔ DA is singular), then
either NH = 1, then A has some null diagonal entry in an irreducible principal submatrix (A

being irreducible is included) and is not an H−matrix. Particularly, A ∈ nH0
N . In such a

case the total process ends with the identification of A being completed.
or NH = 0 and IRR = −1, then A is reducible and the final matrix C is also saved.

Moreover, all null diagonal entries are classified as 1× 1 null diagonal blocks of the Fnf of
A, and their indices are saved in the set ZD.

Note that, applying IRR-algorithm, we could obtain that A ∈ nH0
N ; otherwise, we can remove

the possible indices in ZD and we can apply AH to the matrix with the remainder indices. Nev-
ertheless, since AH can present problems with matrices belonging to HM , due to round-off errors,
we will determine in an easy way the bdFnf of A using the saved matrix C in order to apply AH
to the irreducible diagonal blocks of the Fnf of A.

3.2 Determination of the bdFnf of A ∈ Cn,n

Theorem 3.2. Let A ∈ Cn,n be reducible, F(A) the Fnf of A of (2.6) and E = B + BT , where

B = spones
(
(I + |F(A)|)n−1

)
. Then, the matrix E, partitioned as in (2.6), will have diagonal

blocks
Eii = 2enie

T
ni

∈ Rni,ni , where eni = [1 1 · · · 1]T ∈ Rni , ∀i ∈ Q,

while its off-diagonal blocks Eij , ∀i ̸= j ∈ Q will have as entries 1’s and 0’s.

Proof: The diagonal blocks Ini + |F(A)|ni,ni
, ∀i ∈ Q, of I + |F(A)| , are irreducible and non-

negative. So, by Lemma 3.1, we will have that Bii =
(
(I + |F(A)|)n−1

)
ni,ni

> O. Hence

Eii = 2enie
T
ni
, ∀i ∈ Q. The blocks Bij in the block upper triangular part of B will satisfy

Bij ≥ Oni,nj for i ∈ Q\{q}, j = i + 1, . . . , q, while those of its block lower triangular part will be
Bij = Oni,nj ∀i ∈ Q\{1}, j = 1, . . . , i− 1. Hence, the conclusions of the theorem readily follow. 2

Obviously, if A is irreducible it is already in its Fnf. In case A is reducible to find a block
permutation of the block diagonal of an Fnf of A we use some ideas from the compact profile
technique in Kincaid et al. [9] and the extended compact profile technique in Hadjidimos [7]. Suppose
A is a reducible matrix and C is the matrix obtained and saved by IRR-algorithm: C = Cl =
spones

(
(I + |A|)n−1

)
. Let F(A) and E be the matrices as in Theorem 3.2 and let P the permutation

such that A = PF(A)P T . If we form the matrix R = C + CT , then R = PEP T . Since the entries
of the diagonal blocks of E are 2’s and the remainder entries are 1’s and 0’s, the entries rij = 2
can be used to determine the indices of the respective diagonal blocks of F(A) and to obtain the
bdFnf of A. To make clear how these ideas work in our case we give an example.
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Example 7. Let A be the reducible matrix of Example 4. One of its Fnf’s is

F(A) =



1.0 0 1.1 −0.7 0 0
−0.1 0.5 0 0 0 0.1

0 0.6 0.9 0 0 0

0 0 0 0.6 0.3 −1.0
0 0 0 −1.2 0.8 0

0 0 0 0 0 0.7

 .

(The similarity permutation needed to obtain F(A) is
(
6 4 2 5 1 3

)
).

¿From (3.1) we get

R = C3 + CT
3 =



2 1 1 1 2 1
1 2 1 2 1 2
1 1 2 1 1 1
1 2 1 2 1 2
2 1 1 1 2 1
1 2 1 2 1 2

 . (3.2)

Then, indices 1 and 5 determine a diagonal block of order 2; indices 2, 4 and 6 determine a diagonal
block of order 3; and index 3 determine a 1 × 1 diagonal block. This technique is described next
and we show the results using the matrices of Examples 4 and 7.

We form the two vectors:
a) perm: a vector of size n which on input has permi = i ,∀ i ∈ N . On exit it will contain a
permutation of (1, 2, . . . , n) that will indicate the similarity permutation required to obtain a block
permutation of an Fnf of A.
b) orbs: a vector of size q ≤ n. On exit, orbsi will be the order of the ith block of the bdFnf such
that

∑q
i=1 orbsi = n.

We begin by setting perm1 = 1, and find the row/column indices of entries such that Ri1, (and
R1i)= 2, i ∈ N . If I1 is this index set and n1 is its cardinality, i.e., the number of 2’s found, we
set orbs1 = n1 and interchange the contents of permi, for i ∈ I1, with those of perm in the n1 first
positions. (If n1 = 1, interchanges in perm are avoided.) That is, orbs1 is the order of the first
diagonal block and the n1 first values of perm are the corresponding row/column indices having a
value 2 in the first row/column of matrix R. In our example, only R11 = R51 = 2. So, I1 = {1, 5},
n1 = 2 and we need to interchange second and fifth positions. Then perm = (1, 5, 3, 4, 2, 6) and
orbs1 = 2.

Next, we consider j = permn1+1 (j = perm3 = 3 in our example) and I2 = {i : Rij = Rji = 2}.
If n2 = card(I2), we set orbs2 = n2 and interchange the contents of permi for i ∈ I2 with those of
perm in the positions n1 + 1 until n1 + n2. In our example, I2 = {3}, n2 = 1, orbs2 = 1 and, then,
perm = (1, 5, 3, 4, 2, 6) remains unaltered.

Continuing, we consider j = n1 + n2 + 1 and we obtain the respective I3 and n3. Particularly,
it can be found that n3 = 3 in our example and so n1 + n2 + n3 = 6 = n. So, orbs3 = 3,
perm = (1, 5, 3, 4, 2, 6) remains unchanged and the bdFnf can be obtained. On exit the vectors
perm and orbs appear as in Table 1.
The bdFnf suggested by Table 1 is
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perm 1 5 3 4 2 6

orbs 2 1 3

Table 1: Final vectors perm and orbs for matrix A of Example 4

D =



0.8 −1.2 0 0 0 0
0.3 0.6 0 0 0 0

0 0 0.7 0 0 0

0 0 0 0.5 0 −0.1
0 0 0 0.6 0.9 0
0 0 0 0 1.1 1.0

 . (3.3)

Note that the diagonal blocks numbered 1, 2, 3 in F(A) in Example 7 appear now as blocks 3, 1,
2 in D with inner similarity permutations in two of the blocks. Then the block diagonal matrix D
in (3.3) is a bdFnf of A.

In addition, we can construct the bdFnf according to orbs where the diagonal blocks are taken
in a non decreasing order. However, we do not need this particular bdFnf: we can analyze the
H−matrix character of each diagonal block, in the third part of our algorithm, taking them following
the orders indicated by orbs.

In conclusion, using IRR-algorithm, if NH = 0 and IRR = −1 is obtained, the densest matrix
C = spones((I + |A|)n−1) is saved. Next, the following algorithm (BD), computes R = C + CT

and determines the vectors perm and orbs. Some temporary variables are used: “bn” for “block
number”; “bo” for “block order” for “lpp” by “last permuted position”. Moreover, only with the
purpose of simplifying notation in the next expressions, the row indices defining a diagonal block
are also determined and denoted by Ik. The first line defines the function w =PERMUTE(i, j, v)
which interchanges the positions vi and vj and the rest of entries remain unaltered: wk = vk for
k ̸= i, j; wi = vj and wj = vi.

Algorithm 3.2 (BD).
⋆ Declare function PERMUTE : v =PERMUTE(i, j, v) such that k = v(j), v(j) = v(i), v(i) = k
1. IF IRR= −1 and NH= 0 : R = C +CT , perm = (1, 2, . . . , n), s = card(ZD), lpp = s+ 1,

bn = s
2. FOR j = 1 TO s : Let ij ∈ ZD, perm =PERMUTE(j, ij ,perm), orbsj = 1, Ij = (ij)
3. WHILE lpp < n

j = perm(lpp), bn = bn+ 1, bo = 1
FOR i = 1 TO n

IF j ̸= i and rji = 2 : perm =PERMUTE(lpp+1, i,perm), lpp = lpp+1, bo = bo+1
orbsbn = bo, Ibn = perm(j : lpp) = {permj ,permj+1, . . . ,permlpp}

4. q = bn (q is the number of diagonal blocks and it is the size of vector orbs)

By saving the vectors perm and orbs (or the respective index set Ii, ∀ i ∈ Q), we obtain a block
permutation of the block diagonal of the Fnf of A shown in (2.6). Specifically, the following bdFnf:

D = [Fii], where Fii ∈ Cni×ni , ∀ i ∈ Q. (3.4)
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That is, D is a block diagonal matrix such that Fii = [ajk], where j, k ∈ Ii and Ii contains ni = orbsi
indices, particularly the indices of perm in the positions

∑i−1
m=1 nm + 1 to

∑i
m=1 nm, ∀i ∈ Q\{1}.

In addition, Fii = [0] for i = permj , j = 1, 2, . . . , s, that is, ni = orbsi = 1 for i = 1, 2, . . . , s.

4 Determination of the H−matrix character of A ∈ Cn,n

As it was mentioned, a slight modification of AH is to be applied to one or more irreducible diagonal
blocks of the Fnf of A iff no immediate conclusion, as to which class of H− or non-H−matrices
the given matrix A ∈ Cn,n belongs, is obtained before. Without appealing to AH a conclusion can
be drawn in the following two cases:
a) If the Fnf of A is triangular, in which case A ∈ HI or A ∈ HS if DA is nonsingular or singular
respectively, and
b) If A has an irreducible principal submatrix with a zero diagonal element, in which case A ∈ nH0

N .
The reader is reminded that AH can be applied only to irreducible matrices with no zeros in

their diagonal, and these irreducible diagonal blocks have been obtained by the BD-algorithm. So,
the Modification suggested of AH to be applied to irreducible diagonal blocks without null diagonal
entries is the following. The input matrix is a diagonal block F = Fii ∈ Cni×ni , with ni > 1, and
the output of this modification is only the parameter r:

Algorithm 4.1 (ModAH).
1. r = −1, J =

∣∣D−1
F F

∣∣− I (J = |JF | is the Jacobi iteration matrix associated with M (F ))
2. maxiter = 1000, k = 1
3. WHILE r < 0
4. FOR i = 1 to ni : Si =

∑
j bij

5. m = minSi, M = maxSi

6. IF m > 1 : r = m > 1 (F ∈ nH ̸ 0), END
7. ELSE IF M < 1 : r = M < 1 (F ∈ HI), END
8. ELSE IF m = M ( = 1 ) : r = 1 (F ∈ HM ), END
9. ELSE : D = diag(1 + Si)/(1 +M), J = D−1JD, k = k + 1
10. IF k > maxiter : STOP (and send message)
11. ELSE (RETURN TO STEP 3)

Then, the third part of the new algorithm collects the results of ModAH applied to the q
diagonal blocks of the bdFnf of A (3.4) obtained by the BD-algorithm. Note that each 1 × 1
diagonal block is an H−matrix and s = card(ZD) of them are in HS . That is, Part 3 applies
ModAH-algorithm to each diagonal block Fii of order ni > 1 determined by the indices in Ii =
{permj : j = q+1, q+2, . . . , q+ ni} for q = n1 + n2 + · · ·+ ni−1. In case the output parameter r
is greater than 1 for some Fii, the original matrix A is not an H−matrix and the complete process
terminates. In this case, we set NH= 2 and A ∈ nH ̸ 0 or A ∈ nH0

S if s = 0 or s > 0, respectively. If
r = 1 for some Fii we define a new variable MH= 1 (for Mixed H−matrix), in order to determine
the class of A at the end of the process, while if r < 1 for all ris MH= 0. Recall that from the first
part, the IRR-algorithm determines all cases where A ∈ nH0

N setting NH= 1. Then, if NH remains
null, the matrix A is an H−matrix, and belongs to HS if s > 0, or to HM if MH= 1 and s = 0, or
A ∈ HI if s = 0 and MH= 0.

So, the complete algorithm to determine the irreducible/reducible character as well as the
H−/non-H−matrix character and the class of a general matrix A ∈ Cn,n is the given below. We
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call it Algorithm Based on GeneralH−matrices, or simplyABGH, and it gives rise to an extension
and modification of AH.

Algorithm 4.2 (ABGH).

• INPUT : A ∈ Cn,n

1. Apply the IRR-algorithm to A. The OUTPUT variables are : the index set ZD of
null diagonal entries, s = card(ZD) ∈ [0, n], the temporary variable NH (initial value
NH= 0), and the main variable IRR (initial value IRR= 0). Particular final results:

a) A ∈ nH0
N ⇔ NH= 1.

b) A is irreducible ⇔ IRR= 1. A is reducible ⇔ IRR= −1. In the latter case,
the densest matrix C is included in the output.

2. If NH= 0 and IRR = −1 : apply the BD-algorithm using as input C and ZD. The
output consists of the vectors perm and orbs (the number of diagonal blocks in the bdFnf
is q; specifically, q is the size of vector orbs) and the respective index sets Ii, i ∈ Q, that
determine the bdFnf: Fii = [ajk], j, k ∈ Ii. (The sets Ii can also be determined from
perm and orbs.)

If NH= 0 and IRR = 1 : set q = 1, perm = (1, 2, . . . , n), I1 =N and orbs = n.
(F11 = A)

3. If NH= 0, Part 3 determines the character of the successive diagonal blocks Fii following
the rule: if orbsi > 1, apply ModAH to Fii and obtain the value of the parameter ri = r

– If ri > 1 : NH= 2, END OF PART 3

– If ri = 1 : MH= 1

– If ri < 1 for all i : MH= 0

• OUTPUT : Using the values of NH, MH and s, conclude to which class of H−matrix/non-
H−matrix A belongs:

if NH= 0 : “A is an H−matrix” and

A ∈ HI iff s = 0 and MH = 0; A ∈ HM iff s = 0 and MH= 1; A ∈ HS iff s > 0.

if NH> 0 : “A is not an H−matrix” and

A ∈ nH0
N iff NH= 1; A ∈ nH ̸ 0 iff NH= 2 and s = 0; A ∈ nH0

S iff NH= 2 and s > 0.

Moreover, the conclusion on reducible/irreducible character of A (IRR= −1/1 respectively) is
obtained unless A ∈ nH0

N .

Based on the extended analysis of examples, on the notation and the theoretical analysis so
far, as well as on what has been explained in relation with the Algorithms, we present the main
theorem whose proof is given in an algorithmic way. It is simply noted that the diagonal blocks of
the bdFnf at hand are denoted by Bii, i ∈ Q. These may be those of F(A) in (2.6), Bii = Fii, or of
a block permutation of F(A), Bii = Fjj , and/or with inner permutations of them, Bii = PjFjjP

T
j ,

or even Bii = A if A is irreducible.

Theorem 4.1. Let A ∈ Cn,n be the input of ABGH. If A is an H−matrix, the Output of ABGH
is correct and determines the particular class, HI , HM or HS to which it belongs. On the other

15



hand, the Output of ABGH is also correct since it determines that A is not an H−matrix and, in
addition, it determines to which class of non-H−matrices A belongs, that is nH ̸ 0, nH0

S or nH0
N .

Unless A ∈ nH0
N , the reducible/irreducible character of A is also included in the output of the

ABGH.

Proof: If A ∈ nH0
N , Part 1 concludes that NH= 1, by virtue of Lemmas 2.2 and 3.2 and, on

exit, the conclusion is shown; no more computations are required for this class of matrices.
Otherwise, NH remains null. If A is irreducible, Part 1 concludes that IRR= 1 (nnz(Ck) = n2

for C = spones(I + |A|) and some k : Theorem 3.1). Otherwise, IRR= −1 and A is reducible

(nnz(C l) < n2 for l = ⌈ log(n−1)
log 2 ⌉ : Corollary 3.1).

For the reducible matrices only (IRR= −1), Part 2 determines a bdFnf of A, D = [Bii],
i = 1, 2, . . . , q, q ∈ [2, n], such that, if the number of null 1 × 1 diagonal blocks of A is SH = s,
the first s diagonal blocks are 1× 1 null matrices. If r = q − s, r diagonal blocks are irreducible
matrices and their main diagonals are nonsingular (Lemma 2.1). For irreducible matrices (IRR= 1
and NH= 0) the only irreducible diagonal block is A itself and its main diagonal is nonsingular.
Then D = A = B11, q = r = 1 and s = 0.

Then, Part 3 determines the H−matrix character and class based on the following notes:

1. A 1 × 1 matrix is an H−matrix. Then, A has SH = s diagonal blocks in HS and IH = r1
diagonal blocks in HI (being r1 the number of 1 × 1 invertible diagonal blocks). Note that,
in the particular case where q = n = s + r1, the Fnf of A is a triangular matrix and then
A ∈ HI if SH = 0, or A ∈ HS if SH > 0 and the process terminates.
Otherwise, there are r2 = q − s − r1 > 0 irreducible diagonal blocks of order greater than 1
to be analyzed in the present Part 3.

2. Applying ModAH-algorithm, in turn, to each of the last r2 blocks. Then:

(a) If ρ(|JBii |) > 1, then Bii is not an H−matrix nor A by (2.5). In this case, NH take the
value 2 and, by Theorem 2.2,

• either A ∈ nH ̸ 0 provided s = 0,

• or A ∈ nH0
S if s ≥ 1.

No more computations are needed and the conclusions in the Output of ABGH are
correct.

(b) If ρ(|JBii |) = 1, then A has some diagonal block in HM . Then, if s = 0, put MH= 1.

(c) Otherwise, ρ(|JBii |) < 1 and Bii ∈ HI . (This result does not modify any final result.)

(d) If NH remains null : go to the next i and repeat the process from 2.

3. When r2 is exhausted, if NH remains null, each diagonal block of order greater than 1 has
been analyzed and so, A is an H−matrix. Specifically,

(i) If s > 0, A ∈ HS .

(ii) Else, if MH= 1, A ∈ HM .

(iii) Else A ∈ HI .
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The proof concludes noting that HI ∪ HM ∪ HS ∪ nH0
N ∪ nH0

S ∪ nH ̸ 0 is a partition of the matrix
set Cn×n into the six mutually exclusive classes of H− and non-H−matrices and, for any specific
matrix A, one and only one of the six classes will be obtained. 2

Note that, in the theoretical case A ∈ HM or whenever A is “very close” to belong to the class
HM , the theorem may be of “little” practical value especially when n is relatively large. This is
because the presence of round-off errors may lead to erroneous results and conclusions. So, in the
practical implementation of ABGH we can modify Steps 6, 7 and 8 of ModAH-algorithm as

6. IF m− 1 > TOL : r = m > 1 (F ∈ nH ̸ 0), END
7. ELSE IF 1−M > TOL : r = M < 1 (F ∈ HI), END
8. ELSE IF 0 ≤ 1−m <TOL and 0 ≤ M − 1 <TOL : r = 1 (F ∈ HM ), END

with a tolerance bound TOL.
Note: Table 2 gives a detailed summary of what Theorem 4.1 states.

A ∈ Cn,n, M(A) = sI −B, s = maxi |aii| , B ≥ 0. F(A) = [Fij ] is an Fnf of A.

H−matrices (H) non-H−matrices (nH)

s > ρ(B) s = ρ(B) s < ρ(B)

A ∈ HI A ∈ HS A ∈ HM A ∈ nH0 A ∈ nH ̸ 0

A “invertible” A “singular” A “mixed” A ∈ nH0
N A ∈ nH0

S

Invertible Reducible Reducible
Singular Singular

∃ JA ∃/ JA ∃ JA ∃/ JA ∃ JA
ρ(|JA|) < 1 ρ(|JA|) = 1 ρ(|JA|) > 1

aii ̸= 0 ∀i ∃Fii = [0] aii ̸= 0 ∀i ∃aii = 0 ∃Fii = [0] aii ̸= 0 ∀i
ρ(|JFii |) < 1 ρ(|JFii |) ≤ 1 ρ(|JFii |) ≤ 1 ∃ at least one ∃JFii ρ(|JFii |) > 1
for all i for all for all i irreducible for all for at least

Fii ̸= [0] with equality diagonal block Fii ̸= [0] one index i
holding for having and some
at least one singular ρ(|JFii |) > 1

index i main diagonal

Table 2: Classes of general H− and non-H−matrices

5 Numerical Examples

In this section we give some Numerical Examples that cover all six classes of H− and non-
H−matrices of Table 2.

Example 8. We begin with the matrix F(A) ∈ C10×10 in (5.1) which is in its Fnf.

The diagonal blocks F11, F22, F44 and F55 all belong to the class HI as is readily checked. The
two blocks F33 and F66 of orders 2× 2 and 1× 1, respectively, have one of their diagonal elements
(F(A))55 and (F(A))10,10 given as x and y parameters. Playing with the values of x one can make
the corresponding block belong to any of the four classes HI , HM , nH0, nH ̸ 0, while the element y
can take the value zero or not. So, by Theorem 4.1 and for a specific pair of values (x, y), we are
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in a position to know in advance the class to which F(A) belongs.

F(A) =



3 + 4i −1 2 0.1 0.4 0.7 1 1.3 1.6 1.9
0 −3 0.5 0.1 −0.3 −0.4 −0.5i 1 + 2i −2 0.4
4 3 6 1.1 −1.2 1.5 2.7 3.8 0.7i −1 + 2i

0 0 0 i 1 + i 1− i 2 0.5 0.8 −1

0 0 0 0 ⃝x 2 0.7 0.9 1.1 1.3i
0 0 0 0 3 8 2 −1 3i 7.5

0 0 0 0 0 0 1 + i 8 2.5 −1.5

0 0 0 0 0 0 0 3 3 i
0 0 0 0 0 0 0 −4.5 6 2− i

0 0 0 0 0 0 0 0 0 ⃝y


. (5.1)

Consider now the permutation
(
6 7 3 10 9 2 4 1 8 5

)
that defines a permutation ma-

trix P . Let A = PF(A)P T from which

A =



8 2 0 7.5 3i 0 0 0 −1 3
0 1 + i 0 −1.5 2.5 0 0 0 8 0

1.5 2.7 6 −1 + 2i 0.7i 3 1.1 4 3.8 −1.2
0 0 0 ⃝y 0 0 0 0 0 0
0 0 0 2− i 6 0 0 0 −4.5 0

−0.4 −0.5i 0.5 0.4 −2 −3 0.1 0 1 + 2i −0.3
1− i 2 0 −1 0.8 0 i 0 0.5 1 + i
0.7 1 2 1.9 1.6 −1 0.1 3 + 4i 1.3 0.4
0 0 0 i 3 0 0 0 3 0
2 0.7 0 1.3i 1.1 0 0 0 0.9 ⃝x


. (5.2)

Giving (x, y) the pairs of values in Table 3 and running ABGH we find out that A belongs to the
classes illustrated in Table 3, which correspond to the six subclasses of Table 2, respectively, as this
was expected from the values of x and y given in the Fnf of A in (5.1).

(x, y) (−1,−0.1) (2, 0) (−0.75,−0.1) (0, 1) (−0.25, 0) (0.5, 1)

A ∈ HI HS HM nH0
N nH0

S nH ̸ 0

Table 3: Classes of general H− and non-H−matrices to which A belongs for various pairs (x, y).

6 Concluding Remarks

From the theory developed, the ABGH-Algorithm and the companion Theorem 4.1 it becomes
crystal clear that the specific H− or non-H−matrix class to which a given matrix A ∈ Cn,n

belongs is fully justified.
As is known there exists in the literature Tarjan’s Algorithm [12] which can efficiently replace

the IRR- and BD-Algorithms provided one would modify it in order to incorporate Steps 2 and 7
of the IRR-Algorithm, then keep only the diagonal blocks of the produced Fnf and finally arrange
the diagonal blocks in the way suggested by the BD-Algorithm.
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