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Abstract. This paper addresses the problem of long term mobile robot 
localization in large urban environments. Typically, GPS is the preferred sensor 
for outdoor operation. However, using GPS-only localization methods leads to 
significant performance degradation in urban areas where tall nearby structures 
obstruct the view of the satellites. In our work, we use omnidirectional vision-
based techniques to supplement GPS and odometry and provide accurate 
localization. We also present some novel Monte Carlo Localization 
optimizations and we introduce the concept of on line knowledge acquisition 
and integration presenting a framework able to perform long term robot 
localization in real environments. The vision system identifies prominent 
features in the scene and matches them with a database of geo-referenced 
features already known or integrated during the localization process. Results of 
robot localization in the old town of Fermo are presented. Results show good 
performance and the whole architecture behaves well also in long term 
experiments, showing a suitable and good system for real life robot 
applications. 

Keywords: omnidirectional vision, robot localization, outdoor robotics, 
knowledge acquisition and integration. 

1   Introduction 

Outdoor localization of mobile robots is a difficult task for many reasons. Some range 
sensors like laser range finders, which play an important role in indoor localization, 
are not suitable for outdoor localization because of the cluttered and unstructured 
environment. Global Positioning System (GPS) can give valuable position 
information, but often the GPS satellites are occluded by buildings or trees. 
Because of these problems and also for low cost robotics applications, vision has 
become the most widely used sensor in outdoor localization and navigation. A serious 
problem for vision are illumination changes, because illumination in outdoor 
environments is highly dependent on the weather (sunny, cloudy, ...) and on the time 
of day. Another problem is the perceptual aliasing: visual features may not be 
distinguishable enough; in a forest, every tree looks about the same. 
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An algorithm which can partially deal with changing illumination is the Scale 
Invariant Feature Transform (SIFT) developed by Lowe [1]. SIFT is a feature-based 
method which computes descriptors for local interest points. Another similar 
approach, with better computational performances, is SURF (Speeding Up Robust 
Features) [2-3]. Today tasks as visual mapping, localization and navigation, especially 
in outdoor environments, take a great advantage by using the omnidirectional vision  
and SIFT/SURF [5-6]; common approaches range from metrical to topological 
techniques [7-8]; however, the choice of approach depends closely by the desired 
accuracy and precision in the localization process. 
Here we present a framework based on omnidirectional vision, feature matching 
(using SIFT and SURF) and some novel Monte Carlo Localization optimizations with 
the scope, among others, of reducing the number of required images for faster setup 
operations and low memory requirements. 

The vision system identifies prominent features in the scene and matches them 
with a database of geo-referenced features already known or integrated during the 
localization process. So, we also introduce the concept of on line knowledge 
acquisition and integration, presenting a framework able to perform robot localization 
in real environments with long-term changes [4]. The enduring and long-term aspects 
are strongly coupled; enduring stands for a reliable methodology for outdoor 
localization in urban environments, while long-term is the capability of system to 
work also in presence of changes in the environment. 

All test are performed in real outdoor scenarios. Our data sets, each consisting of a 
large number of omnidirectional images, have been acquired over different day times 
both in indoor and outdoor environments. Results of robot localization in the 
historical centre of Fermo (Italy) are presented and discussed; in Figure 1 an example 
of omnidirectional views of Fermo downtown is shown. 

Main novelties of the paper rely on: novel probabilistic approach specially 
designed for omnidirectional vision based localization, on line information 
integration, experiments performed in long term robot localization in real word 
scenarios. 

The paper is organized as follows: we first introduce changes made to the generally 
used MCL algorithm (section 2) and the on-line information integration (section 3), 
then, before the conclusions, in section 4 we describe the experiments performed and 
the localization results obtained in the old town of Fermo, Italy. 
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Figure 1 Example of omnidirectional views 
 

2    Changes to basic MCL algorithm 

All the proposed modifications described below are designed for omnidirectional 
vision. We do not take into account angular rotation and the resampling is always 
done working only in X and Y coordinates. The first step of the original MCL 
algorithm [9-10] was sorting particles in a random way on the whole map, even in 
areas far from dataset images, which represent robot knowledge. So, we chose to 
assign the same number of particles to each dataset image, and to put them inside a 
square of side 2� centered on image location, where � is one of the algorithm 
parameters. 
The square described before covers an area equal to: 
 

_
_ _

map area
number image dataset

 

 

Where map_area is the total area of the map (measured in square meters) and 
number_image_dataset is the number of image contained in the dataset (a sort of 
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knowledge density of the environment). 

A second change is related to the particle weight assignment. When the motion model 
is applied to every particle, each of them is attributed to a cluster of ray 2�; then, a 
weight can be computed for each particle as: 

_ _
_ _

1,..., _ _

j

number particle cluster
w similarity

total number particles
j total number particles

=

=
 

 
where similarity is the similarity value for the dataset image closest to the particle, 
number_particle_cluster is the number of particles of the cluster and 
total_number_particles is the total number of particles.  
Resulting from this new weight assignment method, we changed robot pose estimate, 
using the weighted (by particle-weight) mean of particle-position in the best cluster. 
In particular, robot pose xs is obtained from the evaluation of the following 
expression: 
 

1

,    _ _
k

i
s s i

i

x x w k number particles cluster
=

= =�  

Where wi is the weight of each particle. 
Finally the re-sampling function was modified so that a number z of particles equal 
to:  
 

_ _j jz w total number particles= ∗  

is put only around particles with highest weight (resulting from the sensor model that 
update every particle weight). 

We also add other particles to the best one as: 

0.4  k kz z diff= + ∗  

Where k is the particle with best weight and diff is the difference between 
total_number_particles and the total number of particles distributed over other 
particles: sum(zj). The remaining percentage is placed randomly and uniformly, as in 
the first step of the MCL algorithm, trying to resolve kidnapping  robot problem. 

Starting from the previous improvements, we added an option that allows to place 
initial particles near or far from dataset images, depending on a priori knowledge of 
the robot path. So, during initial positioning of particles, the value of � is computed as 
described in the first paragraph of this section with far option, and it is smaller with 
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near one (the half of the far option). 
Functions that implement motion model application and particles-images assignment 
have not been changed.  
Functions concerning particle weight assignment and re-sampling, on the contrary, 
were substituted with a single one described here following. Also this modification 
works well with omnidirectional vision but not with directional one due to the fact 
that is difficult to associate each particle to a certain image considering also the 
orientation. 
A weight equal to its normalized similarity value is attributed to every dataset image; 
then, the particles linked to each image are counted and their centre of mass is 
computed. Now, if the number of particles is different from zero and the weight is 
greater than a certain threshold (computed as the 25% of the biggest weight), we 
replace around the previous center of mass a new number of particles as: 

_ _ _ ,j j jnPart w total number particles npart associatα β= ∗ ∗ + ∗        

j=1,…, number_images_dataset 

where � and � are parameters experimentally evaluated and npart_associat is the 
number of previously associated particles. The window centered in the centre of mass 
has the same form described at the beginning of the paragraph or the initial 
distribution with the “near” option.  Finally we find the best image in terms of: 

wj* npart_associatj 

and we add a number of particles to the related cluster as in the first variant (0.4*diff). 
Robot pose is finally estimated after this function using a robust mean shown in the 
first variant, but cluster weight wj is defined as: 

 if  “near” 
  wk=number_particle_cluster*w j*e-distance(j) 
 else 
  wk=number_particle_cluster*wtj 

where wj is the weight of the particle nearest to the centre of mass and distance(j) is 
the distance between image and associated particle. Position error is evaluated as the 
Euclidean distance between robot pose estimate and the real one. 

3   On line information integration 

Several vision based techniques are integrated in our framework, which can be 
synthesized as follows. During the learning phase a visual tour in the environment is 
performed to collect reference images (i.e., snapshots of the environment, 
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omnidirectional images), stored in database as feature vectors; the visual tour supplies 
also information about the presence of obstacles in the environment, which can be 
obtained using a set of sonars to scan the area near the robot. Besides, a stochastic 
position evaluator, which will be used to describe the belief distribution about the 
actual position of the robot in the environment, is initialized. At the beginning of the 
localization phase the robot does not know its position (kidnapped robot). The robot 
first compares the appearance of the image acquired from the unknown position with 
images in the database. Then the system selects the most similar image from the 
database and starts moving, according to a planning strategy given by a high level 
control layer. 

Usually this kind of approach need a precise and almost complete exploration of 
the environment, making the application of this approach in everyday life very 
difficult, most of all in huge outdoor city like environments.  

One of the purposes of this paper is to propose a way of using this approach also 
using very few images, thanks to omnidirectional vision and on line information 
integration.  

 

 
 
 
Figure 2 - On line knowledge integration: red circles represent the previous 

knowledge (omnidirectional images with relative position in the environment); blu 
line is the robot trajectory; blu dots are MCL particles that, in case of good 
accumulation and low image density, bring to the knowledge update. 

 
The general idea, depicted in Figure 2, is to cover unexplored areas of the 

environment with images acquired on line, according to precise rules based on the 
correct robot localization at the acquisition time. These rules are based on the 
concentration of MCL particles around a certain position; in this condition the robot is 
considered as well localized and the image is added to the reference image database 
with the actual robot position estimated by the MCL process. The main drawback of 
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this method could be the increase of memory occupation during information 
integration for long term localization processes. To solve this limitation we introduce 
the concept of image density that is given be the number of known images, contained 
in the reference image database, per square meter. This number gives a threshold for 
the update procedure assuring that the number of new images added to the 
environment knowledge is limited. 

4   Experiments and results 

In our experiments, we use images collected by our outdoor mobile robot 
ActiveMedia P3-AT. We took one 1034x789 pixel grayscale image every almost 5 
meters (not covering all the test area) using a Basler Scout A1300c camera with an 
omni directional mirror mounted on top of the robot. The robot is also equipped with 
a differential GPS (DGPS with EGNOS corrections) system, which we used to get 
ground truth data for the position of each image. Under ideal conditions, the accuracy 
of the DGPS is below 0.5 m. However, due to occlusion by trees and buildings, the 
GPS path sometimes significantly deviated from the real position or contained gaps. 
From our knowledge that we moved the robot on a smooth trajectory, we corrected 
some wrong GPS values manually. This was used for ground truth registration. 

Several different runs were performed and some of them exhibit very dynamic 
scenes with occlusions, deriving from some students walking around the robot. Figure 
3 shows the whole are of 12000 square meters explored by the robot and the lines are 
the routes followed by the robot for dataset collecting and for test set recording. For 
every dataset we need the image acquired by the robot, its topologic label, its GPS 
position, the odometric position of the robot; other general features of the whole 
dataset, like, for example, lighting conditions, dynamic conditions, camera parameters 
are also considered. 

 
 

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 343-353



 
Figure 3 The area of 12000 square meters of the historical centre of Fermo used 

for dataset collecting; green line represents the dataset and blue and red ones represent 
the paths. 

 
The modified MCL algorithm together with on line information integration were 

tested with the same path and dataset images. The localization error in this outdoor 
environment, expressed in meters, and compared with old MCL algorithm, decreases 
for the new approach from an average error of 5 meters to an average error around 1 
meter. Table 1 shows detailed results for the localization error in terms of the mean 
error and its standard deviation. As it can be seen, the difference between 500 
particles and 300 particles is not high. Besides, as regard standard deviation, 
respective results suggest a good stability of the algorithm independently of the 
particle number. The same stability is visible with respect to the feature matching 
algorithm (SIFT and SURF) showing that the influence of the feature matching 
module is less important than the proposed MCL improvements.   

The average error of 1 meter is an extremely good result if we consider the number 
of images used as references; if compared with classic MCL approaches we obtained 
a decrease of error of more then the 50%.  

 
 

Environment #particles Algorithm [ ]E err  errσ  

Outdoor 500 SIFT 1,2 m 0,2 m 
Outdoor 300 SIFT 1,1 m 0,2 m 
Outdoor 500 SURF 1,0 m 0,2 m 
Outdoor 300 SURF 1,1 m 0.3 m 

Table 1 Numerical results of outdoor localization error simulation for different feature 
matching algorithms and number of particles.  
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Unlike the old one, the new MCL algorithm decreases particles number at every step 
thanks to its new re-sampling function previously explained. Figure 4 shows the 
particle number trend during outdoor simulation described above, with an input value 
of 500. 

 

Figure 1 Particle number trend in outdoor simulation 

 

Good results were obtained also for kidnapping cases (that in populated outdoor 
environments can be, for example, associated to unexpected odometric errors due to 
floor imperfection or steps, or due to collisions with people passing by or simply 
people moving the robot). To simulate them, we firstly linked path 2 (5 steps) with 
path 1 (7 steps); in this way, we could sample the algorithm in a more critical 
condition. In fact, we introduced an odometry error between the two steps linking the 
different paths, so we could check how the algorithm responds to this type of common 
mistake. Figure 4 shows the result of one simulation with an odometry error equal to 
¾ of the real displacement, between step 5 and 6. 
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Figure 5 Results of mean error with a kidnapping situation 

 

The result is very interesting: robot finds its position after kidnapping with only 
one step, when it is able to localize itself with an error of about 1-2 meters.  
In the field of information integration we have some preliminary results showing that 
the integration allows to add only a few images in the localization process, but 
sufficient to cover unexplored area of the environment and to allow correct 
localization also during robot trajectory not covered, initially, by reference images. In 
the experiments reported before we added no more than 1 to 3 new image every ten 
steps and we saw that the new image helped to cover more uniformly the test area. In 
fig. 3 the pink route was performed far away from the explored part of the 
environment, but the localization was still well obtained and two new images 
(depicted by white stars in the figure) where added to the reference image database. 
Even if preliminary results must be extended and deeply investigated the proposed 
method seems to be reliable for real life application and long term localization in real 
dynamic environments. The vision based localization of the future will start with a 
man taking some pictures around in the environment with his mobile phone equipped 
with GPS; this will be the initial robot knowledge and then, after a fast installation 
process based on very few reference images, the robot will work in the environment 
basing the localization process only on low cost omnidirectional vision. 

 

5 CONCLUSIONS AND FUTURE WORKS 
 

In this paper we presented some novel Monte Carlo Localization optimizations 
especially designed for omnidirectional vision based locaziation and we also 
introduce the concept of on line knowledge acquisition and integration presenting a 
framework able to perform long term robot localization in real environments.  
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In summary we can assert that the two variants (MCL modifications and on line 
knowledge integration) have new features, with respect to the old algorithm, that 
introduce improvements in term of localization accuracy, precision and robustness. 
Besides, these ones are two new approaches to probabilistic robotics which can be 
delved into and improved so as they can give higher performances, with the 
integration of other sensors information too. 

Current and future works are going in the direction of finding best and more robust 
vision based algorithm for feature matching. In particular we also address the issues 
of appearance-based topological and metric localization by introducing a novel group 
matching approach to select less but more robust features to match the current robot 
view with reference images [11]. Feature group matching is based on the 
consideration that feature descriptors together with spatial relations are more robust 
than classical approaches.  
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