
Designing for knowledge maturing: from knowledge-
driven software to supporting the facilitation of knowledge

development
Andreas P. Schmidt

Karlsruhe University of Applied Sciences
Moltkestr. 30

76133 Karlsruhe, Germany
+49 721 925-2914

andreas_peter.schmidt@hs-karlsruhe.de

Christine Kunzmann
Pontydysgu Ltd.

Ankerstr. 47
75203 Königsbach-Stein

+49 7232 4093309
kontakt@christine-kunzmann.de

ABSTRACT
Software engineering has been transformed in recent years by
understanding the interaction with customers and the target
context as an ongoing learning process. Responsiveness to change
and user-centered design have been the consequences. In a similar
way, knowledge and ontology engineering are undergoing
fundamental changes to acknowledge the fact that they are part of
a collective knowledge maturing process. We explore three
examples: (i) social media based competence management in
career guidance, (ii) ontology-centered reflection in multi-
professional environments in palliative care, and (iii) aligning
individual mindlines in pratice networks of General Practitioners.
Based on these, we extract four levels of designing for knowledge
maturing and associated technical implementations. This shows
that future technology support should especially target facilitation
of self-organized, but tool-mediated knowledge development
processes, where, e.g., workplace learning analytics can play a
prominent role.

Categories and Subject Descriptors
K4.3 [Organizational Impacts], I.2.4 [Knowledge
Representation Formalisms and Methods: Language
Constructs and Features]

General Terms
Design

Keywords
Knowledge maturing, knowledge management, knowledge
engineering, design processes

1. INTRODUCTION
Current developments in software engineering are characterized
by two major developments:

 Make software engineering more responsive to change. This
has been achieved through replacing more rigid engineering
processes such as the waterfall model by agile methodologies,
ranging from pair programming to scrum or similar.

 Making complexity of domains more manageable by
incorporating domain knowledge. This has been achieved by
making software solutions more knowledge-driven. Prime
example are the family of semantic technologies, which has

proven valuable in a variety of scenarios, such as information
and service integration, or context-aware recommendations.

While often considered separate, these two strands of
development are largely intertwined as both of them refer to the
same learning processes. The request for responsiveness to
change originates from the very nature of design processes of
software tools: it is a mutual learning process in which designing
tools (and using them) deepens the understanding of the domain.
This interdependency already creates the need of constant change.
This is aggravated by the fact that domain knowledge itself
accumulates and changes that make it necessary that software
systems become a partner in this process. This is achieved by
embedding more and more knowledge into tools themselves.

While both developments on their own have been investigated for
far more than a decade, both in theory and practice, only limited
research has gone into investigating the interdependency of both
of them. In this paper, we want to take a second look at
knowledge-based application and engineering strategies. We will
use the knowledge maturing perspective to analyze the problem
and solutions.

2. BACKGROUND
2.1 KNOWLEDGE ENGINEERING
Traditional knowledge engineering methods (for an overview see
[25]) very much follow a waterfall model of software engineering,
transferred to the domain of modelling domain knowledge. They
focus on (few) domain experts. In the wake of emerging social
media approaches, this has been criticized [7] and more agile
methods have been proposed, such as [23], focusing on the
principles from the agile manifesto (thus emphasizing the social
nature of the engineering process) while other strands have
focused on emergent semantics as outlined by [1] (thus
emphasizing the automated processing).

There have been several attempts at “continuous knowledge
engineering” which try to remove the wall between design time
and runtime, such as [22], [3], [12], or [9]. These are mostly based
on the wiki paradigm, which externalizes knowledge and makes it
accessible for editing to a larger group of domain experts.
Particularly [22] is pointing towards the necessity of considering
the knowledge development process as embedded into a software
engineering world that is moving towards continuous delivery.

Little investigation has gone into considering knowledge
engineering as a collective learning process in which knowledge
co-evolves as a result of the modelling process, i.e., modelling

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357526668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

does not just represent in a machine processable form knowledge
that already exists, but the creating models influences the
knowledge development process as such. The ontology maturing
approach has incorporated this view [6] based on the knowledge
maturing model that is going to be presented in the next section.

2.2 KNOWLEDGE MATURING
Knowledge maturing [15] looks at the processes of collective
knowledge development processes and identifies across a variety
cases that it can be classified into distinct phases. While not
prescribing the process as a sequence of steps, it identifies phase
with characteristic patterns that impact the way knowledge is
dealt with, how learning takes place, and how to best represent the
knowledge in artefacts. These phases range from emergence to
external standardization and crosses the scopes of the the
individual, the community, the organization, and the society
where the primary conversation that drive the process take place.

The initial phases (I. Emergence) are characterized by the
exploration (Ia) of new spaces, either as activities of analyzing
existing material or by creative processes (new ideas). In both
cases, knowledge is deeply subjective, and the individual decides
through appropriation (Ib) where or not to pursue further
development of the usually abundant items in phase Ia.

In the next phase (II. distribution in communities), where
knowledge gets discussed and negotiated between different
individuals of a social group. This includes the development of a
shared vocabulary and associated understanding, and usually
many individual contributions get amalgamated. To reach beyond
the social group, transformation (III) is required where the focus
is on creating artefacts by restructuring and agreeing on.
Transformation means that knowledge is restructured and
decontextualized to ease the transfer to collectives other than the
originating community.

For further outreach, the introduction phase (IV) provides an
initial step in which either knowledge is prepared in a way that it

is easier to understand for others as part of workshops or trainings
(instructional strand) or put to practice in a pilot (such as process
knowledge). Both is experimental and is a learning phase where
experiences are incorporated that prepare for a wider roll-out in
the institutionalization phase (Va) where the knowledge gets a
stable place, either as part of formal training plans, or as
company-wide implementations (processes, products or similar).
The goal is here to gain efficiency.

Finally, moving beyond the limited scope of companies, phase Vb
(External standardization) moves towards standardisation or
certification where comparability and compliance play a primary
role.

Along these phases, key patterns can be observed, such as the
alternation between the focus on changeability (Ia-II, IV) vs.
stability (III, V), or the openness to impulses from outside (Ia, II,
IV, Vb) vs. the filtering in phases Ib, III, Va.

2.3 APPLICATION TO DESIGN
PROCESSES
This model can be applied to design processes. Let’s suppose that
the goal of application is to support specific domain activities,
then the knowledge maturing phase model allows for describing
and understanding the design process. The target users as well as
the designers co-develop knowledge on how to support the usage
scenario, which evolves from creating a shared understanding, to
using models for transformation and prototyping.

But more important, the knowledge maturing model also
emphasizes the difference between knowledge and the artefacts.
All too often, artefacts are used that are not appropriate for the
knowledge they are supposed to represent. Formalized ontologies
are useless (or even counter-productive) if they try to formalize
knowledge that is still in phase II, while formality can help to
gain efficiency in phase V.

Figure 1: Knowledge maturing phases and characteristics [14]

Even more, this perspective can help to understand that the design
processes interact with learning processes in the domain itself
where new knowledge is constantly being developed – with the
use of the system. Knowledge that is relevant is always moving
along the process, and just focusing on phase IV or V (which
many engineering methodologies do) would deprive us from a
significant part of what is relevant for design.

We want to investigate that in the following section more closely.

3. TYPOLOGY FOR KNOWLEDGE-
BASED APPLICATIONS
To better understand the issues associated with applications that
are knowledge-driven, a typology has proven useful that we have
applied to a series of examples (some of them can be found in
section 4).

Key idea is to take a – more or less strict - historic perspective on
how state-of-the-art engineering methods for knowledge-based
applications have evolved. This perspective focuses on three
elements that seem to be key

a) Design time vs. runtime. A fundamental distinction in
software engineering is between design time (design
and development) and runtime (use).

b) Roles for developing knowledge. A second focus area is
concerned with the question: who contributes to
developing knowledge? Who evolves knowledge
representations in the respective application?

c) Processes for developing knowledge. A third focus area
is concerned with processes that characterize knowledge
development that is linked to the respective
applications.

3.1 HARDCODED KNOWLEDGE
There is hardly any software solution that does not include a
considerable amount of (domain) knowledge. The naïve way of
incorporating domain knowledge follows the traditional design
process models where during the requirements phase, relevant
pieces of knowledge are collected by business analysts, modelled
in an appropriate way and passed on to developers who then
based their design and implementation on this domain knowledge.
The knowledge is implicit to many elements of their code,
ranging from database schemas, via domain classes, business
logic and control flows up to user interface design. All of it is
incorporated at design time by the developers and designers
themselves, and the processes for that are not separate from
software engineering processes, such as the waterfall model.

There are two major weaknesses to this approach:

Responsiveness to change. While this might work in a world
characterized by yearly or longer release cycles, this hits limits
when software needs to deal with domain knowledge that evolves
at a faster pace. Most domains, actually, have increased their pace
so that even traditional domains where this would apply (such as
finances) can no longer rely on this approach as changes are
costly – although infrequent.

Knowledge ready at design time. Furthermore, from a knowledge
maturing perspective, this approach is fundamentally flawed
because it assumes that knowledge can be more or less
“collected” from domain experts at a mature stage. But obviously,
the knowledge which is best to support domain activities needs to
be co-developed by those who want to do something with the

designed artefact and those who know how to design – it is just
not available at a sufficient level of maturity that allows for
automation at the beginning of the design process. These
interactions, however, can only happen at large intervals.

3.2 DESCRIPTIVE KNOWLEDGE
REPRESENTATION
Agile methods in software engineering have addressed this
problem by introducing iterations into design processes where
after each iteration, software can be (potentially) used already.
This alone does not help for knowledge-intensive domains.
Because learning processes might lead to changing large portions
of already existing code where knowledge might already be
embedded.

To address that problem, explicit knowledge representation has
been gaining popularity. Here, knowledge is represented
explicitly through specific formalisms. This has a long history in
computer science, but is now moving beyond its traditional
application areas (such as expert systems and AI in general). RDF
and ontology (such as OWL-DL) or rule formalisms (such as F-
LOGIC) help to manage the complexity of domain knowledge by
partially automating common processing patterns, introduce
consistency checking etc.

In this area, there are two basic approaches to modelling that
compete: the engineering approach (where humans create the
models) and the mining approach (where algorithms create the
models). Big data has clearly made an argument for the mining
approach, but the knowledge maturing perspective also explains
that this will not advance the development as such: only human
sense making can achieve this. This argues in favor of using
descriptive models (also as output of machine methods) that
humans can understand and re-use for their learning processes.

Descriptive knowledge representation also has the advantage that
transferring between domains becomes easier. There are often
structural patterns where the same solutions can be applied not
only in one, but in multiple domain, “just” the domain knowledge
needs to be exchanged. Furthermore, from a learning perspective,
the representation can more easily serve as a subject for
reflection. This promotes the development of knowledge. This
clearly links to the role of artefacts in the knowledge maturing
model in phases III-V, but also shows that these approaches have
a rather difficult time with earlier phases.

A major weakness of most descriptive knowledge representation
approaches is that they are designed for (modelling) experts –
typically for admin roles that change the representations.

3.3 PARTICIPATORY EVOLUTION OF
KNOWLEDGE REPRESENTATIONS
While separating domain knowledge from other parts of software
systems makes it more maintainable and thus easier to change by
the software engineering, it still introduces a lag between users
discovering the need for change and its actual change. This might
introduce motivational barriers to give feedback and might
hamper human negotiation processes – in terms of the knowledge
maturing model: phase I and II interactions.

To address this issue, social media inspired approaches (which
focus on phase II) have enabled users to change knowledge
representations. Most popular has been the replacement of
controlled-vocabulary-based approaches by free tagging (moving
from taxonomies to folksonomies) [13], or wiki-based modelling

of domain knowledge [12] or even processes [9]. Knowledge
modeling becomes a runtime activity.

This has considerable impact on knowledge representation itself,
as we need to move from expert-based modelling to a wider range
of people involved in the modelling process. Knowledge
representation formalisms need to be understandable by non-
experts. This is the why weak formalisms (in terms of
expressiveness) have become more popular, such as concept maps
or SKOS. Where the weakness of what “ordinary users” can deal
with has not been acknowledged, it easily leads to conceptual
problems, e.g., when building OWL-DL ontologies in Semantic
MediaWiki systems – strict is-a semantics is hard for non-
modelling experts to distinguish from part-whole relationships.

3.4 SELF-ORGANIZED KNOWLEDGE
MODELLING PROCESSES
When moving towards more participatory approaches, there are
still regulating processes for user contributions (e.g., editorial
processes). The tool makes assumptions where new contributions
can be added, and how they become part of a more authoritative
set. Or roles and responsibilities are defined who is allowed and
expected to check etc.

One important lesson from early test drives with social media
inspired approaches is that it’s not the features, but the way users
appropriate those features (a useful concept in this context are
affordances [14]). Tools are used differently than what they were
designed for. Practices have a complex interrelationship with the
tools they make use of – if tools get introduced, practices change,
and changed practices lead to changed use of tools. This makes it
difficult to prescribe certain processes that are meant to guarantee
quality control.

Gardening [18] and the earlier Seeding – Evolutionary Growth –
Reseeding model [10] provide an appropriate framework: (i) users
themselves define the social processes, (ii) roles can be flexibly
accepted without making any formal changes. The social group –
not the technical system – defines the processes and rules. In
many social media systems, this has worked remarkably well. The
knowledge how to develop domain knowledge in a social group
itself is subject to a maturing process – where we cannot
formalize the result until it has been developed.

What does that mean for tool design? While in the wake of
business process engineering, software has concentrated on
supporting processes in the domain of the users, this view argues

more towards a more modest approach: tools may support
processes, but these processes are under constant negotiation so
that the design should actually concentrate on the activities that
constitute these processes. Instead of defining the steps how to
include a new term in the ontology, the tool should concentrate on
activities for adding, organizing, removing, merging etc. – and
leave it to the users to negotiate the best way. This is in line with
recent approaches to knowledge management, such as [15],
focusing on activities rather than processes.

3.5 FACILITATED KNOWLEDGE
PROCESSES
While the flexibility introduced by a new “modesty of tools”,
which does not prescribe structures nor processes and which is
exemplified by the lightweight Web 2.0 tools, is more
appropriate for the reality encountered, but it clearly asks too
much from “ordinary users”. Creating models is demanding,
negotiating processes is even more demanding. They need support
– from their peers. And tools can do a lot to facilitate this.
Towards that end, design processes not only need to address the
level of actual use, but also the level of facilitating the use of
others. This is the current frontier: how to facilitate the learning
processes in social systems. In [4], different approaches to
facilitation have been conceptualized that can serve as a
foundation. Among the manifold forms of facilitation, the concept
distinguishes between human facilitation, facilitation through tool
functionality, and facilitating environments – all of which can be
supported by a respective tool design. Human facilitators can be
provided with information where, when and how to intervene.
Tools themselves can provide facilitating features, such as
recommendations, triggers or similar. And tools can provide the
basic infrastructure for discussion, negotiation, reflection etc.

Specific tool functionalities that have emerged include support for
gardening activities (proactive recommendations such as [8]), but
also various forms of analytics, including visualizations.
Particularly at the workplace, these tools help the facilitators to
identify areas for intervention into social processes, and reduce
the effort to actually intervene.

3.6 SUMMARY OF TYPOLOGY
In the previous sections, we have come up with a typology for
knowledge-based applications that is summarized in the table in
Fig. 2, together with the implications on design. The different
types can also be viewed as an evolutionary route with major

Figure 2: Typology of knowledge-based applications

Type
Primary point in time for
knowledge modelling

Primary roles for
knowledge modelling

Processes for
knowledge modelling

Implications for
engineering

Hardcoded knowledge design time designer/developer (software engineering) -

Descriptive knowledge representation design time / runtime admin hardcoded (for admin)
separation of knowledge
and other components

Participatory evolution of knowledge representations runtime user hardcoded (for users)

knowledge representation
formalisms understandable
for end users; support for
user contributions

Self-Organized knowledge modeling processes runtime user socially negotiated
support for activities
instead of processes;
negotiation spaces

Facilitated knowledge processes runtime user + facilitator
socially negotiated with
facilitation support

support for facilitating roles
and activities

steps: (i) externalization of knowledge in applications for moving
from Hardcoded knowledge to Descriptive knowledge
representation, (ii) user-generated models for moving to
Participatory evolution of knowledge representations, (iii)
breaking down prescriptive process support into enabling activity
support for moving to Self-organized knowledge modeling
processes, and (iv) the inclusion of facilitator role into the system
design for Facilitated knowledge processes.

After this rough sketch of types of knowledge-based application,
we want to illustrate the observations along three examples in the
next section.

4. ANALYZING THREE EXAMPLES
In the following, we investigate three examples of knowledge-
based systems in different target areas to illustrate the typology
introduced in the previous section. These have been selected from
our prior research in the context of tools for knowledge maturing
in different domains. The first example refers to a social-media
approach to competence management based on a combination of
people tagging and user-driven engineering of ontologies. The
second example is about spiritual care support with an empirically
derived ontology for spiritual care that is continuously refined.
The third example is about a system based on the metaphor of
“living documents” and represents the need for support in the
complex pattern of stability and changeability.

4.1 PEOPLE TAGGING: A SOCIAL MEDIA
APPROACH TO COMPETENCE
MANAGEMENT
4.1.1 GENERAL OVERVIEW
Controlled vocabularies are at the heart of state-of-the-art
competence management approaches [17], as competence
catalogs that are used for competence profiles and requirements
profile which can be matched to detect competence gaps, set up
training plans, and staff teams [20]. These competence catalogues
are descriptive knowledge representations and suffer from the
problem that there developments lags behind the development of
relevant skills that should be in the focus of competence
management approaches.

One approach that has been inspired by Web 2.0 approaches has
been the people tagging system SOBOLEO [5] which is based on
the social semantic bookmarking paradigm (which is now used in
several enterprise social media suites). Users can tag each other
with topics, but these topics can also be organized in a
taxonomies where typical problems of free tagging can be solved,
such as synonym, multilinguality, or typos. It therefore includes a
real-time collaborative editor that allows users to edit the SKOS
taxonomy, and to move new tags to the appropriate position, and
discuss with other users about it.

4.1.2 ANALYSIS
If we have a look along the stages from the previous section:

 SOBOLEO is based on a explicit, descriptive model of
the domain knowledge – the competence catalogue.

 The catalogue is not fixed, but users can at any point in
time contribute to the catalogue.

 User roles and restrictions are kept to a minimum.
Anyone can take over gardening responsibilities, and
evaluations have shown that some users are happy to do
so without being formally assigned. SOBOLEO does

not prescribe any process, but just provides the features
for moving, creating synonyms etc. – it does not assume
a particular order.

 As a first step towards facilitation, it provides proactive
gardening recommendations (suggesting possibly
synonymous concepts, or broader-narrower
relationships) and analytics to see topics that are more
frequently used than others. These should be in the
focus for any gardening activities as they seem to be
most relevant to create stability.

4.2 SPIRONTO: ONTOLOGY-BASED
ENHANCED SPIRTUAL CARE
4.2.1 GENERAL OVERVIEW
Multi-professional domains are particularly knowledge-intensive
as (i) multiple domains meet, and (ii) development of knowledge
at domain boundaries is particularly dynamic. One example we
have investigated is the case of SpirOnto [16]. It addresses a
particular area of medical care: palliative care where physicians,
nursery care, and spiritual care need to work together. Particularly
spiritual care is often neglected as it is perceived not to follow a
system approach (as the other disciplines do). To overcome this,
Stiehl [24] has developed an initial spiritual care ontology based
on existing patient records and documentation practices. This
serves three purposes:

 Promote understanding in a multi-disciplinary setting
and provide a boundary object in regular joint reflection
sessions.

 Improve patient documentation to better reflect spiritual
care to be able to more systematically provide spiritual
care.

 Provide a conceptual framework for increasing the body
of evidence for spiritual care and its effectiveness.

Towards that end, SpirOnto has been built, a tool that enhances
patient records by annotating patient record entries with concepts
from a shared spiritual care ontology.

4.2.2 ANALYSIS
If we analyze the example more closely, we discover the
following:

 Domain knowledge has been made explicit through a
manually created ontology (based on empirical finding).
Instead of hard-coding categories that are relevant to
design, these are externalized, and the representation is
descriptive and human-understandable. Towards that
end, concept maps have been used that are represented
as RDF graphs. Only a core has been formalized as an
OWL ontology. This core is needed to dynamically
create the user interface based on the current status of
the ontology. This include fundamental concepts, such
as “observation”, “spiritual concept”, and
“intervention”.

 The ontology is not fixed at design time, but users can
develop it further. While a stable core is fixed (and the
software design relies on it), new entries can be added
on the fly on two occasions: (i) when adding new
entries, new categories can be added, and (ii) when
reflecting on patterns between cases, new relationships

and intermediate concept can be added. Both can reflect
a progressed understanding.

The possibility for self-organized social processes and facilitation
support are currently not included, but under development.
Particularly facilitation support seems to be promising by
providing visual analysis that allows for overlaying several
similar cases to suggest and discover patterns that might create
new insights that could be even scientifically evaluated as a
separate activity.

4.3 LIVING DOCUMENTS: DEVELOPING
OPINIONS INTO COLLECTIVE
KNOWLEDGE
4.3.1 GENERAL OVERVIEW
The third example moves away from vocabulary-centric
knowledge development to more practice-oriented knowledge and
illustrates the complexity of changeability vs. stability for tool
support. The Living Documents system [2], which has been
developed as part of the Learning Layers project, has emerged
from observations in practices of General Practitioners. These
GPs receive national guidelines, which have been developed
through meta-analysis of scientific studies, but they equally need
to incorporate their experiences and peer opinions, which form
their mindlines [11]. Social processes to negotiate this knowledge
is hampered by barriers that are related to changeability
(opinions), stability (internal rules in practices, or national
guidelines).

To overcome this, the LivingDocuments system has created an
environment in which shared knowledge representations (such as
local implementation plans) can be developed as living documents
where (i) parts can be declared stable, (ii) comments and
document parts can be associated with maturity indicators, and
(iii) practice members can be notified about prescriptive changes.

4.3.2 ANALYSIS
From a knowledge maturing perspective, this tool has taken even
one step back by not specifying precisely the formalism in which
the knowledge is represented, but rather concentrated on key
facilitation aspects: how to allow for changeability and stability
within the same system without knowing or prescribing how the
negotiation process takes place. Key aspects that have been
found: (i) indicating maturity for all contributions, and (ii)
creating awareness about changes at different levels of
engagement.

5. CONCLUSIONS
In this paper, we have provided a birds-eye view on the role of
knowledge and learning in engineering of knowledge-based
applications, which constitute the majority of today’s
applications. Towards that end, knowledge maturing has provided
a useful framework for analysis.

In this analysis, we could observe four principles for modern
knowledge-based systems and associated engineering processes:

 Do not hardcode knowledge into designs - make
software knowledge-driven. Knowledge becomes a
“configuration” for applications, and the algorithms and
interfaces explicitly depend on it instead of implicitly
implementing it.

 Tear down the wall between design time and runtime -
knowledge models can be changed by users. This

acknowledges the fact that the appropriation of tools in
users’ practice is a learning process which co-evolves
with knowledge about a domain. Experiencing
competence in this respect is a key motivating driver
[21].

 Let users define their social processes for developing
knowledge models - support activities, not processes.
Processes themselves are knowledge that evolve
constantly. Applications prescribing certain ways of
evolving knowledge representations limit social
learning processes and might force users into something
that is based on wrong assumptions. Also, experiencing
autonomy is a second major factor for intrinsic
motivation [21].

 Support facilitators in this process through analytics:
support guidance activities. In the future, design of
tools should concentrate on how to support users in
supporting others in various activities of their learning
process. This acknowledges that with the additional
autonomy of user-generated models and negotiated
processes an additional complexity is created. Tools are
no longer fixed process support tools, but toolboxes
which need to be appropriated in the same way as social
processes around the tools might need to changed.

For an overall design process for knowledge-based systems
design-based research process models as a starting point, such as
[19] which put a shared conceptual model at the center which
represents the knowledge in focus. Furthermore, design-based
research has bridged theory-building, design, and evaluation
activities without prescribing more than a high-level process
framework. Finally, design-based research puts one important
lesson learnt into the center of attention: that designing and
engineering solutions is a socio-technical activity.

6. ACKNOWLEDGMENTS
This work has been conducted within the research projects
EmployID (http://employid.eu) and Learning Layers
(http://learning-layers.eu), which have received funding from the
European Commission under the 7th Framework Programme,
contracts no. 619619 and no. 318209.

7. REFERENCES
1. Aberer, K., Cudré-Mauroux, P., Ouksel, A.M., et al.

Emergent semantics principles and issues. Database
Systems for Advanced Applications, (2004), 25–38.

2. Bachl, M., Zaki, D., and Schmidt, Andreas Kunzmann,
C. Living Documents as a Collaboration and Knowledge
Maturing Platform. International Conference on
Knowledge Management (I-KNOW 2014), ACM (2014).

3. Baumeister, J., Reutelshoefer, J., and Puppe, F.
Continuous Knowledge Engineering with {Semantic
Wikis}. CMS’09: Proceedings of 7th Conference on
Computer Methods and Systems (Knowledge
Engineering and Intelligent Systems), Oprogramowanie
Naukowo-Techniczne (2009), 163–168.

4. Bimrose, J., Brown, A., Holocher-Ertl, T., et al.
Introducing learning innovation in public employment

services. What role can facilitation play? International
Conference on E-Learning at the Workplace, (2014).

5. Braun, S., Kunzmann, C., and Schmidt, A. Semantic
People Tagging & Ontology Maturing: An Enterprise
Social Media Approach to Competence Management.
International Journal on Knowledge and Learning
(IJKL) 8, 1/2 (2012), 86–111.

6. Braun, S., Schmidt, A., Walter, A., Nagypal, G., and
Zacharias, V. Ontology Maturing: a Collaborative Web
2.0 Approach to Ontology Engineering. (2007).

7. Braun, S., Schmidt, A., and Zacharias, V. Ontology
Maturing with Lightweight Collaborative Ontology
Editing Tools. GITO-Verlag (2007).

8. Braun, S. Community-driven & Work-integrated
Creation, Use and Evolution of Ontological Knowledge
Structures. 2012. http://digbib.ubka.uni-
karlsruhe.de/volltexte/1000025701.

9. Dengler, F. and Happel, H.-J. Collaborative Modeling
with Semantic MediaWiki. Proceedings of the 6th
International Symposium on Wikis and Open
Collaboration, ACM (2010), 23:1–23:2.

10. Fischer, G., McCall, R., Ostwald, J., Reeves, B., and
Shipman, F. Seeding, Evolutionary Growth and
Reseeding: The Incremental Development of
Collaborative Design Environments. 2001.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1
.35.2330.

11. Gabbay, J. Evidence based guidelines or collectively
constructed “mindlines?” Ethnographic study of
knowledge management in primary care. British Medical
Journal 329, (2004).

12. Ghidini, C., Kump, B., Lindstaedt, S., et al. MoKi: The
Enterprise Modelling Wiki. The Semantic Web: Research
and Applications. 6th European Semantic Web
Conference, ESWC 2009 Heraklion, Crete, Greece, May
31–June 4, 2009 Proceedings, Springer (2009), 831–835.

13. Golder, S. and Huberman, B.A. The Structure of
Collaborative Tagging Systems. Journal of Information
Sciences 32, (2006), 198–208.

14. Hutchby, I. Technology, Texts, and Affordances.
Sociology 35, 2 (2001), 441–456.

15. Kaschig, A., Maier, R., Sandow, A., et al. Organizational
Learning from the Perspective of Knowledge Maturing

Activities. IEEE Transactions on Learning Technologies
6, 2 (2013), 158–176.

16. Kunzmann, C., Roser, T., Schmidt, A., and Stiehl, T.
SpirOnto: Semantically Enhanced Patient Records for
Reflective Learning on Spiritual Care in Palliative Care.
3rd Workshop on Awareness and Reflection in
Technology-Enhanced Learning, co-located with ECTEL
2013, (2013).

17. Kunzmann, C. and Schmidt, A. Ontology-based
Competence Management for Healthcare Training
Planning - A Case Study. (2006).

18. Peters, I. and Weller, K. Tag Gardening for Folksonomy
Enrichment and Maintenance. Webology 5, 3 (2008).

19. Ravenscroft, A., Schmidt, A., Cook, J., and Bradley, C.
Designing social media for informal learning and
knowledge maturing in the digital workplace. Journal of
Computer Assisted Learning 28, 3 (2012), 235–249.

20. Reinhardt, K. and Biesalski, E. Beyond skill
management. Potentials and limitations of skill
catalogues. 2006 IRMA INTERNATIONAL
CONFERENCE. Theme: Emerging Trends and
Challenges in Information Technology Management,
(2006).

21. Ryan, R.M. and Deci, E.L. Self-determination theory and
the facilitation of intrinsic motivation, social
development, and well-being. American Psychologist 55,
(2000), 68–78.

22. Schilstra, K. and Spronck, P. Towards Continuous
Knowledge Engineering. Applications and Innovations in
Intelligent Systems VIII, (2001), 49–62.

23. Sören Auer. Agile Knowledge Engineering –
Methodology, Concepts and Algorithms. 2007.

24. Stiehl, T., Führer, M., Roser, T., Kunzmann, C., and
Schmidt, A. Describing spiritual care within pediatric
palliative care. An ontology-based method for qualitative
research. 12th Congress of the European Association for
Palliative Care 2011, Portugal, (2011).

25. Studer, R., Benjamins, V.R., and Fensel, D. Knowledge
Engineering: Principles and Methods. IEEE Transactions
on Data and Knowledge Engineering 25, (1998), 161–
197.

