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The Dynamic Stress Intensity 
Factor Due to Arbitrary Screw 
Dislocation Motion 
The dynamic stress intensity factor for a stationary semi-infinite crack due to the 
motion of a screw dislocation is obtained analytically. The dislocation position, 
orientation, and speed are largely arbitrary. However, a dislocation traveling 
toward the crack surface is assumed to arrest upon arrival. It is found that 
discontinuities in speed and a nonsmooth path may cause discontinuities in the 
intensity factor and that dislocation arrest at any point causes the intensity factor to 
instantaneously assume a static value. Morever, explicit dependence on speed and 
orientation vanish when the dislocation moves directly toward or away from the 
crack edge. The results are applied to antiplane shear wave diffraction at the crack 
edge. For an incident step-stress plane wave, a stationary dislocation near the crack 
tip can either accelerate or delay attainment of a critical level of stress intensity, 
depending on the relative orientation of the crack, the dislocation, and the plane 
wave. However, if the incident wave also triggers dislocation motion, then the 
delaying effect is diminished and the acceleration is accentuated. 

Introduction 

Bilby and Eshelby [1] have noted the possible role of 
dislocations in fracture. Simlarly, Rice and Thomson [2], 
Tirosh and McClintock [3], Burns and Majumdar [4], and 
Thomson and Sinclair [5] have related fracture initiation to 
dislocation nucleation and assembly near an existing crack. 

In elasticity theory, the stress intensity factor is a key 
parameter in characterizing fracture initiation. Moreover, if 
the fracture process is dynamic, the motion of the dislocations 
should be considered in applying mechanisms such as those in 
[2-5]. This paper, therefore, attempts to gain insight into the 
role of dislocations in dynamic fracture by (1) studying the 
effects of a moving screw dislocation on the dynamic stress 
intensity factor generated for a stationary crack and (2) 
applying the information gained to the problem of stress wave 
diffraction at the crack edge. 

Because engineering and geological materials are often 
assemblies of crystalline grains that may contain local 
distortions, dislocation paths in a small region such as around 
a crack edge may not be rectilinear. Therefore, the study 
considers a screw dislocation that moves from equilibrium 
along a continuous, piecewise-smooth path. Its speed is 
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subsonic and nonuniform, although the Johnston-Gilman [6] 
observations that inpath acceleration effects may be negligible 
should be noted. The dislocation is of unit strength, the crack 
is semi-infinite, and, as a first step, the cracked material is 
isotropic, homogeneous, linearly elastic, and unbounded. The 
dislocation is allowed to travel to the crack surface, but is 
assumed to arrest upon arrival. The dynamic stress intensity 
factor is derived and examined for dependence on dislocation 
position, orientation, and speed. 

The study results are then applied to the problem of a screw 
dislocation near a crack edge at which antiplane shear wave 
diffraction occurs. The diffraction-dislocation interaction in 
the crack edge stress field is examined for its fracture 
initiation implications. Both the stationary dislocation and a 
dislocation which, triggered by the wave pattern, moves to the 
crack edge are considered. 

The basic problem is analyzed beginning in the next section. 
The dislocation is represented by an equivalent body force 
distribution, following [7]. The existence of a characteristic 
length implies a Wiener-Hopf problem of a nonstandard type. 
It is advantageous, therefore, to obtain the exact solution by 
means of the superposition scheme outlined in the following 
section. This scheme was also used in [8] for the calculation of 
the dislocation motion-induced portion of the intensity factor 
when the path is strictly rectilinear. 

Basic Problem Formulation 

Consider the unbounded elastic plane containing the crack 
and screw dislocation shown in Fig. \{d). In terms of the 
Cartesian coordinates (x,y) the crack surface is defined by 
y = 0, x<0. It is convenient to define the dislocation as the cut 
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y=Y(x ) 

(a ) (b) (c) 
Fig. 1 (a) Initial crack-screw dislocation configuration; (b) wave 
pattern for14, |<ir/2; and (c) wave pattern for|^ |>7r/2 

N=0, S<0 where (5, N) are tangential and normal coor
dinates along the dislocation path y = Y(x). As seen in Fig. 
1(a), the Cartesian coordinates (x,y) are centered at the 
dislocation edge so that the (x,S) and (j^A^-directions, 
respectively, coincide there. If 4> is the path slope at the 
dislocation edge w.r.t. the crack plane and (d,\p) are the plane 
polar coordinates of the dislocation edge w.r.t. the crack edge 
then 

x = efcosO—A'cos</> — ysincj), y = cfeinfi—xsin^ +ycos.4>, 

fl=<£-^ (1) 

We first examine continuous, piecewise-smooth, single-valued 
path functions Y. Therefore, IF'I is finite, where ( ) ' 
denotes argument differentiation, while the path-length 

= (V[i 
Jo 

+ (Y')2]du (2) 

has a single-valued inverse x=X(S). The single-valuedness 
restriction will eventually be relaxed. For s<0, where 
s = cx{time) and c is the shear wave speed, the dislocation and 
crack are in equilibrium. For s>0 the dislocation moves along 
the path y=Y(x) and is located at N = 0, S=D(s). Here 
D(s) is continuous, where D(0) = 0, 0 < D < 1 , 0 ) = d( )/ds, 
and the last inequality assures a subsonic speed. If the 
dislocation reaches the crack surface at some s = / 0 > 0 , we 
require that D(s) = 0,D(s) = D(t0) for a\\s>t0. This motion 
generates a cylindrical shear wave. As seen in Fig. 1(b), if 
I \p I < 7r/2 this wave will first reach the crack edge and there 

generate a diffracted shear wave. As seen in Fig. 1(c), if 
I ]/• I > 7r/2 the wave is first reflected by the crack surface itself. 

The equations governing the motion are 

v 2 vH =w, Ty=Q (y = 0, x<0), w=wQ(s<0) (3) 

b = fiH[D(s)-S]8'(N) (4) 

the antiplane displacement, w0 is its 
equilibrium value, n is the shear modulus, v2 is the Laplacian 
operator, and ( ) ,„=d( )/du. The quantity b is the body 
force equivalent of the screw dislocation of unit strength while 
H and 6 are the Heaviside and Dirac functions. It is con
venient to introduce the superposition 

Ty = W,y, 

where w(x,y,s) is 

lwh+-(b-

w=wb + wc + w0 

-b0)=w„, b0=,JH-S)8'(N), 

wb=0($<0) 

where b0 is the initial dislocation equivalent. 
(3)-(6), then, wc must satisfy the equations 

(6) 

In view of 

v2wc = wc, Tyc=-Tyb(y = 0,x<0), wc=0 (5<0) (7) 

Equations (6) are the relations governing the displacement wb 

due to a body force b — b0 applied in an unbounded, un-
cracked elastic plane while (7) are those for a displacement wc 

generated by the sudden imposition of tractions - ryb along a 
crack ^ = 0, x<0. This latter field will contain the information 
about the dynamic stress intensity factor. The general solution 
for wb is given in the next section. 

General Solution for Dislocation 

In view of the dependence of b — b0 and the invariance of 
v 2 , it is convenient to seek the function wb(x,y,s). The 

Laplace transform over s, the Fourier transform over x and its 
inverse are given by, see Sneddon [9] 

gL = \~g(s)e-i»ds; 8B = \OO g(x)e-">«*dx, 

g( x)= — 
2TT Jr 

gBeipq*dq (8A-C) 

respectively, where p is real, positive, and large enough to 
insure convergence of (8a), q is, in general, complex, and Y is 
the inversion integral path. Application of (8a,b) to (6) in view 
of appropriate radiation conditions yields 

1 
bjy' p2a2wb=-(b0-b), a = ̂ J(l + q2) (9) 

where ( ) = ( ) B L and a is defined in the 9-plane cut along 
Re(q) =0 , \Im(q) I > 1 , such that Re (a) >0 . It can be shown 
that the solution to (9) which is bounded for \y\ — 00 is, in 
view of (4) and (6), 

i oo (jX Q 

oD-^r[sgn(Y-y)-i~Y'] 
dS 

Sg-pV + iqX + atY-y^tfi dX 1 
(10a,b) 

dS V [ l + ( y ' ) 2 ] 
where it is understood that Y=Y(X), X=X(D), and 
D=D(t). Substitution of (10) in (8c) gives 

dX 
(5) 4irwb Ico 

0 ^ 
dS 

"'\ [sgn(.Y-y)-i—Y') 
Jr a 

t,pliqix-X)-a\Y-y\] dqdt (11) 

where T can be taken along the Re(q)-axis. By following the 
work of deHoop [10], the Cauchy theorem is used to alter the 
integration path to the <?-plane contour along which the 
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* X 
Fig. 2 Instantaneous crack-screw dislocation configuration 

imaginary part of the p-factor vanishes while the real part is 
negative. Then, it is readily shown that (11) becomes 

f °° . , f" ne~p" 1 dr , 
2-KWbL=\ De~p'\ -fj^,——,~-^-dndt (12) 

r = J[(x-X)2 + (y-Y)2], 

dr _ 1 dX 

~d~N~~r dS 

V(/7 2 - r 2 ) r dN 

\y-Y+Y'(x-X)] (13) 

where dr/dN is the normal derivative of the distance r along 
the dislocation edge path. The inverse Laplace transform 
follows by inspection as 

["» DH(r-r) T dr 
2irwb=\ ,, ) _,{ --z^-dt, r=s-t (14) 

V ^ - r 2 ) r dN 

By recognizing a first integral w.r.t. s, equation (14) can be 
rewritten as 

wb=W, 2-KW--

so that, from (4) 

")V(r2 , 1 dr 
-r2) dt 

r dN 
(15) 

(16) Tyb = (J.G, G = W,y 

In light of (1), W can be viewed as a function of (</>,Q) and it 
can be shown that along y = 0 

1 dW, 

X d</> 
The relationships (13) and (15)—(17) prove convenient in the 
next section. 

G(x,s)- • ( * , 0 ) (17) 

Diffracted Stress Ahead of Crack 

The problem (7) was also considered by Brock [8]. By 
following schemes by Kostrov [11] and Achenbach [12], the 
stress Tyc for^ = 0, x>0, s>d was found to be 

1 f( 
V (£>»?) i: 
« » - * ( 

7rV(r/ - 0 

d / d+s/2£cos\ls 

rvb{i,,u) du 
U) • 17 —H 

V2£ + fifcosi/< •), M=s -x, V2ri = i 

(18) 

(19) 

where V2£>o', ?;>£. Here (£,)?) are characteristic coor
dinates, u is an integration variable representing 77-
dependence, and »; = L(£) defines in the £r/-plane the shear 
wave front radiating from the equilibrium dislocation edge 
position. In view of (16), (17), (19), and the fact that G 
vanishes along the wave front, equation (18) can be rewritten 
as 

:(«.»?) = l^T)i\LGl^u-&'T2iu+&] 

V(€-«) 
17 — U 

du (x>Q,s>d) (20) 

Dynamic Stress Intensity Factor 

By introducing (1), (13), (15), and (17) with y = 0 and the 
variable change V2z = £ — w while noting that the integration 
order in the z/-plane can be interchanged, equation (20) can be 
rewritten as 

27T2 

Tyc (X,S) --
- 1 a J> V* ds 

•z V ( Z - z ) 1 

dX , d , 
-— V 2 ^ V ( T + t / ) 
dS d(j> 

(C-BY')dzdt 
Jo (x + z)~Jz r2 

B = dcosQ + zsin<l>-X, C = dsintt + zcos<l> - Y 

Z = 
1 T2-R2 

, R=J(l/2 + V2) 
2 T+U 

= J[d2+X2 + Y2-2d(Xcosti+ Ksinfi)] 

(21) 

(22) 

(23) 

U=dcos\p-Xcos(f>- Ysin0, V=dsm\l/-Xsm<j>+Ycos<l> (24) 

where t* = s — R(t*). The restrictions on (D,D, Y) imply that 
/*=0 for s = d and dt*/ds>0, 0<t*<s for s>d. Figure 2 
illustrates that (x,y) = (£/, V) and /? are, respectively, the in
stantaneous dislocation edge position and instantaneous 
distance between the crack and dislocation edges. Thus, 
R(0) = d. 

The z-integrand behaves as 0(z - 2) for Izl —00, has branch 
points at (0,Z), simple poles at -U±i \V\ (r2 =0), and a first-
order singularity on the branch cut at -x(x>0). These 
observations allow use of the Cauchy residue theorem to 
perform the z-integration. The </> and ^-differentiations can 
then readily be carried out and it can be shown that for x—0, 
s>d 

1 Kc(t*) 
-/-{X'S)~2V(xd) 

(25) 

*KAt*) = 
-D 

1 \RJ 

dx . m . e 
sm(co - 0)sin — 

dS 2 1 -Z>cos(co-

h\'' D^(IY I«)dt{s>d) (26) 
Id J0 dS \R/ 2d. 

I(t) =cos(d>- —J + Y'sm(d> 
30\ 

~2~) 
(27) 

tan0 = 
V 

~U~ 
t a n a = y (101 <TT, lal <ir/2) (28) 

Figure 2 shows that (R,d) are the plane polar coordinates of 
the instantaneous dislocation edge position w.r.t. the crack 
edge, a is its instantaneous slope w.r.t. the initial dislocation 
plane, and -co is the instantaneous slope w.r.t. the crack 
plane. Thus, 6(0) = \p and o(0) = <j>. Again it is understood that 
Y= Y{X), X=X(D), while (D,D) are functions of /. Upon 
introduction of the trajectory length integration variable 

eX[DU)\ 
^l[\+{Y'f]du 

J 0 

(29) 

in view of (2), (106), and the restrictions on Yit can be shown 
that 
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1 . dX 
— D 
2d dS '(I) ' '«>-£K4)-T] 

- ! K I ) ~ T ] 
Then, equation (26) assumes the form 

(30) 

irKc(t*) = cos -<D cos 

D Ai)** co - 0)sin • 
l -Z)cos(w-e) ' \R/""^ ''"" 2 

An alternative form can be obtained by noting that 

dR . „ dR 

(s>d) (31) 

sin(co - 6) --
dN 

cos(co - 6) = • 
rfS 

(32) 

The form of A1,, is independent of (29) so that, as indicated 
earlier, the single-valuedness restriction on the trajectory 
function Y can be dropped and the slope angle a can take on 
values lal<7r. Equation (31) appropriately reduces to the 
results in [8] for rectilinear motion (usO), 

In view of (5), the dynamic stress intensity factor K for the 
problem is obtained by superposing Kc on the equilibrium 
intensity factor K0. It is readily shown [4] that irK0 is the 
negative of the first term in (31) so that 

•wK(t*)=~-J 

cos — + Dcos 
d 2 (-4) 
R l - I ) c o s ( « - 0 ) 

(33) 

Equation (33) is convenient for computational purposes. In 
the following analysis, however, alternative forms prove to be 
useful. 

General Observations on K 

Equation (33) shows that the dynamic stress intensity factor 
depends explicitly on the instantaneous dislocation position 
(R,6), orientation («), and speed 0). In Fig. 2 the angle /3 
between the radial (R) and tangential (S) directions is defined 

|3 =7r + (co-0)sgn(0) (0<|3<7r) (34) 

It should be noted that /3, unlike the angles (0, i/s </>, a), is 
measured w.r.t. instantaneous directions and thus, for 
convenience, has no positive or negative sense in the xy-plane. 
In view of (31) and (34), equation (33) becomes 

irK(t*)= - V 

cos — + Dcos ( 
d 2 H4I) 

l+R 
(35) 

where D sin/3 and R = D cosfi are, respectively, the dislocation 
velocity components in the directions perpendicular and 
parallel to the /^-direction. Equation (35) can itself be 
rewritten as 

xtf(/*) = > / | ( -
0 DsmP . 

cos — + - — ; - sin 
2 l+R 

(36) 

which shows that the intensity factor has two competing (of 
opposite sign) components. The first component depends on 
the dislocation position, while explicit orientation and speed 
dependence is coupled with positional dependence in the 
second component. Both components vary inversely with the 
distance between the dislocation and crack edge. However, 
while the first component varies directly with the angle 
between the distance line and the crack surface, variation of 
the second component is inverse. Thus, these components 
vanish, respectively, on the crack surface and directly ahead 
of the crack edge. The second component also vanishes when 
the dislocation moves directly toward or away from the crack 
edge (|8 = 0,7r). These observations imply that the intensity 
factor is finite except perhaps when the dislocation is at the 
crack edge (R = 0) and may vanish for various combinations 
of dislocation position, orientation, and speed. 

Figure 1 shows that the dislocation at some ta>0 will 
radiate a shear wave that travels the distance R(ta) to sub
sequently reach the crack edge at sa = ta +R(ta). Similarly, 
the dislocation at some tb > ta will radiate a shear wave that 
reaches the crack edge at sb = tb+R(tb). If tb = ta + e, 
0<e<<d, then from (23) 

1 
1/ 

K o — -

II 

1 

d = I Q 0 

v / 5.0 

- \ L 7 4.0 -
^ ^ / 2.0 

D=0.5 

<j> = 0° 

v// = 45 ° 

1 

0.3 

0.0 

-0.3 

-0.6 

-0.9 

K-
K, s . 

d " 
= 10.0 

/ 5 . 0 
v7 40 

b= 
</> = 

+ 

:02 
= 0° 
= 45° 

2.0 

-180° -60° 60° 180°'-180° -60° 60c 

a a 
(a) (b) 

Fig. 3 (a) K versus a,D = 0.5; and (b) K versus a,D = 0.2 

I80C 

386/Vol. 50, JUNE 1983 Transactions of the ASME 
Downloaded From: https://appliedmechanics.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



sb-stt=tb-ta+R(tb)-R(ta)~[l+RVa)]e, 

R=~ -£- [X-dcosQ + Y'(Y-rfsinfl)] (37) 

The condition D < 1 and (106) guarantee that \R I < 1, and the 
left-hand side of (37) is therefore positive. Thus, the order in 
which signals giving rise to K leave the dislocation is 
preserved, on their arrival at the crack edge. 

With this in mind, we now consider dislocation motion 
discontinuities: Suppose that the dislocation speed undergoes 
a sudden change at t = t0. Since dt*/ds>0, 0<t* <s, we have 
t* = t0 at some subsequent instant s0 = t0+R(t0). Since D is 
finite and the path is continuous, the first intensity factor 
component will be continuous at sa. However, the second will 
instantaneously change unless (3= TT/2 and 0 = 0 at t0, i.e., the 
dislocation was crossing directly ahead of the crack edge at 
right angles to the crack plane. 

A related phenomenon occurs when the dislocation arrests 
or starts moving at t0. The intensity factor will suffer a 
discontinuity as s0 unless at t0 (3 = ir/2 and 8 = 0 or D vanishes 
continuously. If arrest occurs, only the first component 
remains and gives K the constant value 

rf=-V——cos-^ (s>sa) (38) 

Thus, once the dislocation arrest signal reaches the crack 
edge, the intensity factor assumes a new equilibrium value. 
Since 8(t0) = ± -K, the intensity factor vanishes for s>s0 when 
arrest is at any crack surface point except the edge. More 
generally, comparison of (36) and (38) shows that the first 
intensity factor component is essentially a static contribution. 
The second is a correction for dislocation motion not directly 
toward or away from the crack edge. 

Dislocation motion discontinuities can also occur due to the 
path itself, which is required to be continuous but only 
piecewise smooth. If at some t = t0 the dislocation reaches a 
corner, equations (33) and (35) show that unless D vanishes 
continuously there, an intensity factor discontinuity will 
subsequently be manifested at s0 through the parameters (a, 

ftci). 
In summary, then, discontinuities in dislocation speed and 

path slope cause discontinuities in the dynamic stress intensity 

factor. However, appropriate behavior by either quantity can 
also remove the discontinuity effect due to the other. 

Dynamic Overshoot 

Because two components compete during dislocation 
motion, the signal received at the crack edge from a given 
dislocation position triggers in the dynamic analysis an in
tensity factor that will either have a smaller magnitude than 
the static value or be of opposite sign. Only when 

Dsin/3 

l+R 
>2cot (39) 

will the latter instance produce a larger magnitude. Thus, 
unless (39) is satisfied, dynamic overshoot in the sense that the 
dynamic stress intensity factor at some instant exceeds its 
initial equilibrium value occurs due to the change in 
dislocation position, e.g., the dislocation moves closer to the 
crack edge. 

Numerical Illustrations 

To illustrate the effect of the implicit orientation parameter 
a, we consider the dislocation motion defined by (D,a) 
constant. The parameter K is plotted in Fig. 3(a) versus a for 
1̂  = 45 deg, 0 = 0 deg, .D = 0.5, and various values of s/d> 1.0. 
The discontinuities for a = - 45 deg indicate dislocation arrest 
at the crack edge, which occurs when s/d = 2.0. The other 
discontinuities and the constant behavior show the 
aforementioned effects of dislocation arrest at other crack 
surface locations. In general, the Jf-variation with a decreases 
as s/d becomes large. As implied earlier K temporarily 
vanishes at several values of a. Figure 3(b) presents a A"-plot 
for the same situation, except that now D = 0.2 and crack edge 
arrest occurs for a= - 4 5 deg when s/d =5.0. The ob
servations made for Fig. 3(a) are apparently again valid. The 
decrease in A'-variation with a, however, seems to occur more 
slowly. 

In view of the behavior near and away from the value a = 
- 4 5 deg, Fig. 3 shows the inverse variation of the dynamic 
stress intensity factor magnitude with the distance between the 
dislocaton and crack edge. This behavior is more clearly 
illustrated in Fig. 4(a), where K is plotted versus s/d> 1.0 for 

1 

K 

% ^ 

" 6=0.2 
a =0° 

- 4> = *-

1 

1 1 

v//=l65° _ 

_J20° \ 

\60°\ _. 

15 N \ \ -

i i \\ 1 

1.0 3.0 5.0 7.0 9.0 1.0 2.0 3.0 4.0 5.0 
s/d s/d 
(a) (b) 

Fig. 4 (a) K versus s/d, ^ = 45 deg; and (b)K versus s/d, <fr = \l>-
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D = 0.2, a = Odeg, ^ = 45 deg and tf> = (35, 40, 50, 55 deg). The 
intensity factor magnitude is seen to grow continuously until 
the dislocation nears its point of minimum distance to the 
crack edge. When the dislocation passes in front of the crack 
edge (0 = 50, 55 deg), the magnitude decreases asymptotically 
to zero. For the crack surface arrest cases (0 = 35, 40 deg) the 
intensity factor changes sign and then instantaneously 
vanishes when the arrest signals reach the crack edge. 

As a third illustration, K is plotted in Fig. 4(b) versus 
s/d>1.0 for I) = 0.2, a = 0 deg and various values of \j/ that 
define rectilinear paths which intersect the crack surface at the 
crack edge (cj>=\p~). Because ;6~7r, the intensity factor 
motion component is negligible, and Fig. 4(b) shows the 
aforementioned characteristic that the static component 
varies inversely with the angle to the crack surface. 

Application to Dynamic Fracture 

Dynamic brittle fracture initiates at an existing crack under 
rapid loading conditions, such as stress wave diffraction at the 
crack edge [12]. If there are no other external stress fields, the 
crack in an ideal, homogeneous, isotropic solid is often 
treated as completely at rest prior to the stress wave arrival. In 
a real material, however, if a screw dislocation of strength h is 
located in equilibrium as in Fig. \(a), and intensity factor k0, 
where [4] 

will exist. An antiplane shear wave that subsequently (s' =0) 
diffracts at the crack edge will generate an additional intensity 
factor kd. For the plane step-stress wave of magnitude a in 
Fig. 5, it can be shown [13] that 

dislocation force does not allow equilibrium dislocations to 
exist very near the crack edge [4], then \d/h\ > > 1 . On the 
other hand, we require that \a/fi\ < <1 in the elastic range; 
e.g., Ia//xl —0.0075 for a hot-rolled low carbon steel at yield. 
The ratio of trigonometric terms can take on any value 
between 0 and oo. Equation (41) shows, therefore, that the 
dislocation stress field can concieyably govern (\g\ <1) the 
crack edge for a finite period. If a/h>0, then diffraction 
merely intensifies the existing (dislocation) stress field. If 
a/h<0, however, diffraction initially relaxes the crack edge 
stress field and subsequently reverses its sign. That is, the 
dislocation temporarily shields the crack edge from the wave 
diffraction effects, and so postpones the onset of a stress level 
critical for fracture. A discussion of this shielding concept has 
been presented for static situations in [4, 5]. 

If the wave diffraction process also triggers dislocation 
motion, the results of previous sections would modify (41) to 
give 

a d 4(l+*)V(l-sin*) 

H h e • / 
cos-—- +Z>cosl /3 + 

V^V^- (s'>0)(42) 
\ d d 

s' + sc = t*+R(t*)>d (43) 

k0 

4V(1 - sin$) 

Here \sc I is the interval between the arrival of the plane wave 
at the crack edge and dislocation motion initiation. The force 
on an equilibrium dislocation such as in Fig. 1(a) varies in
versely with d and always points to the crack edge [4], 
Therefore, if we ignore effects such as grain distortion or the 
plane wave itself and assume that the dislocation moves 
directly to the crack edge, previous analysis shows that the 
governance ratio g reduces to 

•V- (s'>0) (41) d *V(1-
h 

sin$) 

d d 
(s'>0) (44) 

cos-
The dislocation strength is on the order of the atomic spacing 
in the cracked material. If it is argued that linear elasticity 
breaks down very near the dislocation or that the large 

The g-behavior versus s'/d for both stationary and moving 
dislocations is shown in Fig. 5 for various combinations of 

dislocation 
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(^.t//). It is assumed that dislocation motion initiates on 
arrival of the wave pattern and proceeds at a constant speed 
I) = 0.2. The discontinuities in Fig. 5 indicate the motion 
signal arrivals and the broken lines, the g-curves if no motion 
had occurred. The dislocation lies in the crack shadow when 
i / / -$>i r /2 . Then, the diffracted cylindrical wave (see Figs. 
1(b) and (c)) reaches the dislocation before the plane wave. If 
it is assumed that this wavefront has the same triggering 
effect, then sc=-d and g = 0 for s'/d<1.0. The ( * , ^ ) -
values chosen in Fig. 5 do not fall into this category. 

Figure 5 shows that the stationary dislocation initially 
governs (\g I < 1) the crack edge stress field. After a finite time 
that varies directly with \ad/'\ih I the wave diffraction governs 
(Igl >1) indefinitely, and to an ever-increasing degree. When 
dislocation motion occurs, however, the initial dislocation 
governance period may be increased while the wave dif
fraction governance interval is now finite, and may vanish 
entirely if \adl\sh\ is large enough. Moreover, the degree of 
wave diffraction governance is lower than for the stationary 
dislocation at the same instant. In Fig. 5, the time intervals are 
on the order of the shear wave travel time d between the 
equilibrium dislocation and crack edge. 

Figure 5 thus confirms the stationary dislocation ob
servations. Because the dislocation-induced intensity factor 
itself increases with s' (inversely with R), Fig. 5 shows that 
these observations must be modified for the moving 
dislocation: For a/h>0, the stress intensification process is 
accelerated, while for a/h<0, the relaxation process might 
not occur ( l g l < l ) or will be briefer. Thus, a stress level 
critical for fracture will always be achieved sooner if the 
dislocation moves to the crack edge. 

Since the time intervals arising here are on the order of 
shear wave travel times between the crack and equilibrium 
dislocation, the delay/acceleration effects for a single 
dislocation might not be readily detectable experimentally. 
However, a dislocation array might by superposition give 
measurable time intervals. On the other hand, the number of 
dislocations per grain has been estimated to be on the order of 
1010, which implies an unreasonably large k0 total. However, 
this implication would follow from the assumption that h for 
each dislocation in the array is of the same sign. Finally, it 
should be noted that the results obtained here are for a 
dislocation existing initially in equilibrium. Wave excitation 
of the dislocation source itself involves the solution to the 
problem of the instantaneously appearing dislocation. This is 
related but not identical to the problem defined by (3) and (4). 

Brief Summary 

This paper first studied the dynamic stress intensity factor 
generated for a stationary crack by the motion of a screw 
dislocation of unit strength from an equilibrium position. The 
intensity factor was found to have two components of op
posite sign. The first component depended on the in
stantaneous dislocation position. The second component also 
depended on the instantaneous dislocation speed and 
orientation, but vanished for the important case of a 
dislocation moving directly toward the crack edge. Discon
tinuities in the dislocation speed or a nonsmooth path were 
found to cause discontinuities in the intensity factor. 
However, appropriate behavior by either could remove the 
discontinuity effect due to the other. It was also found that 
dislocation arrest caused the intensity factor to in

stantaneously attain a new equilibrium value which, on the 
crack surface, vanishes. 

More generally, the study showed that screw dislocation 
motion from rest near an otherwise undisturbed crack edge 
does not necessarily intensify or relax the stress field there. 
Stress field response depends on the dislocation path and 
speed, and how they affect the dislocation position in par
ticular, the distance between the crack edge, and dislocation. 

The study results were then used to consider a screw 
dislocation near a crack edge at which plane step-stress an-
tiplane shear wave diffraction occurs. In terms of the com
bined intensity factor, it was found that, depending on the 
relation between the wave stress and the slip direction, a 
stationary screw dislocation can either accelerate or delay the 
onset of the stress level critical for crack edge fracture. If the 
wave pattern, however, also triggers dislocation motion into 
the crack edge, the delaying effect is diminished and the 
acceleration process accentuated. For a single dislocation, the 
time intervals involved are apparently on the order of the 
shear wave travel time between the equilibrium dislocation 
and the crack edge. The dimensionless quantity odlyh, the 
dislocation path angle \j/, and wavefront angle $ are key 
parameters in determining these time intervals. 

The results of this paper will form the basis for further 
studies of dynamic fracture in the presence of dislocations. In 
particular, future work will utilize more fully the path effect 
results obtained here; attempts to model the effects of crack 
edge and multiple dislocation interaction on the dislocation 
path in view of the dislocation force concept will be made. It 
is hoped, however, that the present results themselves will 
allow insight into this area. 
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