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Comparing two correlated C indices with
right-censored survival outcome: a
one-shot nonparametric approach

Le Kang,a,b*† Weijie Chenb∗†, Nicholas A. Petrickb and
Brandon D. Gallasb

The area under the receiver operating characteristic curve is often used as a summary index of the diagnostic
ability in evaluating biomarkers when the clinical outcome (truth) is binary. When the clinical outcome is
right-censored survival time, the C index, motivated as an extension of area under the receiver operating
characteristic curve, has been proposed by Harrell as a measure of concordance between a predictive biomarker
and the right-censored survival outcome. In this work, we investigate methods for statistical comparison of
two diagnostic or predictive systems, of which they could either be two biomarkers or two fixed algorithms, in
terms of their C indices. We adopt a U-statistics-based C estimator that is asymptotically normal and develop
a nonparametric analytical approach to estimate the variance of the C estimator and the covariance of two C
estimators. A z-score test is then constructed to compare the two C indices. We validate our one-shot nonpara-
metric method via simulation studies in terms of the type I error rate and power. We also compare our one-shot
method with resampling methods including the jackknife and the bootstrap. Simulation results show that the
proposed one-shot method provides almost unbiased variance estimations and has satisfactory type I error
control and power. Finally, we illustrate the use of the proposed method with an example from the Framingham
Heart Study. Copyright © 2014 John Wiley & Sons, Ltd.
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1. Introduction

Methods for assessing and comparing diagnostic performance are of increasing importance as new
biomarkers and high-throughput molecular diagnostics are in rapid development. When a diagnostic test
for a binary outcome, for example, non-diseased and diseased, is based on an observed variable that lies
on the ordinal scale, the receiver operating characteristic (ROC) curves and the area under the ROC curves
(AUC) are commonly used diagnostic accuracy measures [1–5].

A number of methods have been proposed to estimate the AUC and its variance [2, 6–8]. There have
also been parametric and nonparametric methods developed to compare correlated AUCs. Metz et al.
[9] proposed a bivariate binormal model. Hanley and McNeil [10] provided a table that converts the
observed correlations in diagnostic scores between two modalities into a correlation between two AUCs.
DeLong et al. [11] presented a nonparametric method for comparing correlated AUCs on the basis of a
structural components variance estimate following the work of Sen [12] and the asymptotic normality of
the U-statistic AUC estimator.

Despite the prevailing use of AUC as a summary index of the ROC curve in the context of dichotomous
outcomes [13–15], it has limitations in evaluating and comparing biomarkers with censored survival out-
comes. Essentially, ROC analysis requires a reference standard that categorizes subjects into diseased and
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non-diseased populations. However, the survival outcome, that is, time to event, is typically continuous
rather than binary. Additionally, the conventional ROC analysis cannot handle censored outcome data.

There have been generalizations of ROC analysis that can overcome these constraints. The time-
dependent ROC curves [16–18] have been proposed in thinking ROC curves as a varying function of
time t. Intuitively, the censored outcome can be dichotomized given time point t, for example, being 1 if
a subject has died prior to time t and 0 otherwise. Correspondingly, the area under the time-dependent
ROC curves has been considered [19].

Smith et al. [20] generalized the area under the empirical ROC curve to a concordance measure that
allows for polytomous ordinal patient outcomes. Obuchowski [21] proposed a concordance-type measure
of diagnostic accuracy that differs from Smith et al. in how it deals with ties in the reference standard.
While these methods accommodate polytomous and continuous data, neither handles censoring of clinical
outcomes such as those in survival analysis.

The overall C index, motivated as an extension of AUC to survival analysis, has been proposed by
Harrell et al. [22, 23]. It is a conditional concordance probability measure between a survival outcome
that is possibly right censored and a predictive-score variable, which can represent a measured biomarker
or a composite-score output from an algorithm that combines multiple biomarkers. Various popular
extensions of the C index have been proposed in the literature since then [19, 24, 25]. Pencina et al. [26]
studied these different C statistics systematically and concluded that the C index proposed by Harrell
et al. [22, 23] is the most appropriate in capturing the discriminating ability of a predictive variable to
separate those with longer event-free survival from those with shorter event-free survival within some
time horizon of interest.

Here we consider a dataset collected on a cohort of n subjects. The actual right-censored survival time
of each subject is denoted as Xi with censoring indicator 𝛿i (i = 1, 2,… , n), where 𝛿i = 1 if an event
of interest occurred (e.g., death) and 0 if censored. Together with two predictive variables denoted as Y
and Z, the collected data can be arranged in a matrix form with each row representing observations for
a subject

⎛⎜⎜⎜⎜⎝
X 𝛿 Y Z
X1 𝛿1 Y1 Z1
X2 𝛿2 Y2 Z2
⋮ ⋮ ⋮ ⋮
Xn 𝛿n Yn Zn

⎞⎟⎟⎟⎟⎠
. (1)

Upon randomly drawing a pair of subjects, Harrell et al. [22] defined the overall C index between the
right-censored survival time X and the predictive score Y (or Z) as the probability that the subject with
the higher values of Y (or Z) had the longer survival time X, given that the order of two survival times
can be validly inferred. Values of C near 0.5 indicate that the predictive score is no better than tossing a
coin in determining which subject will live longer, while values of C near 0 or 1 indicate that the score,
lower or higher, virtually always determines which subject has a better prognosis [22].

For two predictive tests performed on the same cohort of patients, it is essential to account for the
correlated nature of the data to make a formal statistical comparison in terms of the C index. Pencina and
D’Agostino [27] and Nam and D’Agostino [28] investigated asymptotic variance estimations as well as
confidence interval constructions for a single C. Antolini et al. [29] developed methods for comparing
two correlated C indices, in which a consistent estimator for the variance of the difference of two C
indices was derived via the jackknife approach. In this article, we develop a one-shot estimator that
does not require resampling for the variance of the difference of two C indices. A z-score test is then
constructed to statistically compare the two C indices. For comparison purposes, we also consider a
bootstrap resampling approach [30, 31].

The rest of our article is organized as follows. In Section 2, we discuss the C index in detail and
present the relationship between the C index and the generalized Kendall’s tau. In Section 3, we present
the proposed variance estimator and the test statistic for the difference between two correlated C indices.
Moreover, the procedures for carrying out the jackknife approach [29] and the bootstrap resampling
approach are also described. We present extensive simulation studies in Section 4 for validating the
performance of the proposed test statistic and compare that with the jackknife and the bootstrap
approach in terms of type I error rate and statistical power. In Section 5, we apply the proposed
method to an example from the Framingham Heart Study data [32] to compare the ability of biomark-
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ers in predicting heart-disease-free survival. Finally, a broader discussion on assessing and comparing
diagnostic/prognostic accuracy is presented in Section 6.

2. The C index

In this section, we provide a review of the historical development of the prediction probability PK of
Smith et al. [20], the C index [22, 27], and their relationships with various versions of Kendall’s tau. We
show under a unified framework that the C index is a linear function of our generalized Kendall’s tau.
Because of this relation, the generalized Kendall’s tau will serve as a vehicle for making inference about
the C index.

2.1. Outcomes with no censoring

First, assume that the survival time X is actually observed without any censoring, that is, 𝛿i = 1
(i = 1, 2,… , n). Following Smith et al. [20], upon randomly drawing a pair of subjects, say (i, j), i ≠ j,
we may have five types of pairs between the survival time X and the predictive score Y ,

(1) a concordance with probability Πc = P(Xi < Xj and Yi < Yj or Xi > Xj and Yi > Yj);
(2) a discordance with probability Πd = P(Xi < Xj and Yi > Yj or Xi > Xj and Yi < Yj);
(3) an X-only tie with probability ΠtX = P(Xi = Xj and Yi > Yj or Xi = Xj and Yi < Yj);
(4) a Y-only tie with probability ΠtY = P(Xi < Xj and Yi = Yj or Xi > Xj and Yi = Yj);
(5) a joint tie in both X and Y with probability ΠtXY = P(Xi = Xj and Yi = Yj).

These five possibilities for a random pair are comprehensive and mutually exclusive, and therefore

Πc + Πd + ΠtX + ΠtY + ΠtXY = 1.

Recall that our interest is to assess the ability of the predictive scores in predicting survival. Smith
et al. [20] considered Kim’s measure [33] dX⋅Y ,

dX⋅Y =
Πc − Πd

Πc + Πd + ΠtY
=

Πc − Πd

1 − ΠtX − ΠtXY
, (2)

which is the probability of a concordance minus the probability of a discordance, both conditioned on the
occurrence of distinct values of outcome X, for quantifying the degree of relationship between X and Y .
The subscript for Kim’s measure dX⋅Y indicates the intent to predict X from Y . Smith et al. [20] showed
that a prediction probability PK (related to Kim’s measure),

PK = 1
2

(
dX⋅Y + 1

)
=

Πc +
1
2
ΠtY

Πc + Πd + ΠtY
, (3)

which is the probability of a concordance plus one half the probability of a predictive-score-only (Y-only)
tie, both conditioned on distinct values of state or outcome X, is a direct generalization of the trapezoidal
AUC to polytomous ordinal patient outcomes. When the outcome X is dichotomous, PK reduces to the
trapezoidal AUC.

2.2. Survival outcomes with Type I censoring assuming continuous predictive score

Pencina and D’Agostino [27] assumed a continuous distribution of the predictive score Y , that is,
P(Yi = Yj) = 0. This eliminates ΠtY and ΠtXY , and in this case, Kim’s measure dX⋅Y in Equation (2) is
simplified to

d′
X⋅Y =

Πc − Πd

Πc + Πd
=

Πc − Πd

1 − ΠtX
, (4)

which is the modified Kendall’s tau presented by Pencina and D’Agostino [27].
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They only considered the ties caused by equal survival times X of subjects who remained in the study
to the end Tfinal without developing the event of interest. This type of censoring has been defined as Type
I censoring [34]. Under this assumption, they showed that Harrell’s definition of the C index [22] can be
expressed in terms of functions of the probability of a concordance and the probability of a discordance,

CXY = P
(
Xi < Xj and Yi < Yj or Xi > Xj and Yi > Yj|Xi ≠ Xj

)
=

Πc

Πc + Πd
.

Comparing the preceding equation with Equation (3), we can connect the dots and relate CXY back to
AUC via PK [20].

Pencina and D’Agostino also showed that a linear relationship exists between the overall C and Kim’s
measure d′

X⋅Y (their modified Kendall’s tau) in Equation (4) as

CXY = 1
2

(
d′

X⋅Y + 1
)
.

2.3. Survival outcomes with random right-censoring without assuming continuous predictive score

The censoring type that Pencina and D’Agostino [27] considered is Type I censoring. In addition, they
assumed no ties in predictive scores. To overcome these limitations, we develop a general C index
estimator that allows for various right-censoring (e.g., random dropouts) in survival time and ties in
predictive scores.

Define sign and csign (sign with censoring) functions as follows,

sign
(
Yi, Yj

)
= I

(
Yi ⩾ Yj

)
− I

(
Yi ⩽ Yj

)
, (5)

csign
(
Xi, 𝛿i,Xj, 𝛿j

)
= I

(
Xi ⩾ Xj

)
𝛿j − I

(
Xi ⩽ Xj

)
𝛿i, (6)

where I(⋅) is the indicator function. It can be verified that sign and csign functions take values in
{−1, 0, 1}. The order of two survival times Xi and Xj can be unambiguously determined if and only if
csign

(
Xi, 𝛿i,Xj, 𝛿j

)
≠ 0. Notice that here we may determine the order even when Xi = Xj if only one of

the two is censored. The observation that the higher value of Y corresponds to the longer survival time
X is mathematically equivalent to csign

(
Xi, 𝛿i,Xj, 𝛿j

)
sign

(
Yi,Yj

)
= 1. Under such setting, we formulate

the general C index as a conditional probability between the survival time X and the predictive score Y as

Cg
XY = P

(
csign

(
Xi, 𝛿i,Xj, 𝛿j

)
sign

(
Yi,Yj

)
= 1|csign

(
Xi, 𝛿i,Xj, 𝛿j

)
≠ 0

)
+ 1

2
P
(
sign

(
Yi,Yj

)
= 0|csign

(
Xi, 𝛿i,Xj, 𝛿j

)
≠ 0

)
.

(7)

If we categorize randomly drawn pairs into the following mutually exclusive types using our sign and
csign functions,

(1) a generalized concordance with probability Πg
c = P(csign

(
Xi, 𝛿i,Xj, 𝛿j

)
sign

(
Yi,Yj

)
= 1);

(2) a generalized discordance with probability Πg
d = P(csign

(
Xi, 𝛿i,Xj, 𝛿j

)
sign

(
Yi,Yj

)
= −1);

(3) a generalized X-only tie with probability Πg
tX = P(csign

(
Xi, 𝛿i,Xj, 𝛿j

)
= 0, sign

(
Yi,Yj

)
≠ 0);

(4) a generalized Y-only tie with probability Πg
tY = P(csign

(
Xi, 𝛿i,Xj, 𝛿j

)
≠ 0, sign

(
Yi,Yj

)
= 0);

(5) a generalized joint tie in both X and Y with probability Πg
tXY = P(csign

(
Xi, 𝛿i,Xj, 𝛿j

)
= 0, sign

(
Yi,Yj

)
= 0),

we can then express Cg
XY , analogous to PK in Equation (3) , in terms of the probabilities defined previously,

Cg
XY =

Πg
c +

1
2
Πg

tY

Πg
c + Πg

d + Πg
tY

=
Πg

c +
1
2
Πg

tY

1 − Πg
tX − Πg

tXY

.
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Define our generalized Kendall’s tau 𝜏g
XY =

Πg
c − Πg

d

Πg
c + Πg

d + Πg
tY

=
Πg

c − Πg
d

1 − Πg
tX − Πg

tXY

, which is analogous to

dX⋅Y in Equation (2), the linear relationship holds immediately between Cg
XY and 𝜏g

XY ,

Cg
XY = 1

2

(
𝜏g

XY + 1
)
. (8)

Notice that Cg
XY and 𝜏g

XY deal with censoring, while PK and dX⋅Y do not. At the same time, realizing that

𝜏g
XY =

Πg
c − Πg

d

1 − Πg
tX − Πg

tXY

=
E
[
csign

(
Xi, 𝛿i,Xj, 𝛿j

)
sign

(
Yi,Yj

)]
E
[
csign

(
Xi, 𝛿i,Xj, 𝛿j

)2
] ,

we can construct an estimator for our generalized Kendall’s tau, on the basis of which we obtain a point
estimator of the C index and make statistical comparison between two C indices.

2.4. A point estimate of the C index based on a random sample

Define tijXY = csign
(
Xi, 𝛿i,Xj, 𝛿j

)
sign

(
Yi,Yj

)
, t∗ijXX = csign

(
Xi, 𝛿i,Xj, 𝛿j

)2
, the sample estimate

tXY = 1
n(n − 1)

∑
i

∑
j≠i

tijXY

is a U-statistic-based estimator for E
[
csign

(
Xi, 𝛿i,Xj, 𝛿j

)
sign

(
Yi,Yj

)]
, that is, the numerator of

𝜏g
XY . Similarly,

t∗XX = 1
n(n − 1)

∑
i

∑
j≠i

t∗ijXX

is a U statistic for the denominator of 𝜏g
XY . Thus, a plug-in estimator for the general Cg

XY based on the
sample is

Ĉg
XY = 1

2

(
tXY

t∗XX

+ 1

)
.

3. The proposed method for comparing two correlated C indices

Because the sample Ĉg
XY is a continuous function of U statistics [35], it can be shown that Ĉg

XY is asymp-
totically normal [36]. Consequently, the difference between two correlated sample C indices is also
asymptotically normal, provided that the asymptotically bivariate normal distribution of two C indices
does not degenerate. Given another predictive score Z, we can obtain

var
(
Ĉg

XY − Ĉg
XZ

)
= var

(
Ĉg

XY

)
+ var

(
Ĉg

XZ

)
− 2cov

(
Ĉg

XY , Ĉ
g
XZ

)
= 1

4

[
var

(
tXY

t∗XX

)
+ var

(
tXZ

t∗XX

)
− 2cov

(
tXY

t∗XX

,
tXZ

t∗XX

)]
.

(9)

3.1. The Delta method for variance estimators

On the basis of the multivariate Delta method [37], the variance and covariance terms in Equation (9) can
be approximated as

var
(

tXY

t∗XX

)
≈
(

1
t∗XX

−
tXY

t∗2
XX

)[ var
(
tXY

)
cov

(
t∗XX , tXY

)
cov

(
t∗XX , tXY

)
var

(
t∗XX

) ](
1

t∗XX

−
tXY

t∗2
XX

)T

, (10)
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var
(

tXZ

t∗XX

)
≈
(

1
t∗XX

−
tXZ

t∗2
XX

)[ var
(
tXZ

)
cov

(
t∗XX , tXZ

)
cov

(
t∗XX , tXZ

)
var

(
t∗XX

) ](
1

t∗XX

−
tXZ

t∗2
XX

)T

, (11)

cov
(

tXY

t∗XX

,
tXZ

t∗XX

)
≈
(

1
t∗XX

−
tXY

t∗2
XX

)[ cov
(
tXY , tXZ

)
cov

(
t∗XX , tXY

)
cov

(
t∗XX , tXZ

)
var

(
t∗XX

) ](
1

t∗XX

−
tXZ

t∗2
XX

)T

. (12)

The details are provided in the Appendix. Now the problem boils down to obtaining estimates for
the variance and covariance matrix terms in Equations (10)–(12). In general, in addition to the random
variables X (with censoring) and Y (without censoring), given another pair of random variables U
(reference variable with censoring) and Z (predictive score without censoring), we present the following
lemma providing an unbiased estimator for cov

(
tXY , tUZ

)
, which will be used for obtaining variance and

covariance estimates in Equations (10)–(12) and thus the variance estimate of Ĉg
XY − Ĉg

XZ in Equation (9).

Lemma 3.1
An unbiased estimator for cov

(
tXY , tUZ

)
is

ĉov
(
tXY , tUZ

)
=

4
∑

i

(∑
j

tijXY
∑
j′

tij′UZ

)
− 2

∑
i

∑
j

tijXY tijUZ − 2(2n − 3)
n(n − 1)

∑
i

∑
j

tijXY

∑
i′

∑
j′

ti′j′UZ

n(n − 1)(n − 2)(n − 3)
.

The proof is given in the Appendix.
From Lemma 3.1, we may obtain unbiased estimators for terms var

(
t∗XX

)
, var(tXY ), var(tXZ),

cov
(
t∗XX , tXY

)
, cov

(
t∗XX , tXZ

)
, and cov(tXY , tXZ) in Equations (10–12) by replacing subscripts. For example,

v̂ar
(
t∗XX

)
=

4
∑

i

(∑
j

t∗ijXX

)2

− 2
∑

i

∑
j

t∗2
ijXX − 2(2n − 3)

n(n − 1)

(∑
i

∑
j

t∗ijXX

)2

n(n − 1)(n − 2)(n − 3)
.

See the Appendix for more details. Putting all the variance and covariance estimates together,
v̂ar

(
Ĉg

XY − Ĉg
XZ

)
is acquired.

In view of the preceding results, we form a z score on the basis of the large sample approach [38] for
testing the null hypothesis H0 ∶ Cg

XY = Cg
XZ . The test statistic is

z =
Ĉg

XY − Ĉg
XZ√

v̂ar
(
Ĉg

XY − Ĉg
XZ

) ,
and we would reject the null hypothesis if we observe |z| > z1−𝛼∕2, where z1−𝛼∕2 is the upper 𝛼∕2 quantile
from a standard normal distribution.

Antolini et al. [29] considered the jackknife approach to estimate var
(
Ĉg

XY − Ĉg
XZ

)
. The procedure

lies in leaving out one observation, say, individual i, at a time from the sample set and recomputing the
difference between two C indices on the basis of remaining n − 1 observations, that is, Ĉg (−i)

XY − Ĉg (−i)
XZ .

An estimate for the variance of the two C’s difference can be calculated from this new set of replicates{
Ĉg (−i)

XY − Ĉg (−i)
XZ

}
, i = 1, 2,… , n. Antolini et al. [29] showed that the jackknife estimate of variance

converges to the true value asymptotically.
Alternatively, we can utilize the bootstrap resampling approach [30, 31] for variance estimations

when testing the difference between two correlated C indices. The procedure is as follows. We resample
the original data matrix shown in Equation (1) by row (individuals) with replacement and compute the
estimated Ĉg

XY − Ĉg
XZ on the basis of the resampled data. Repeat this step B = 500 times and each time

we obtain an estimate of the difference between Ĉg
XY and Ĉg

XZ . The sample variance of the bootstrap
replicates of Ĉg

XY − Ĉg
XZ is considered a bootstrap variance estimate for var

(
Ĉg

XY − Ĉg
XZ

)
. A z score can

be similarly formed for testing the same hypothesis.
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4. Simulation studies

We conducted extensive simulations in validating the performance of our proposed method in terms of
type I error rate and power. We also compared our method with the jackknife and the bootstrap methods.

The survival time data is generated from either an exponential or a Weibull distribution. The
exponential distribution assumes a fixed failure rate and has been widely used in continuous survival
time modeling [34, 39]. The Weibull distribution [34], which is a generalization to the exponential
distribution by allowing the failure rate to vary over the time, was also selected because it was found to
fit the Kaplan–Meier survival curve in the Framingham Heart Study example as shown in Figure 1. We
used both distributions in our simulations. Of course, it should be expected that our proposed method is
nonparametric and thus should work for any distribution.

We consider non-informative random censoring for each subject. The observed right-censored survival
time X is recorded as the minimum of censoring time and survival time. The event indicator 𝛿 is 1 if the
right-censored survival time is indeed the true survival time or 0 if the right-censored survival time is
censoring time. In our simulation, the censoring time is generated using exponential distributions with
various failure rates such that the censoring percentage is controlled at certain levels, ranging from 0%
to 50%. Determining the failure rate parameters given the censoring percentage is achieved by iterative
approximations based on sufficiently large sample sizes.

Conditioned on true survival times, two predictive scores Y and Z for each subject are simulated
from bivariate normal distributions with different means and varying correlations. For simplicity, the
standard deviations of two scores are fixed at 1. The means are set such that the true Δc = CXY − CXZ
is 0.00, 0.05, or 0.10, respectively. The individual values of CXY and CXZ are given in Tables I–III and
Supporting information Tables S1–S3. Again, determining mean parameters given the target C index
value is achieved by iterative approximations based on sufficiently large sample sizes. It is important
to keep in mind that the individual C index does depend on the censoring distribution [40], and the
individual C indices reported in the tables are calculated approximately on the basis of sufficiently large
sample sizes, conditional on true survival times (without censoring). However, as we will show later in
this section, the Δc = CXY − CXZ does not change with varying correlations and censoring percentages.

The first scenario with Δc = 0.00 corresponds to the null hypothesis, whereas the latter two correspond
to the alternative. The null hypothesis that there is no difference between two correlated C is rejected
if |z| > z1−𝛼∕2, where 𝛼 = 0.05 for all simulations. For each configuration with different sample size
n, censoring percentage, bivariate normal correlation, and true Δc, we sample data from the designated
distributions and apply our method, the jackknife method, and the bootstrap to perform hypothesis testing.
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Figure 1. Empirical survival function based on the Framingham Heart Study. A vertical tick represents loss of a
patient (censoring). The Weibull distribution with 𝜆 = 60, k = 1.25 was found to fit these survival data quite well.
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Table I. Bias and RMSE given as a percent of the true variance for all three variance estimators of Δc. This
case study used an exponential model for survival data with 20% data censored and the correlation between
two scores set to 0.50.

Delta + Ub Bootstrap Jackknife

Sample True variancea Relative Relative Relative Relative Relative Relative
Effect size size n (×104) biasc (%) RMSEd (%) biasc (%) RMSEd (%) biasc (%) RMSEd (%)

Δc = 0.00 50 27.9 −0.29 33 14 36 11 36
CXY = 0.6
CXZ = 0.6

65 21.2 −0.38 28 10 31 8 30
80 16.8 −0.19 25 9 28 7 27
95 14.1 −0.26 23 7 25 5 24

Δc = 0.05 50 29.8 −0.26 32 13 35 11 35
CXY = 0.6
CXZ = 0.55

65 22.8 −0.34 27 9 30 7 29
80 18.0 −0.13 25 8 27 6 26
95 15.1 −0.24 22 7 24 5 24

Δc = 0.10 50 32.2 −0.35 31 12 33 10 33
CXY = 0.6
CXZ = 0.5

65 24.6 −0.45 26 8 28 7 28
80 19.5 −0.26 24 7 26 6 25
95 16.4 −0.39 21 6 23 5 22

aTrue variance is estimated from 100,000 MC samples.
bDelta + U refers to the proposed variance estimator, which is a U statistic applied to a multivariate Delta method.
cRelative Bias (%) = Bias/TrueVariance ×100%.
dRelative RMSE (%) = RMSE/TrueVariance ×100%.

Table II. Bias and RMSE given as a percent of the true variance for all three variance estimators of Δc. This
case study used an exponential model for survival data with 20% data censored and the correlation between
two scores set to 0.95.

Delta + Ub Bootstrap Jackknife

Sample True variancea Relative Relative Relative Relative Relative Relative
Effect size size n (×104) biasc (%) RMSEd (%) biasc (%) RMSEd (%) biasc (%) RMSEd (%)

Δc = 0.00 50 3.6 −0.34 44 44 67 27 55
CXY = 0.6
CXZ = 0.6

65 2.6 −0.41 38 35 55 21 46
80 2.1 −0.44 34 31 48 18 40
95 1.7 −0.18 31 27 43 16 36

Δc = 0.05 50 4.8 −0.31 44 38 61 24 53
CXY = 0.6
CXZ = 0.55

65 3.5 −0.36 38 30 50 18 44
80 2.7 −0.37 34 26 45 15 39
95 2.3 −0.16 31 22 40 13 35

Δc = 0.10 50 7.7 −0.52 44 27 53 18 49
CXY = 0.6
CXZ = 0.5

65 5.7 −0.44 38 21 45 13 42
80 4.5 −0.51 34 17 40 11 37
95 3.7 −0.35 32 15 36 9 34

aTrue variance is estimated from 100,000 MC samples.
bDelta + U refers to the proposed variance estimator, which is a U statistic applied to a multivariate Delta method.
cRelative bias (%) = Bias/TrueVariance ×100%.
dRelative RMSE (%) = RMSE/TrueVariance ×100%.

We repeat the Monte Carlo (MC) simulation nsim = 100, 000 times to calculate the proportion of rejection
being observed in these simulation experiments. This fraction is the empirical type I error rate under the
null hypothesis and the empirical statistical power under the alternative.

Figures 2 and 3 show the proportion of rejection under various settings with exponential survival data
and the correlation between two predictive scores set to 0.50 and 0.95, respectively. From Figures 2 and
3, we see that the observed error rate of our method is nominally higher than the expected rate at small
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Table III. Bias (×104) for the difference estimator of two C indices. This case study used an exponential model
for survival data.

Correlation = 0.50 Correlation = 0.95

Censoring Percentage Censoring Percentage

Effect size Sample size n 0% 10% 20% 50% 0% 10% 20% 50%

Δc = 0.00 50 −0.8653 −0.8514 −0.8428 −0.8757 −0.8505 −0.8622 −0.8430 −0.8682
CXY = 0.6
CXZ = 0.6

65 −0.7375 −0.7564 −0.7354 −0.7397 −0.7504 −0.7619 −0.7567 −0.7412
80 −0.6400 −0.6457 −0.6575 −0.6552 −0.6486 −0.6537 −0.6584 −0.6395
95 −0.5833 −0.5658 −0.5743 −0.5557 −0.5673 −0.5740 −0.5802 −0.5691

Δc = 0.05 50 −0.7888 −0.7996 −0.7951 −0.8097 −0.7918 −0.8009 −0.7890 −0.7959
CXY = 0.6
CXZ = 0.55

65 −0.6594 −0.6469 −0.6412 −0.6508 −0.6446 −0.6477 −0.6396 −0.6419
80 −0.5485 −0.5507 −0.5452 −0.5443 −0.5373 −0.5419 −0.5334 −0.5392
95 −0.4288 −0.4319 −0.4379 −0.4187 −0.4229 −0.4307 −0.4199 −0.4263

Δc = 0.10 50 −0.7185 −0.7296 −0.7177 −0.7163 −0.7179 −0.7223 −0.7162 −0.7135
CXY = 0.6
CXZ = 0.5

65 −0.5719 −0.5888 −0.5627 −0.5767 −0.5680 −0.5757 −0.5673 −0.5692
80 −0.4404 −0.4427 −0.4536 −0.4397 −0.4468 −0.4529 −0.4441 −0.4437
95 −0.3603 −0.3693 −0.3734 −0.3561 −0.3683 −0.3718 −0.3668 −0.3655

Above observed with exponential survival data based on 100,000 samples; values in the table equal original bias ×104.

sample sizes, for example, n = 50 (detailed numbers can be found in the Supporting information
Table S1). The inflation of the type I error rate is more obvious with more data censored, which can be
explained by the fact that censoring reduces the effective amount of data for calculating the statistics.
Nevertheless, the results indicate that the observed error rate of our method converges steadily to the
expected rate as n increases. Furthermore, with increased correlations between two predictive scores Y
and Z, the type I error rate is more close to the nominal level.

In contrast, the observed error rates of the jackknife and the bootstrap methods are further from the
nominal level in the conservative direction. With 20% survival data censored and a correlation of 0.95
between two predictive variables, the observed error rates of the jackknife and the bootstrap could go as
low as 0.0291 and 0.0184 at n = 50, respectively. Even with sample size n = 95, the observed error rates
of the jackknife and the bootstrap are 0.0346 and 0.0271, respectively. As n increases, the error rates of
the jackknife and the bootstrap methods would converge to the expected rate. Yet, it is evident that with
increased correlations between two predictive scores Y and Z, the type I error rate is further away from
the nominal level.

Under the alternative hypothesis, the proposed method has larger power than either the jackknife or
the bootstrap method, which is consistent with the conservativeness we have just observed. For instance,
when the effect size Δc = 0.05, with 20% exponential survival data censored and the correlation of 0.95
between two predictive variables, the observed power of our method is 0.7969 at n = 65, compared with
0.7388 and 0.6979, for the jackknife and the bootstrap method, respectively. Table S2 in the Supporting
information showing the proportion of rejection under various settings with Weibull survival data tells
similar trends in the type I error rate and power.

To further understand the differences of observed type I error rate and power among different methods,
we empirically assess the bias and the root mean square error (RMSE) for all three variance estimators.
The true variance for the difference between two correlated C indices is estimated by the sample variance
of 100,000 MC sample estimates of the difference. For every MC sample, each of our proposed method,
the jackknife, and the bootstrap method, would give an estimate of the variance for the difference. The
mean and the variance, as well as the bias and the RMSE, for each variance estimator can be obtained
across 100,000 MC samples.

Tables I and II show the bias and the RMSE given as a percent of the true variance associated with each
variance estimator with the correlation between two predictive scores set to 0.50 and 0.95, respectively. It
demonstrates that our proposed variance estimator is almost unbiased across a large range of correlations
even with a small to moderate sample size (downward bias < 1% for all the simulations). By contrast, the
variance estimator based on the bootstrap or the jackknife is substantially biased upwards, and the relative
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Proportion of Rejection for Testing Difference Between Two
Correlated C Indices: A Case Study (Correlation = 0.50)

Figure 2. Proportion of rejection for testing the difference between two correlated C indices. This case study used
an exponential model for survival data and the correlation between two scores set to 0.50. Detailed numbers can

be found in the Supporting information Table S1.

bias and RMSE increase, while the correlation is higher. With sufficiently large sample sizes, all three
methods converge in theory. These results explain conservative type I error rate and underpower with the
jackknife and the bootstrap methods. To gain more insights on the variance estimators, we present the
sampling distributions of all the variance estimates in the 100,000 MC experiments for the three variance
estimators corresponding to Tables I and II in Supporting information Figures S1–S6. Again, under both
the null and the alternative, our proposed variance estimator is almost unbiased, while the bootstrap and
the jackknife are substantially biased upwards.
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Figure 3. Proportion of rejection for testing the difference between two correlated C indices. This case study used
an exponential model for survival data and the correlation between two scores set to 0.95. Detailed numbers can

be found in the Supporting information Table S1.

We mention in Section 2.3 that our formulation of the general C index can accommodate ties in
predictive scores. To evaluate the robustness of our method to ties in predictive scores, we carried
out simulations similar to those preceding except using discrete predictive scores that have ties. We
use numerical rounding as a way to generate data with ties. Specifically, the simulated bivariate nor-
mal continuous scores are rounded to one decimal place as well as to the nearest integers, which
results in approximately 40% and 90% of the subjects having tied score value with another subject,
respectively. Then, similar to the MC simulations with the continuous data presented previously, we
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apply our proposed method, the jackknife, and the bootstrap method to perform hypothesis testing. The
results with the discrete predictive scores are generally the same as those with the continuous scores,
indicating robustness of our method to data with ties. See Table S3 in the Supporting information
for details.

Last but not least, as we point out in the beginning of this section, it is known that the estimate of a single
C index is affected by the percentage of censored observations [40], but to what extent the difference
between two C indices is affected by censoring remains a concern. To this end, we evaluate the effect of
censoring and the correlation between two predictive scores on the estimation of the difference between
two correlated C indices via a simulation study. The result summarizing the empirical bias estimate is in
Table III. From Table III, although there are fluctuations in empirical bias estimates, there is no evidence
that the differences, all less than 0.0001, between two C indices are affected by censoring. By contrast,
the bias associated with a single C index estimate may vary from 0.012 to 0.084, when the censoring
percentage is increased from 10% to 50% within one of our simulation studies. The results indicate
that when comparing two correlated C indices conditional on the same censored survival outcome, the
biases for each C index caused by censoring are canceled out. It is also observed that the correlation does
not have an effect on the estimation of the difference between two correlated C indices. This is within
our expectation, as the correlation usually does not affect the marginal difference but does impact the
variance/covariance terms.

5. Analysis of Framingham Heart Study data example

The Framingham Heart Study is a long-term prospective study of the etiology of cardiovascular disease
in a population of free living subjects in the community of Framingham, Massachusetts [32]. It was a
landmark study in epidemiology in that it was the first prospective study of cardiovascular disease and
identified risk factors and their joint effects. Much of the now-common knowledge concerning heart
disease, such as the effects of diet, exercise, and medications, is based on this study [41–43].

The study began in 1948, and 5209 subjects were initially enrolled in the study. Participants
have been examined since the inception of the study, and all subjects are continuously followed through
regular surveillance for cardiovascular outcomes. Clinic examination data have included cardiovascu-
lar disease risk factors and markers of disease such as blood pressure, blood chemistry, lung function,
smoking history, health behaviors, ECG tracings, echocardiography, and medication use. Through reg-
ular surveillance of area hospitals, participant contact, and death certificates, the Framingham Heart
Study reviews and adjudicates events for the occurrence of angina pectoris, myocardial infarction,
heart failure, cerebrovascular disease, and death [32]. Part of the dataset in this study is publicly avail-
able [44], and we use this subset of the data (4434 participants) to demonstrate the application of our
proposed method.

In this application, the event time of interest is the first time that a subject had a cardiovascular disease
event (angina pectoris, myocardial infarction, coronary insufficiency, or fatal coronary heart disease) dur-
ing the interval of baseline to end of follow-up. The Kaplan–Meier estimates for the survival distributions
of the event time and the censoring are given in Figure 1.

We consider baseline measurements (PERIOD= 1) serum total cholesterol (TOTCHOL, mg/dL), body
mass index (BMI, weight in kilograms/height meters squared), systolic blood pressure (SYSBP, mm Hg)
and diastolic blood pressure (DIABP, mm Hg) as predictive variables for the event-free survival time.
These are common risk factors for cardiovascular diseases [45–47]. We conducted testing to determine
if a certain biomarker has better prognosis than others in terms of the C index.

The estimated sample values of C are 0.4018, 0.4021, 0.3651, and 0.3938 for TOTCHOL, BMI, SYSBP
and DIABP, respectively. Note that the C values are less than 0.5, which suggests that lower values, not
higher values, of the biomarkers correlate with longer event-free survival time. The difference between
two values of C from SYSBP and DIABP is 0.0287 with a p-value < 0.0001 using our proposed method.
Although the difference of 0.0003 between two C indices from TOTCHOL and BMI is quite small, it
reports a p-value of 0.0388. That is to say, SYSBP is better than DIABP, and TOTCHOL might be slightly
better than BMI in predicting event-free survival time. Our finding is consistent with the result of Stamler
et al. that systolic blood pressure relates more strongly to all cardiovascular risk than diastolic blood
pressure [48].
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6. Discussion

In this article, we investigated the problem of assessing the performance of biomarkers or classifiers
in predicting right-censored survival outcomes in terms of the C index. We developed a nonparametric
approach for comparing two correlated C indices for two tests (biomarkers or classifiers) performed on
a common cohort of subjects. Specifically, we derived analytical one-shot estimators for the variance
of the C index estimator and the covariance between two C indices. The one-shot estimators require
no resampling procedure and thus are computationally efficient. These provided the necessary recipes
for using the z score test to statistically compare two tests in regard to their C indices. Our extensive
simulations showed that our proposed approach had satisfactory performance in terms of type I error
control and statistical power with moderate to large sample sizes. We also showed that our approach
compares favorably with resampling methods such as the jackknife method [29] and the bootstrap method
as it provides an almost unbiased variance estimator for the difference estimate between two correlated
C indices. Finally, we applied our method to the Framingham Heart Study data for an application in the
problem of biomarker comparison for survival prognosis.

Given the negligible bias of our proposed variance estimator across a large range of correlations and
sample sizes shown in the simulation studies, it is clear that the proposed variance estimator is not
impacted by the correlations or the sample sizes. On the contrary, the bias and the RMSE associated
with the bootstrap or the jackknife variance estimator increase significantly when the correlations are
higher, indicating that the accuracy of the bootstrap or the jackknife variance estimator heavily depends
on the correlations. Meanwhile, our simulation results indicate that the type I error rate of our proposed
test is not impacted much by the correlations either, as compared with the increasing conservativeness
for the test based on the bootstrap or the jackknife variance estimator when the correlations are increas-
ingly higher. In short, the relative gain of our proposed method as compared with the resampling methods
when the correlations are higher is not because our method depends on the correlations but because of
the dependence of the resampling methods on the correlations; that is, they perform a lot worse when
the correlations increase. By theory, our proposed method appropriately accounts for the correlations in
estimating the variance of the difference between two correlated C indices, and thus we do not expect the
performance to depend on varying correlations.

Linking up with the fact that our proposed variance estimator works quite well across a large range of
correlations and sample sizes, the inflated type I error rate at small sample sizes observed in our results
indicates that the only limitation of our proposed method is the use of the standard normal distribution for
the test statistic at very small sample sizes. The test statistic for the comparison of two general C indices
is not quite normal at small sample sizes, because we are estimating the variance; we do not know the
population variance parameter exactly. Consequently, the distribution of the test statistic is wider. It may
be possible to account for this by using the t distribution with an appropriate estimate of the degree of
freedom. This will be addressed in our future work.

In the meantime, the seemingly fine controlled type I error rate for the z score test based on the bootstrap
or the jackknife variance estimator when the correlations are moderate is in fact caused by the compromise
of two types of errors, (1) an overestimate of the true variance ofΔc = CXY−CXZ and (2) an underestimate
of the critical value based on standard normal distribution. These two types of errors sometimes happen
to cancel out so the type I error rate looks just fine. However, when the correlations are much higher, the
error caused by the overestimation of the true variance of Δc would outweigh the error caused by using
an underestimated critical value on the basis of the standard normal distribution, and thus we observe
extreme conservativeness. We suggest that caution be taken before using the z score test based on the
bootstrap or the jackknife variance estimator as people may not realize that errors are being mixed in
producing p-values.

Besides the C index we have considered in this article, various accuracy measures have been suggested
to assess the ability of a predictive score Y in predicting the censored survival time X. Some examples
of these include proportion of explained variation [49–51], integrated Brier score [52], time-dependent
ROC measure [16–19], to name a few. Specifically, by choosing appropriate weight functions w(t), it
can be shown that a weighted average of the area under an incident time-dependent ROC curve at time
t, AUCt = ∫ ROCt(u)du, where ROCt(u) = TPRt{FPR−1

t (u)},TPRt(y) = P(Y ⩾ y|X = t),FPRt(y) =
P(Y ⩾ y|X > t), is equivalent to the C index [17].

Our method for comparing two correlated C indices is analogous to the role of the method of
DeLong et al. [11] for comparing two correlated AUCs with binary disease outcomes. We reiterate that
predictive scores in this article can be measured values of biomarkers, composite patient scores output
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from algorithms combining multiple biomarkers, predicted survival times, or predicted probabilities of
survival until any fixed time point based on mathematical models. We account for ties in the predictive
scores. This is more robust than existing methods that assume continuous scores because ties in predictive
scores can occur in many practical applications. For instance, ties occur naturally in categorical predic-
tive variables, and they may even occur in theoretically continuous variables as a result of categorization
or discretization.

We note that our method cannot deal with the problem of limit of detection (LoD) that may occur
in biomarker measurements. Vexler et al. [53] considered comparing the correlated AUCs of diagnostic
biomarkers whose measurements are subject to a limit of detection. Their approach may be extended
to the C index metric for dealing with both censored outcome and LoD in predictive scores. It is also
possible to extend our method by properly modifying the csign function in Equations (5)–(6) to deal with
LoD. It remains interesting future work for such extensions and comparisons.

In recent years, many investigators, for example, [54, 55], have noticed empirically that the method
of DeLong et al. based on U statistics [11] for testing two correlated AUCs resulting from nested mod-
els (reduced versus full model) often produces a nonsignificant result in assessing the incremental value
when a corresponding Wald test or likelihood ratio test from the underlying regression model is sig-
nificant. We have investigated this interesting problem in a recent paper [56]. The reported “problems”
of the method of DeLong et al. is essentially because the method is misused (i.e., used in a fashion
that the method is not designed for) by training and testing the models using the same dataset. The
test by DeLong et al. is designed for comparing two fixed models that are tested on a common dataset
that is independent of the training set. The variance estimator of DeLong et al. does not incorporate
the variance caused by the model training process, and therefore, fitting the full model and the reduced
model based on the training dataset and then testing two correlated AUCs based on the same dataset
would violate the assumption of the method of DeLong et al. and thus lead to an incorrect variance
estimate. Similarly, for our proposed method, when the predictive scores are outputs from an algo-
rithm that combines multiple biomarkers, our method assumes that the algorithm is trained and fixed
and ready to be tested on an independent test dataset. In other words, our method cannot be used to
compare two resubstitution C indices that are obtained by training and testing the algorithm using the
same dataset.

A supplementary R package to implement the methods described in this article is available for down-
load and ready to use at http://code.google.com/p/assessment-of-classifiers/. An example demo on how
to use the software can be found in the package.

Appendix A: The multivariate Delta method for variance estimators

Following the formula of Casella and Berger [37], we have
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t∗XX

)][
𝜕

tXY

(
tXZ

t∗XX

)]
cov

(
tXY , tXZ

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0

+
[
𝜕

tXY

(
tXY

t∗XX

)][
𝜕

t∗XX

(
tXZ

t∗XX

)]
cov

(
tXY , t

∗
XX

)
+
[

𝜕
t∗XX

(
tXY

t∗XX

)][
𝜕

tXY

(
tXZ

t∗XX

)]
cov

(
tXY , t

∗
XX

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0

+
[
𝜕

tXZ

(
tXY

t∗XX

)][
𝜕

t∗XX

(
tXZ

t∗XX

)]
cov

(
tXZ , t

∗
XX

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0

+
[

𝜕
t∗XX

(
tXY

t∗XX

)][
𝜕

tXZ

(
tXZ

t∗XX

)]
cov

(
tXZ , t

∗
XX

)

=
(

1
t∗XX

−
tXY

t∗2
XX

)[
cov

(
tXY , tXZ

)
cov

(
t∗XX , tXY

)
cov

(
t∗XX , tXZ

)
var

(
t∗XX

) ](
1

t∗XX

−
tXZ

t∗2
XX

)T

.

Appendix B: Covariance estimation of Kendall’s 𝜏

Given random variables X (with censoring) and Y (without censoring), Kendall’s 𝜏XY quantifies the
concordance between ordinal relations on two variables,

𝜏XY = E
[
csign

(
Xi, 𝛿i,Xj, 𝛿j

)
sign

(
Yi,Yj

)]
for a pair of subjects (i, j), i ≠ j. Define tijXY = csign

(
Xi, 𝛿i,Xj, 𝛿j

)
sign

(
Yi,Yj

)
, the sample estimate for

𝜏XY is

tXY = 1
n(n − 1)

∑
i

∑
j≠i

tijXY ,

and it is easy to verify that tXY is an unbiased estimator for 𝜏XY .
In general, given another pair of random variables U (with censoring) and Z (without censoring),

cov
(
tXY , tUZ

)
= E

[
tXY tUZ

]
− 𝜏XY𝜏UZ .

Note that tXY tUZ = 1
n2(n − 1)2

∑
i

∑
j

∑
i′

∑
j′

tijXY ti′j′UZ , where i, j, i′, and j′ represent sampled

individuals,

E
(
tXY tUZ

)
= 1

n2(n − 1)2
∑

i

∑
j≠i

∑
i′

∑
j′≠i′

E
[
tijXY ti′ j′UZ

]

= 1
n2(n − 1)2

∑
i

∑
j≠i

⎧⎪⎨⎪⎩E
[
tijXY tijUZ

]
+
∑
j′≠j
j′≠i

E
[
tijXY tij′UZ

]
+
∑
i′≠i
i′≠j

E
[
tijXY ti′ jUZ

]
+
∑
i′≠i

∑
j′≠j
j′≠i′

E
[
tijXY ti′ j′UZ

]⎫⎪⎬⎪⎭
= 1

n(n − 1)
E
[
tijXY tijUZ

]
+ n − 2

n(n − 1)
E
[
tijXY tij′UZ

]
+ n − 2

n(n − 1)
E
[
tijXY ti′ jUZ

]
+ (n − 1)(n − 2) + 1

n (n − 1)
E
[
tijXY ti′ j′UZ

]
.
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For each term, the coefficient is simply obtained by counting. Realizing that tijXY = tjiXY and tijXY ti′jUZ =
tjiXY tji′UZ = tijXY tij′UZ ,

E
(
tXY tUZ

)
= 2

n(n − 1)
E
[
tijXY tijUZ

]
+ 4(n − 2)

n(n − 1)
E
[
tijXY tij′UZ

]
+ (n − 2)(n − 3)

n(n − 1)
E
[
tijXY ti′j′UZ

]
,

with each term corresponding to two subscripts, one subscript, and no subscript in common, respectively,
regardless of order. Therefore,

cov
(
tXY , tUZ

)
= 2

n(n − 1)
[
cov

(
tijXY , tijUZ

)
+ 𝜏XY𝜏UZ

]
+ 4(n − 2)

n(n − 1)
[
cov

(
tijXY , tij′UZ

)
+ 𝜏XY𝜏UZ

]
+ (n − 2)(n − 3)

n(n − 1)
𝜏XY𝜏UZ − 𝜏XY𝜏UZ

= 2
n(n − 1)

cov
(
tijXY , tijUZ

)
+ 4(n − 2)

n(n − 1)
cov

(
tijXY , tij′UZ

)
.

It is of interest to obtain an unbiased estimate for cov
(
tXY , tUZ

)
. We could directly apply U statistics

to the preceding two terms, but the forms would be awkward to program (sums would not run over all
samples). Here, we present similar results with Cliff and Charlin [57] but correct their estimators and
then show the unbiasedness. The estimators presented in the following are easier to implement.

Lemma B.1
An unbiased estimator for cov

(
tXY , tUZ

)
is

ĉov
(
tXY , tUZ

)
=

4
∑

i

(∑
j

tijXY
∑
j′

tij′UZ

)
− 2

∑
i

∑
j

tijXY tijUZ − 2(2n − 3)
n(n − 1)

∑
i

∑
j

tijXY

∑
i′

∑
j′

ti′j′UZ

n(n − 1)(n − 2)(n − 3)
.

Proof B.1
Taking expectation of each term in the numerator, we have

E

[
4
∑

i

(∑
j

tijXY

∑
j′

tij′UZ

)]
= 4n(n − 1)E

(
tijXY tijUZ

)
+ 4n(n − 1)(n − 2)E

(
tijXY tij′UZ

)
E

[
2
∑

i

∑
j

tijXY tijUZ

]
= 2n(n − 1)E

(
tijXY tijUZ

)
E

[
2(2n − 3)
n(n − 1)

∑
i

∑
j

tijXY

∑
i′

∑
j′

ti′j′UZ

]
= 2(2n − 3)E

[
tijXY

∑
i

∑
j

tijUZ

]
= 2(2n − 3)

[
2E

(
tijXY tijUZ

)
+ 4(n − 2)E

(
tijXY tij′UZ

)
+ (n − 2)(n − 3)E(tijXY ti′j′UZ)
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Combine all preceding terms,

E
[
ĉov

(
tXY , tUZ

)]
=

2(n − 2)(n − 3)E
(
tijXY tijUZ

)
n(n − 1)(n − 2)(n − 3)

+
4(n − 2)2(n − 3)E

(
tijXY tij′UZ

)
n(n − 1)(n − 2)(n − 3)

−
2(2n − 3)(n − 2)(n − 3)E

(
tijXY ti′j′UZ

)
n(n − 1)(n − 2)(n − 3)

=
2(n − 2)(n − 3)

[
cov

(
tijXY , tijUZ

)
+ 𝜏XY𝜏UZ

]
n(n − 1)(n − 2)(n − 3)

+
4(n − 2)2(n − 3)

[
cov

(
tijXY , tij′UZ

)
+ 𝜏XY𝜏UZ

]
n(n − 1)(n − 2)(n − 3)

−
2(2n − 3)(n − 2)(n − 3)𝜏XY𝜏UZ

n(n − 1)(n − 2)(n − 3)

= 2
n(n − 1)

cov
(
tijXY , tijUZ

)
+ 4(n − 2)

n(n − 1)
cov

(
tijXY , tij′UZ

)
= cov

(
tXY , tUZ

)
In the case of the variances and covariances involving a shared variable,

v̂ar
(
t∗XX

)
=

4
∑

i

(∑
j

t∗ijXX

)2

− 2
∑

i

∑
j

t∗2
ijXX − 2(2n − 3)

n(n − 1)

(∑
i

∑
j

t∗ijXX

)2

n(n − 1)(n − 2)(n − 3)
,

v̂ar(tXY ) =

4
∑

i

(∑
j

tijXY

)2

− 2
∑

i

∑
j

t2
ijXY − 2(2n − 3)

n(n − 1)

(∑
i

∑
j

tijXY

)2

n(n − 1)(n − 2)(n − 3)
,

ĉov
(
t∗XX , tXY

)
=

4
∑

i

(∑
j

t∗ijXX

∑
j′

tij′XY

)
− 2

∑
i

∑
j

t∗ijXXtijXY − 2(2n − 3)
n(n − 1)

∑
i

∑
j

t∗ijXX

∑
i′

∑
j′

ti′j′XY

n(n − 1)(n − 2)(n − 3)
,

ĉov
(
tXY , tXZ

)
=

4
∑

i

(∑
j

tijXY
∑
j′

tij′XZ

)
− 2

∑
i

∑
j

tijXY tijXZ − 2(2n − 3)
n(n − 1)

∑
i

∑
j

tijXY

∑
i′

∑
j′

ti′j′XZ

n(n − 1)(n − 2)(n − 3)
.
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