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Abstract
Large-scale probabilistic knowledge bases are be-
coming increasingly important in academia and in-
dustry alike. They are constantly extended with
new data, powered by modern information extrac-
tion tools that associate probabilities with database
tuples. In this paper, we revisit the semantics under-
lying such systems. In particular, the closed-world
assumption of probabilistic databases, that facts not
in the database have probability zero, clearly con-
flicts with their everyday use. To address this dis-
crepancy, we propose an open-world probabilistic
database semantics, which relaxes the probabilities
of open facts to default intervals. For this open-
world setting, we lift the existing data complexity
dichotomy of probabilistic databases, and propose
an efficient evaluation algorithm for unions of con-
junctive queries. We also show that query evalu-
ation can become harder for non-monotone queries.

Introduction
Driven by the need to learn from vast amounts of text data,
efforts throughout natural language processing, information
extraction, databases and AI are coming together to build
large-scale knowledge bases. Academic systems such as
NELL [Mitchell et al., 2015], DeepDive [Shin et al., 2015],
Freebase [Bollacker et al., 2008], and Yago [Hoffart et al.,
2013] continuously crawl the web to extract relational in-
formation. Industry projects such as Microsoft’s Probase [Wu
et al., 2012], IBM’s Watson [Ferrucci, 2012], or Google’s
Knowledge Vault [Dong et al., 2014] similarly learn struc-
tured data from text. These systems have already populated
their databases with millions of entities and billions of tuples.

Such knowledge bases are inherently probabilistic. To go
from the raw text to structured data, information extraction
systems employ a sequence of statistical machine learning
techniques, from part-of-speech tagging until relation extrac-
tion [Mintz et al., 2009]. For knowledge-base completion
statistical relational learning algorithms make use of embed-
dings [Bordes et al., 2011; Socher et al., 2013] or probab-
ilistic rules [Wang et al., 2013; De Raedt et al., 2015]. In
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both settings, the output is a predicted fact with its probab-
ility. Thus, we need to define a probabilistic semantics for
such knowledge bases. The most-basic model is that of tuple-
independent probabilistic databases (PDBs) [Suciu et al.,
2011], which indeed underlies many of these systems [Dong
et al., 2014; Shin et al., 2015]. According to the PDB se-
mantics, each database tuple is an independent Bernoulli ran-
dom variable, and all other tuples have probability zero, en-
forcing a closed-world assumption (CWA) [Reiter, 1978].

This paper revisits the choice for the CWA in probabil-
istic knowledge bases. We observe that the CWA is violated
in their deployment, which makes it problematic to reason,
learn, or mine on top of these databases. We propose an al-
ternative semantics for probabilistic knowledge bases to ad-
dress these problems, based on the open-world assumption
(OWA), which as opposed to the CWA, does not presume
that the knowledge of a domain is complete. Our proposal
of open-world probabilistic databases (OpenPDBs) builds on
the theory of imprecise probabilities [Levi, 1980] in the sense
that all tuples that are not in the knowledge base, called open
tuples, take on probabilities from a default probability inter-
val. All facts in the open world remain possible, formal-
ized through lower and upper probabilities, which determines
their contribution to the probability of possible worlds. This
framework provides more meaningful answers, in terms of
upper and lower bounds on the query probability.

Our open-world semantics is supported by a query eval-
uation algorithm for unions of conjunctive queries (UCQs).
This class of queries, corresponding to monotone DNF, is
particularly well-behaved and the focal point of database re-
search. Perhaps the largest appeal of PDBs comes from a
breakthrough dichotomy result by [Dalvi and Suciu, 2012],
perfectly delineating which UCQs can be answered effi-
ciently in the size of the PDB. Their algorithm runs in poly-
nomial time for all efficient queries, called safe queries, and
recognizes all others to be #P-hard. Our OpenPDB algorithm
extends the PDB algorithm of [Dalvi and Suciu, 2012] and in-
herits its elegant properties: all safe queries run in polynomial
time. When our algorithm fails, the query is #P-hard.

In general, both OpenPDBs and PDBs admit the same
data complexity dichotomy between polynomial time and #P.
Moreover, a careful analysis shows that both algorithms run
in linear time in the number of (closed-world) tuples on a sor-
ted database. Even though OpenPDBs model a polynomially
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Inmovie

w smith ali
arquette scream
pitt mr ms smith
jolie mr ms smith

Couple

arquette cox
pitt jolie
pitt aniston
kunis kutcher

Figure 1: Database Tables.

larger set of random variables, these can be reasoned about
as a whole, and there is no computational blow-up for open-
world reasoning. Therefore, assuming that the database con-
stants are sorted, both OpenPDBs and PDBs admit a stronger
data complexity dichotomy between linear time and #P. The
fact that safe PDB queries have linear-time data complexity
on a sorted database is perhaps not technically surprising, but
this has not been observed in the literature before. This ob-
servation is quite important practically though, particularly in
the context of open-world probabilistic databases.

We focus on the corresponding decision problem of prob-
abilistic query evaluation and thus on the complexity class
PP [Gill, 1977], which can be seen as a decision version of
#P. Our analysis entails that the complexity of open-world
reasoning can go up significantly with negation. We identify
a safe PDB query that becomes NP-complete and an unsafe
PDB query that becomes NPPP-complete on OpenPDBs. We
also consider query evaluation complexity in terms of the do-
main size, or equivalently, the size of the open world, keep-
ing both the query and the database fixed. Here, complexities
range from polynomial time to the unary alphabet class #P1.

Preliminaries
Relational Logic. We focus on the function-free finite-
domain fragment of first-order logic (FOL). An atom
P(t1, . . . , tn) consists of predicate P/n of arity n followed by
n arguments, which are either constants from a finite domain
D = {a,b, . . .} or logical variables {x, y, . . .}. A ground
atom does not contain logical variables. A literal is an atom
or its negation. A formula combines atoms with logical con-
nectives and quantifiers ∃ and ∀. A logical variable x is quan-
tified if it is enclosed by a ∀x or ∃x. A free variable is one
that is not quantified. We write φ(x, y) to denote that x, y
are free in φ. A formula is monotone if it contains no nega-
tions. A substitution [x/t] replaces all occurrences of x by t
in some formula Q, denoted Q[x/t].

A relational vocabulary σ consists of a set of predicates
R and a domain D. We will make use of Herbrand se-
mantics [Hinrichs and Genesereth, 2006], as is customary.
The Herbrand base of σ is the set of all ground atoms that can
be constructed fromR and D. An σ-interpretation is a truth-
value assignment to all the atoms in the Herbrand base of σ,
called σ-atoms. An interpretation ω is a model of formula Q
when it satisfies Q, defined in the usual way. Satisfaction is
denoted by ω ⊧σ Q. We omit σ when clear from context.
Databases and Queries. Following the standard model-
theoretic view [Abiteboul et al., 1995], a relational database
for vocabulary σ is a σ-interpretation ω. Figure 1 depicts a
relational database in terms of tables. Each table corresponds
to a predicate and its rows correspond to ground atoms of that

Inmovie P

w smith ali 0.9
j smith ali 0.6
arquette scream 0.7
pitt mr ms smith 0.5
jolie mr ms smith 0.7

Couple P

arquette cox 0.6
pitt jolie 0.8
thornton jolie 0.6
pitt aniston 0.9
kunis kutcher 0.7

Figure 2: Probabilistic Database Tables

predicate, which are also called records or facts. These atoms
are mapped to true, while ones not listed in these tables are
mapped to false, according to the CWA [Reiter, 1978].

The fundamental task in databases is query answering.
Given a formula Q(x, y, . . . ), the task is to find all substitu-
tions (answers) [x/s, y/t, . . . ] such that ω ⊧ Q[x/s, y/t, . . . ].
Consider for example the query Q1(x, y) for spouses that
starred in the same movie:

∃z, Inmovie(x, z) ∧ Inmovie(y, z) ∧ Couple(x, y).

The database in Figure 1 yields [x/pitt, y/jolie] as the only
answer. This formula is an existentially quantified conjunc-
tion of atoms, called a conjunctive query (CQ). We concen-
trate on Boolean conjunctive queries (BQs), which have no
free variables. Answers to BQs are either true or false. For
example, the BQ

Q2 = ∃x, y, z Inmovie(x, z)∧Inmovie(y, z)∧Couple(x, y),

returns true on the database in Figure 1. A Boolean union of
conjunctive queries (UCQ) is a disjunction of BQs. We will
denote the class of UCQs with negation on atoms by UCQ̃.
Probabilistic Databases. The simplest probabilistic data-
base model is the one based on the tuple-independence as-
sumption as we adopt here [Suciu et al., 2011].

Definition 1. A probabilistic database (PDB) P for a vocab-
ulary σ is a finite set of tuples of the form ⟨t ∶ p⟩ , where t is a
σ-atom and p ∈ [0,1]. Moreover, if ⟨t ∶ p⟩ ∈ P and ⟨t ∶ q⟩ ∈ P ,
then p = q.

Figure 2 shows an example PDB. The following semantics
is based on the tuple-independence assumption mentioned
earlier [Suciu et al., 2011].

Definition 2. A PDB P for vocabulary σ induces a unique
probability distribution over σ-interpretations ω:

PP(ω) = ∏
t∈ω

PP(t)∏
t∉ω

(1 −PP(t)),

where
PP(t) = { p if ⟨t ∶ p⟩ ∈ P

0 otherwise.

The choice of setting PP(t) = 0 for tuples missing from
PDB P is a probabilistic version of the CWA.

Definition 3. The probability of a BQ Q w.r.t. a PDB P is

PP(Q) = ∑
ω⊧Q

PP(ω).

For example, considering the PDB in Figure 2 and the
query Q2 defined earlier, we get PP(Q2) = 0.28.



Closed-World PDBs in Practice
As noted by Reiter [1978], CWA presumes a complete know-
ledge about the domain being represented. We now assess the
adequacy of CWA for probabilistic knowledge bases.
Truncating and Space Blow-up. Knowledge completion
systems continuously crawl the web, and discover new facts.
Nevertheless, they retain only a small fraction of the dis-
covered facts in their knowledge base and facts with a probab-
ility below some predefined threshold are simply discarded,
which is clearly a misuse of the CWA. As only facts with
high-probability are stored in their knowledge base, most of
the automatically constructed PDBs are hardly probabilistic.
Most tuples have a very high probability, placing PDBs into
an almost crisp setting in practice. This mode of operation,
however, is not an oversight, but a necessity. It is simply
not possible to retain all facts in the knowledge base. Con-
sider, for instance the Sibling relation over a domain of 7
billion people. Storing a single-precision probability for all
Sibling facts would require 196 exabytes of memory; two
orders of magnitude more than the estimated capacity avail-
able to Google [Munroe, 2015].
Distinguishing Queries. Since the CWA is violated in
most PDBs, several query answering issues become appar-
ent. Consider, for instance, the queries Q1(pitt, jolie) and
Q2. The former query entails the latter, leading us to ex-
pect that P(Q2) > P(Q1(pitt, jolie)) in an open-world set-
ting. However, P(Q2) = P(Q1(pitt, jolie)) = 0.28 in the
PDB of Figure 2. For another example, consider the quer-
ies Q1(w smith, j smith) and Q1(thornton, aniston). The
former is supported by two facts in the PDB of Fig-
ure 2, while the latter is supported by none, which should
make it less likely. However, both evaluate to the prob-
ability 0. Taking these observations to the extreme, the
query Inmovie(x, y) ∧ ¬Inmovie(x, y) is unsatisfiable, yet
it evaluates to the same probability as the satisfiable query
Q1(thornton, aniston). These counterintuitive results are not
synthetic, but also observed in real-world data.
Knowledge-Base Completion and Mining. The CWA per-
meates higher-level tasks that one is usually interested in per-
forming on probabilistic databases. For example, a natural
approach to knowledge-base completion learns a probabilistic
model from training data. Consider, for example, a probabil-
istic rule [Wang et al., 2013; De Raedt et al., 2015]

Costars(x, y) 0.8
←ÐÐ Inmov(x, z),Inmov(y, z),Couple(x, y).

To evaluate the quality of this rule for predicting the Costars
relation, the standard approach would be to quantify the con-
ditional likelihood of the rule based on training data [Sutton
and McCallum, 2011]:

D = {Costars(w smith, j smith),Costars(pitt, jolie)}.
The rule predicts P(Costars(w smith, j smith)) = 0, due to
the CWA, since one fact is missing from the knowledge base.
Hence, the rule gets a likelihood score of zero, regardless of
its performance on other tuples in the training data. Another
high-level task is to mine frequent patterns in the knowledge
base; for example to find the pattern Q1(x, y) and report it
to the data miner. Again, due to the CWA, the frequencies of
these patterns will be underestimated [Galárraga et al., 2013].

Open-World Probabilistic Databases
Our proposal for open-world probabilistic databases is based
on the assumption that facts not appearing in a probabilistic
database have probabilities in the interval [0, λ], for some
threshold probability λ. This is formalized through a credal
set [Levi, 1980], which is a set of probability distributions.
Definition 4. An open probabilistic database is a pair
G = (P, λ), whereP is a probabilistic database and λ ∈ [0,1].

The semantics of an open probabilistic database (Open-
PDB) is based on completing probabilistic databases.
Definition 5. A λ-completion of probabilistic database P is
another probabilistic database obtained as follows. For each
atom t that does not appear in P , we add tuple ⟨t ∶ p⟩ to P for
some p ∈ [0, λ].

While a closed probabilistic database induces a unique
probability distribution, an open probabilistic database in-
duces a set of probability distributions.
Definition 6. An open probabilistic database G = (P, λ) in-
duces a set of probability distributions KG such that distribu-
tion P belongs to KG iff P is induced by some λ-completion
of probabilistic database P .

Note that the set of distributions KG is credal and repres-
ents the semantics of OpenPDB G. Intuitively, an OpenPDB
represents all possible ways to extend a PDB with new tuples
from the open world, with the restriction that the probabil-
ity of these unknown tuples can never be larger than λ. Thus,
query evaluation for OpenPDB yields interval-based answers.
Definition 7. The probability interval of a Boolean query Q
in OpenPDB G is KG(Q) = [P

G
(Q),PG(Q)], where

P
G
(Q) = min

P∈KG
P(Q) and PG(Q) = max

P∈KG
P(Q).

Reiter [1978] introduced the open-world assumption as the
opposite of the CWA. Under the OWA, a set of tuples no
longer corresponds to a single interpretation. Instead, a data-
base corresponds to the set of interpretations that extend it.
A similar effect is achieved by OpenPDBs: a set of probab-
ilistic tuples no longer corresponds to a single distribution.
Instead, a probabilistic database corresponds to the set of dis-
tributions that extend it. In restricting the probabilities of
open tuples to lie in [0, λ], OpenPDBs follow a rich literature
on interval-based probabilities [Halpern, 2003], credal net-
works [Cozman, 2000] and default reasoning [Reiter, 1980].

OpenPDBs in Practice
We now discuss some implications of the open-world set-
ting. Consider the queries Q1 and Q2 again. We have already
noted that Q1(pitt, jolie) entails Q2, leading us to expect that
P(Q2) > P(Q1(pitt, jolie)) assuming our knowledge is not
complete. This is indeed the case for OpenPDBs (for up-
per probabilities) since there are many worlds with non-zero
probability that entail Q2 but not Q1(pitt, jolie). We have also
observed that an unsatisfiable query is in some cases as likely
as a satisfiable one in the closed world. In the open-world
setting, the upper probability of a satisfiable query will be
greater than the upper probability of an unsatisfiable query. In



fact, any unsatisfiable query will still have a zero upper prob-
ability in OpenPDBs. For some real-world examples, based
on NELL, we refer the reader to [Ceylan et al., 2016].

The Bayesian learning paradigm is a popular view on ma-
chine learning, where the learner maintains beliefs about the
world as a probability distribution, and updates these beliefs
based on data, to obtain a posterior distribution. In the con-
text of knowledge base completion systems, we observe the
following. Given a PDB at time t, such systems gather data
D t to obtain a new model Pt+1

P
(.) = Pt

P
(. ∣Dt). Systems

continuously add facts f , that is, set Pt+1
P

(f) > 0, whereas
previously Pt

P
(f) = 0; an impossible induction for Bayesian

learning. This problem is resolved by the open database se-
mantics. Now, facts are not a priori impossible, and adding
them does not conflict with the prior beliefs.

Query Evaluation in OpenPDBs
OpenPDBs model an infinite set of PDBs, and thus, it may
seem like an unsurmountable task to efficiently compute in-
tervals KG(Q). Fortunately, the problem is simplified by a
strong property of credal sets as we employ them here: prob-
ability bounds always come from extreme points [Cozman,
2000]. For OpenPDBs, this means the following.
Definition 8. An extreme distribution P ∈ KG is a distribution
where P(t) = PG(t) or P(t) = P

G
(t) for all tuples t.

Proposition 9. For any OpenPDB G and a query Q, there ex-
ist extreme distributions P,P ∈ KG such that P(Q) = P

G
(Q),

and P(Q) = PG(Q).
Thus, for query answering, it suffices to consider a finite set

of distributions, which can be represented by λ-completions
where the open-world tuples have an extreme probability. As
for PDBs, query answering in OpenPDBs is computationally
challenging. We first define the decision problem of interest.
Definition 10. Given an OPDB G, query Q and probability p,
the upper (resp., lower) probabilistic query evaluation prob-
lem is to decide whether PG(Q) ≥ p (resp., P

G
(Q) < p).

Proposition 9 suggests a naive query answering algorithm:
generate all extreme distributions P, compute P(Q), and re-
port the minimum and maximum. This procedure will termin-
ate in time exponential in the number of open-world tuples.
For UCQs, however, the monotonicity of the queries allows
us to further simplify query evaluation. We can choose the
minimal (resp., maximal) bound for every tuple, which min-
imizes (resp., maximizes) the probability of the UCQ.
Theorem 11. Given OpenPDB G = (P, λ) and UCQ Q, let
P ′ = P ∪ {⟨t ∶ λ⟩ ∣ t is an open tuple} be a λ-completion.
Then, KG(Q) = [PP(Q),PP ′(Q)].

Theorem 11 shows that we can reduce OpenPDB query
evaluation to query evaluation on PDBs with only a polyno-
mial blow-up in the data size. Unfortunately, this can be im-
practical for PDBs with a large domain. A more goal-oriented
algorithm, described next, avoids this blow-up.

Overview of the Results and Outlook
Lifted Inference Algorithm. OpenPDBs is supported with
an efficient lifted inference algorithm LiftRO, which is an
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●
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Figure 3: Complexity map for PDBs and OpenPDBs on a
sorted database.

adaptation of the LiftR algorithm presented in Gribkoff et
al. [2014]. This algorithm assumes that the database is sorted
and the query is ranked as in [Dalvi and Suciu, 2012] and can
compute the probability of a query in time linear in the size
of the data. The main difference between LiftRO and LiftR is
in the treatment of the open tuples. Even though OpenPDBs
model a polynomially larger set of random variables, due to
the symmetries, these can be reasoned about as a whole, and
there is no computational blow-up for open-world reasoning.
Data Complexity. Our key complexity results are illus-
trated in Figure 3. Briefly, the decision problem of UCQ
query evaluation either has linear time data complexity or is
PP-complete on a sorted database, depending on the query.
This implies a dichotomy between polynomial time and PP.
Moreover, these complexities are the same for PDBs and
OpenPDBs. For queries with negation, some safe PDBs quer-
ies can remain safe, and some can become NP-complete on
OpenPDBs. Some UCQ̃s that are PP-complete on PDBs can
remain PP-complete, and some can become NPPP-complete.
Domain Complexity. The domain complexity of OpenPDB
query evaluation is the complexity for a fixed query and data-
base, as a function of the size of the domain D. Beame et
al. [2015] study this complexity in the context of a task called
weighted first-order model counting. This task is reducible to
OpenPDB query evaluation when the database is empty. We
refer to Beame et al. [2015] for full details, but note that there
exists an FO3 query and set of probabilistic tuples with #P1-
complete domain complexity on OpenPDBs.
Outlook. A key challenge is to restrict the open world to ex-
clude spurious possible worlds, and thus limit the probability
mass of open tuples. One way of restricting the models is
to pose constraints on the probability distributions. Another
approach is to use an explicit formalism for restricting the
models such as ontological rules [Borgwardt et al., 2017].
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