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Abstract 
 

This paper presents performance comparisons of Support 

Vector Machine (SVM) and different classification method 

for power quality disturbance classification. The first goal of 

this study is to investigate EEMD (ensemble empirical mode 

decomposition) performance and to compare it with classical 

EMD for feature vector extraction and selection of power 

quality disturbances. Features are extracted from the power 

electrical signals by using Hilbert Huang Transform (HHT). 

This technique is a combination of ensemble empirical mode 

decomposition (EEMD) and Hilbert transform (HT). The 

outputs of HT are instantaneous frequency (IF) and 

instantaneous amplitude (IA). Characteristic features are 

obtained from first IMFs’, IF and IA. The ten features, i.e. 

mean, standard deviation, singular values, maxima and 

minima of IF and IA, are then calculated. These features are 

normalized and the inputs of SVM and other classifiers.  
 

1. Introduction 
 

The power monitoring/diagnostics has become an important 
role in power systems. Power quality, or more specifically, a 
power quality disturbance, is generally defined as any change in 
power (voltage, current, or frequency) that interferes with the 
normal operation of electrical equipment. Power quality 
concerns various kinds of electric disturbances such as voltage 
sag/swell, flicker, impulse, harmonics, DC component of 
voltage, oscillatory transient analysis, electromagnetic 

interference (EMI) and power system outage [1].  
To analyze these electric power system disturbances, data is 

often available as a form of sampled time function that is 
represented by a time series of amplitudes. When dealing with 
such data, the Fourier transform (FT) based approach is most 
often used. FT assumes periodicity of a given signal and loses 
the time axis account; it is not capable of providing time 
information of signal disturbances. Short time Fourier transform 
(STFT) provides both time and frequency information, but it 

suffers severely from the Heisenberg uncertainty principle [2] 
causing it to undergo a “trade-off” between time resolution and 
frequency resolution. Wavelet transform [3], which is a popular 
signal analysis method, offers continuous and discrete wavelet 
transforms (CWT and DWT) [4] and wavelet packet transform 
(WPT) [5] for the feature extraction of signals. 

On the contrary, many of the former decomposition methods, 
EMD is intuitive and direct, with the basis functions based on 

and derived from the data. The assumptions for this method are 
(a) the signal has at least a pair of extrema; (b) the characteristic 
time scale is defined by the time between the successive 
extrema; and (c) if there are no extrema, and only inflection 

points, then the signal can be differentiated to realize the 

extrema, whose IMFs can be extracted. Integration may be 
employed for reconstruction. The time between the successive 
extrema was used by Huang et al. [6] as it allowed the 
decomposition of signals that were all positive, all negative, or 
both. This implied that the data did not have to have a zero 
mean. This also allowed a finer resolution of the oscillatory 
modes. 
Many classification algorithms have been developed by 

researchers for classification of power electrical disturbances. 
Integrated Fourier linear combiner and fuzzy expert system [7] 
were used for the classification of transient disturbance 
waveforms in a power system. S-Transform and two 
dimensional time–time (TT) transform [8] have been 
implemented for electrical fault identification. Patterns 
generated by S-Transform and TT transform are unique and 
hence accuracy of identification is high. An adaptive neural 
network approach for the estimation of harmonic distortions and 

power quality in power networks are implemented [9]. A hybrid 
system to automatically detect, locate and classify disturbances 
affecting power quality in an electrical power system is 
presented [10]. Least absolute value (LAV) State Estimation 
algorithm has been used to measure the flicker voltage 
magnitude [11]. The Simulated Annealing (SA) optimization 
algorithm has been used for measuring the voltage flicker 
magnitude, frequency and the harmonics contents of the voltage 

signal for power quality analysis [12]. An algorithm to detect the 
fundamental frequency is proposed. It is based on the chirp-z 
transform (CZT) spectral analysis and is able to observe all 
standards in force because of its accuracy and working 
characteristics [13]. Wavelet multi-resolution decomposition 
that combines frequency domain with time-domain analysis for 
power disturbance feature extraction is proposed [14]. A wavelet 
norm entropy-based effective feature extraction method for 

power quality disturbance classification problem has been 
studied by [15]. Multiwavelet- based neural networks with 
learning vector quantization network are used for power quality 
disturbances as a powerful classifier [16]. Fuzzy ARTMAP, 
Back propagation algorithm (BPA) and Radial Basis Function 
(RBF) network in combination with S Transform, Wavelet 
transform and Hilbert Transform (HT) for classifying power 
faults have been used [17].  

In this work, the potential of a relatively recent method of 
ensemble empirical mode decomposition (EEMD) based SVM 
classification for analyzing nonlinear and non-stationary power 
disturbances is applied. 

The classification process of real-time eight power quality 
disturbances are shown in Fig. 1. 
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Fig. 1. Basic stages of the classification process 

 
 

2. EMD, EEMD and Hilbert Huang Transform 
 

2.1. EMD 
The EMD algorithm used in this study comprises the 

following steps:  
 

i. Identify all the extrema (maxima and minima) of the 
signal,  x(t). 

ii. Generate the upper and lower envelope by the cubic 
spline interpolation of the extrema point developed in 
step (1). 

iii. Calculate the mean function of the upper and lower              
envelope, m(t). 

iv. Calculate the difference signal d(t) = x(t)−m(t). 
v.  If d(t) becomes a zero-mean process, then the iteration 

stop and d(t) is an IMF1, named c1(t);  otherwise, go 
to step (1) and replace x(t) with d(t). 

vi. Calculate the residue signal   r(t) = x(t)−c1(t). 
vii. Repeat the procedure from steps (i) to (vi) to obtain 

IMF2, named c2(t).  To obtain cn(t), continue steps (i) 
– (vi) after n iterations. The process is stopped when 
the final residual signal r(t) is obtained as a monotonic 
function. 

At the end of the procedure, we have a residue r(t) and a 
collection of n IMF, named from c1(t) to cn(t). Now, the original 

signal can be represented as: 

∑
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Often, r(t) is regadred as cn+1(t) [6]. 
 

2.2 EEMD 
 
The steps for the EEMD algorithm are as follows: 

i. Add a white noise series n(t) to the targeted signal, 
named x1(t) in the following description, and  
x2(t)=x1(t)+n(t). 

ii. Decompose the data x2(t) by EMD algorithm, as 
described in Section 2.1.1. 

 
iii. Repeat Steps (i) and (ii) until the trial numbers, each 

time with different added white noise series of the 
same power at each time. The new IMF combination 
Cij(t) is achieved, where i is the iteration number and j 
is the IMF scale. 

iv. Estimate the mean (ensemble) of the final IMF of the 

decompositions as the desired output: 
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where ni denotes the trial numbers, according to Wu [18]. 

 

2.3. Comparison of EMD and EEMD decomposition 

for feature extraction and selection 
 
The typical EMD and EEMD decomposition and extracted IMF 
are shown in Fig. 2. The low level IMF contained high 
frequency components; while the high level IMF contained low 
frequency components. 

 
Fig. 2a. Feature vectors (IMFs) for a voltage saged signal with 

EMD 
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Fig.2b. Feature vectors (IMFs) for a voltage saged signal with 
EEMD 

 

2.3.1. Pearson product-moment correlation coefficient     

(PMCC): 

 
The Pearson product-moment correlation coefficient (R) is a 

measure of the correlation (linear dependence) between two 

variables X and Y, giving a value between +1 and −1 inclusive. 
An equivalent expression gives the correlation coefficient as 

the mean of the products of the standard scores. Based on a 
sample of paired data (Xi, Yi), the sample Pearson correlation 
coefficient is defined in Eq. (3) 
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X  and σX are the standard score, sample 

mean, and sample standard deviation of X. Table 1 shows the R 
values for EMD and EEMD. 
 

Table 1. Relation with first IMFs and current power signal 

Cross-Correlation  EMD EEMD 

IMF- healthy state  0.9762 1. 

IMF- voltage sag 0.8819 0.9081 

IMF- voltage swell 0.9300 0.9685 

IMF- voltage flicker 0.9700 0.9950 

IMF- harmonics (3, 5, 7) 0.7855 0.7861 

IMF- transient 0.5685 0.6104 

IMF- dc component  0.9244 0.9357 

IMF- EMI 0.5334 0.6429 

IMF- outage 0.9313 0.9856 

 
Table 1 clearly shows that correlation coefficient increases in 
EEMD method and a better decomposition is obtained.  
 

2.4. Hilbert-Huang Transformation Method (HHT) 
 
HHT represents the original signal X(t) into the time frequency 
domain by combining the empirical mode decomposition with 

the Hilbert transform. EMD can decompose signal into a finite 
number of n IMFs  Cj , j=1,2,3...,n which extract the energy 
associated with various intrinsic time scales and residual rn , this 
step is called sifting process described as in Eq. (1). 

The IMFs as a class of functions that satisfy two definitions: 
In the whole data set, the number of extrema and the number of 

zero-crossings must be either equal or differ at most by one.  
At any point, the mean value of the envelop defined by the local 
maxima and minima is zero.  
The Hilbert transform is then applied to each IMF component 

Cj: 
 
 
                                                                                        (4) 

 
Where cj(t) and vj(t) are real part and imaginary part of an 
analytic signal zj(t): 
                                                                                              
                    (5)  
       
 
 

With amplitude and phase defined by the expressions: 
 
 
 
         (6) 
 
 
Therefore, the instantaneous frequency wj(t) was given by: 

 
 
         (7) 
 
Thus, the original data can be expressed in the following form: 
 
 
         (8) 

 

 
 

Fig. 3. IA corresponding to first IMF for healthy signal and 
saged signal 
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  Fig. 4. IF corresponding to first IMF healthy signal and saged 
signal 

 
Fig. 5. IA corresponding to first IMF for all disturbances 

 
The outputs of Hilbert Transform are instantaneous frequency 

(IF) and instantaneous amplitude (IA). Candidate characteristic 
features are obtained from first IMFs’, IF and IA such kind of 
disturbances as shown Fig. 3, 4, and 5. 
 

3. Singular Value Decomposition 
 

Singular values give more information for identification of 
the system. We use this ability to use for future studies 
Hierarchical classifying on multiple feature groups. 
For any real mxn matrix A, then there exist orthogonal matrices 
 

,],...,,[ 21

mxm

m RuuuU ∈=                               (9) 

,],...,,[ 21

nxn

m RvvvV ∈=  

 

such that;          
TVUA Σ=                                                              (10) 

 

Where 
mxn

nm Rdiag ∈=Σ )),...,,( ),min(21 σσσ                 (11) 

0... ),min(21 ≥≥≥≥ nmσσσ  

 

The iσ is the i-th singular value of A in non-increasing order 

and the vectors ui and vi are the i-th left singular vector and the i-

th right singular vector of A for i = min(m,n), respectively [19]. 
The singular values of matrix A are unique, the singular vectors 

corresponding to distinct singular values are uniquely 
determined up to the sign. 

 
Fig. 6. Singular values for healthy state and all quality 

disturbances (IA) 
 

4. Support Vector Machines (SVMs) 
 

SVMs are a class of learning machines that aim at finding 
optimal hyperplanes among different classes of input data or 
training data in a high dimensional feature space F, and new test 
data can be classified using the separating hyperplanes. The 
optimal hyperplane, found during a training phase, makes the 
smallest number of training errors. Fig. 7 illustrates an optimal 
hyperplane for two classes of training data. 
 

 
Fig. 7. Optimal Hyperplane 

 
Let {xi,yi}, i = 1,2,…,L be L training data vectors xi with class 

label yi. Given an input vector x, an SVM constructs a classifier 
of the form: 
 

  )),(()(
1
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where { ia } are non-negative Lagrange multipliers each of 

which corresponds to a training data, b is a bias constant, and 
K(. , .) is a kernel satisfying the conditions of Mercer's theorem 
[20]. Frequently used kernel functions are the polynomial kernel 

d

jiji xxxxK )1.(),( += and Gaussian Radial Basis 

Function (RBF),
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The problem of finding the optimal hyperplane is specified by 
the following quadratic programming problem: 
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Minimizing: 
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The above quadratic programming problem can be solved 
with traditional optimization techniques. The vectors for which 

0>ia after optimization are called support vectors. 

A comparative study is carried out in the next section 
comparing the performances of the OAO (one against one) and 

OAA (one against all) decomposition methods in training the 
proposed multiclass SVMs. The results of the application of the 
proposed algorithm to the data set are presented at Table 2. 
 

4. Experimental Results and Discussions 
 

To evaluate the performance of the proposed power quality 
classification algorithm, a total number of 115 PQ disturbances 
data sets segments. The PQ signals at each class are divided into 

the train 90 and test sets 25. In this part of study, the polynomial 
kernel is used as the kernel function and the parameter d is 
chosen 2. The exact number of the train and test segments for 
each class is shown in Table 2. The most accurate multi 
classifiers (OAA) for each PQ dataset are indicated by Red font. 

Table 2. Comparisons of the performances of the one-against-all (OAA) and the one-against-one (OAO) 
SVM classifiers in terms of the average correct classification results obtained for each class 

Total 

number 

of train 

segments 

Classification    (SVM) 

One Against All (OAA) – One Against One (OAO) 

  90/25 HS VSG VSW VF VH VTR VDC VEM VO 

HS 3  -   2           0            0          0          0  0  0  0  0 

VSG           1  2   -    2            0          0          0  0  0  0  0 

VSW             0           0 2  -       2          1          0  0  0  0  0 

VF             0           0            0        3 -     2          0  0  0 0   0 

VH             0           0            0          0 3  -    3  0  0 0   0 

VTR             0           0            0          0          0 4  -     3  0  1  0 

VDC             0           0            0          0          0  0 3  -    3  0  0 

VEM             0           0            0          0          0  1  0 3 -    2  0 

VO             0           0            0          0          0  0  0  0 2 -    2 
HS: healthy state, VSG: voltage saged signal, VSW: voltage swell, VF: voltage flicker, VH: Voltage Harmonics 

As seen from the Table 2, the OAA method (Error = 0%, 
Precision = 100%) is superior to the OAO method (Error = 16%, 

Precision = 84 %). Therefore, the OAA decomposition method 
is chosen to the multiclass SVM in this study. 

According to the results of test data, the effectiveness of the 
proposed SVM algorithm is suitable by increasing RBF kernel 
parameter’s standard deviation (sigma 0.1 to 1). RBF 
polynomial kernel is worse than RBF kernel because of CPU 
time. Decision tree technique is superior than the others. It is 
another contribution of this research work. 

 

5. Conclusion 
In this paper, EEMD-HHT based Support Vector Machine 

(SVM) and different classification method for power quality 
disturbance classification algorithm was presented. EEMD is 
superior to EMD on IMFs decomposition. It is able to solve the 
problem of feature extraction selection method for PQ 
disturbances classification. By using EEMD method, a better 
decomposition can be obtained. 

Singular values feature gives more information for 

identification of the system. It is used for Hierarchical 
classifying on multiple feature groups. Real time multi-class 
classification of power quality disturbances is the future work. 
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