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Abstract

We explore the performance of a number of popular fea-
ture detectors and descriptors in matching 3D object fea-
tures across viewpoints and lighting conditions. To this end
we design a method, based on intersecting epipolar con-
straints, for providing ground truth correspondence. We
also collect a database of 100 objects viewed from 144
calibrated viewpoints under three different lighting condi-
tions. We find that the combination of Harris feature finder
and SIFT features is most robust to viewpoint change, while
combining Harris with steerable filters is the best for light-
ing changes. We also find that no detector-descriptor com-
bination performs well with viewpoint changes of more than
25-30◦.

1 Introduction

Detecting and matching specific visual features across dif-
ferent images has been shown to be useful for a diverse set
of visual tasks including stereoscopic vision [1, 2], vision-
based simultaneous localization and mapping (SLAM) for
autonomous vehicles [3], mosaicking images [4] and rec-
ognizing individual objects [5, 6]. This operation typically
involves three distinct steps. First a ‘feature detector’, also
called ‘feature finder’ or ‘interest operator’, identifies a set
of image locations presenting rich visual information and
whose spatial location is well defined. The spatial extent or
‘scale’ of the feature may also be identified in this first step.
The second step is ‘description’: a vector characterizing lo-
cal texture is computed from the image near the nominal
location of the feature. ‘Matching’ is the third step: a given
feature is associated with one or more features in other im-
ages. Important aspects of matching are metrics and criteria
to decide whether two features should be associated, and
data structures and algorithms for matching efficiently.

The ideal system will be able to detect a large number
of meaningful features in the typical image, and will match
them reliably across different views of the same scene / ob-
ject. Critical issues in detection, description and matching
are therefore robustness with respect to viewpoint and light-
ing changes, the number of features that may be detected in
the typical image, the frequency of false alarms and mis-
matches, and the computational cost of each step. Differ-
ent applications weigh these requirements differently. For

Figure 1: (top row) Important viewpoint change for a flat scene.
Many interest points can be matched after the transformation - im-
ages from K.Mikolajczyk (bottom row) Similar viewpoint change
for a 3D scene. Many points are located in highly textured regions
near borders of the object. When the object is rotated, the local
geometric structure of the image varies a lot, which makes match-
ing features more challenging because of occlusion and changes
in appearance

example, viewpoint changes more significantly in object
recognition, SLAM and wide-baseline stereo than in im-
age mosaicking, while the frequency of false matches may
be more critical in object recognition, where thousands of
potentially matching images are considered, rather than in
wide-baseline stereo and mosaicing where only few images
are present.

A number of different feature detectors [2, 7, 8, 9], fea-
ture descriptors [10, 11, 12, 13, 14] and feature match-
ers [5, 6] have been proposed in the literature. They can
be variously combined and concatenated to produce differ-
ent systems. Which combination should be used in a given
application? A couple of studies are available. Schmid [5]
characterized and compared the performance of several fea-
tures detectors. Later, Mikolajczik and Schmid [15] focused
primarily on the descriptor stage. For a chosen detector,
the performance of a number of descriptors was assessed.
These evaluations of interest point operators and feature de-
scriptors, have relied on the use of flat images, or in some
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cases synthetic images. The reason is that the transforma-
tion between pairs of images can be computed easily, which
is convenient to establish ground truth. However: many of
the applications of feature finders and descriptors is match-
ing across different views of 3D objects and scenes, as in
the case of wide-baseline stereo, motion analysis and object
recognition.

In the present study we evaluate the performance of fea-
ture detector and descriptors for images of 3D objects that
are viewed under different viewpoint and lighting contions.
To this effect, we collected a database of 100 objects viewed
from 144 different calibrated viewpoints under 3 lighting
conditions. We also developed a practical and accurate
method for establishing automatically ground truth in im-
ages of 3D scenes. Another difference with previous stud-
ies is that we use a metric for accepting/rejecting feature
matches due to D. Lowe [13]; it is based on the ratio of
the distance of a given feature from its best match vs the
distance to the second best match. This metric has been
shown to perform better than the traditional distance-to-
best-match.

In section 2 we describe the geometrical considerations
which allow us to construct automatically a ground truth
for our experiments. In section 3 we describe our labora-
tory setup, as well as the database of images we collected.
Section 4 describes the decision process used in order to as-
sess performances of detectors and descriptors. Section 5
presents and discusses the experiments. Section 6 contains
our conclusions.

2 Ground truth

In order to evaluate a particular detector-descriptor combi-
nation we need to calculate the probability that a feature
which was extracted in a given image can be matched to the
corresponding feature in an image of the same object/scene
viewed from a different viewpoint. For this to succeed, the
physical location must be visible in both images, the fea-
ture detector must detect it in both cases with minimal po-
sitional variation, and the descriptor of the features must be
sufficiently close. In order to compute this probability we
must have a ground truth: whenever the matching software
proposes a correspondence between two features we must
be able to tell whether this correspondence is correct or not.
Conversely, whenever a feature is detected in one image,
we must be able to tell whether in the corresponding loca-
tion in another image a feature was detected and whether
such feature was matched.

We establish ground truth by using epipolar constraints
between triplets of calibrated views of the objects. We dis-
tinguish between a ‘master’ or ‘primary’ view (A in Fig. 2)
a ‘test’ view B, and an ‘auxiliary view’ C. Given one fea-

ture A1 in the master image, any feature in B matching the
master feature must satisfy the constraint of belonging to
the corresponding epipolar line. This excludes most poten-
tial matches but not all of them (in our experiments, typi-
cally 5-10 features remain out of 300-600). We make the
test more stringent by imposing a second constraint. An
epipolar line is associated to the master feature in the aux-
iliary image C. As it will be clear later, the auxiliary view-
point is close enough to the master viewpoint that a clear
correspondence C1 may be established by matched based
on appearance and one epipolar constraint. In turn, C 1 pro-
duces an epipolar line in B. The intersection of the primary
and auxiliary epipolar lines in B uniquely identifies a small
matching region which either contains one feature or none.

The benefit of using the double epipolar constraint in the
test image is that any correspondence - or lack thereof - may
be validated with extremely low error margins. The cost is
that only a fraction of the master features have a correspon-
dence in the auxiliary image, thus limiting the number of
features triplets that can be formed. Therefore we are able
to measure performance for only a subset of the features
detected in the master image. If we call pA1(θ) the prob-
ability that, given a master feature A1, a match will exist
in a view of the same scene taken from a viewpoint θ de-
grees apart, the triplet (A1, B1, C1) exists with probability
pA1(θAC) · pA1(θAB), while the pair (A1, C1) exists with
higher probability pA1(θAB). While the measurements we
take allow for a relative assessment of different methods,
they need to be renormalized by 1/pA1(θAC) to obtain ab-
solute performance figures (see section 5).

3 Experimental setup

3.1 Setup of photographic equipment

Our acquisition system consists of 2 cameras taking pic-
tures of objects on a motorized turntable (see Fig. 3). The
third camera needed for the 3-pole epipolar constraints dis-
cussed above is a virtual camera. For example, if the view-
point change wished between cameras A and C is 20◦, the
turntable is rotated by 20◦. The pictures acquired by A with
this new turntable position, are pretended to be acquired by
a third camera that would be 20◦ degrees apart from A.
These ‘virtual cameras’ save us a considerable amount of
time in terms of calibration work: since calibration images
can be shared across virtual cameras, we do not need a new
set of calibration images for each angle.

Additionally, each acquisition was repeated with 3 light-
ing conditions in order to evaluate the performance of detec-
tors and descriptors with respect to changes in light. Two
photographic spotlights and umbrellas were used on each
side of the turntable, the 3 lighting conditions were obtained
by switching on one light, then the other, then both of them.
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Figure 2: (Top)Diagram of 3-pole epipolar constraints. (Bottom)
Example of matching process across 3 views for one feature.

3.2 Calibration

Prior to the objects image acquisition, the cameras need to
be calibrated [16]. The calibration images were acquired
using a checkerboard pattern placed at different orientations
using the turntable. Both cameras were automatically cal-
ibrated using a subset of these images and the calibration
routines included in Intel’s Open CV library. The ‘virtual
cameras’ were calibrated using a different subset of the cal-
ibration pictures (an alternative would consist of applying
a rotation matrix to the calibration parameters of the ‘real’
cameras).

Unfortunately, we need to take into account uncertainty
on the position of the epipolar line, due to calibration error.

Given two images, the mapping between a point x in
the first image and its epipolar line l in the second view
can be written l = Fx, where F is the fundamental matrix
of the stereo system of cameras. Hartley and Zisserman
[17] showed that the envelope of the epipolar lines obtained
when F varies around its mean value, is a hyperbola, they
expressed its parameters in terms of the covariance matrix
of the fundamental matrix F .

In practice, we estimated directly the envelope of the
epipolar lines with Monte-Carlo simulations using pertur-
bations of the calibration grids. For each run, random cali-
bration images were selected, for each of them a corner of
the grid was randomly chosen, and its position was shifted
randomly by up to 5 pixels. This quantity was chosen so
that it would produce a reprojection error on the grid’s cor-

Figure 3: (Top) Photograph of our laboratory setup. Each object
was placed on a computer-controlled rotary turntable which could
be rotated with 1/50 degree resolution and 10−5 degree accuracy.
Two computer-controlled cameras imaged the object. The cameras
were located 9◦ apart with respect to the object. Our cameras have
a resolution of 4Mpixels. (Bottom) Diagram explaining the ge-
ometry of our three-camera arrangement and of the triple epipolar
constraint.

ners that was comparable to the one observed during cal-
ibration. This was followed by the calibration optimiza-
tion. For each point of the first image, the Monte-Carlo pro-
cess leads to a bundle of epipolar lines in the second image,
whose envelope is the hyperbola of interest. The envelope
should therefore be computed separately for each point of
the first image. In our situation, hyperbolas generated by
various points from the first image exhibited very similar
eccentricities and focal distances. The width between the
two branches of the hyperbola varied between 3 and 6 pix-
els. Since exhaustive computation of all possible envelopes
would be too time- and storage-consuming, the same ec-
centricity and focal distance were used for all points corre-
sponding to a given pair of images.

3.3 Detectors and descriptors

3.3.1 Detectors

- The Harris detector [7] relies on first order derivatives
of the image intensities. It it based on the second order mo-
ment matrix - also called squared gradient matrix -, which is
computed at every location in an image. A cornerness map
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is computed based on trace and determinant of this matrix.
The points selected as interesting features are the locations
of the extrema of this cornerness map.

- The Hessian detector [8] is a second order filter. The
corner strength is here the negative determinant of the ma-
trix of second order derivatives (or hessian matrix). The
local maxima of the corner strength are taken as interest
points. For this detector as well as the Harris detector,
multi-scale versions were actually used.

- The Difference-of-gaussian - or DOG - filters [12, 18]
the image by a filter consisting of the difference of gaussians
with different covariances. The operation is repeated over a
range of scales. The selected features are the local maxima
in scale and space, of the filtered pyramid of strength maps.
This approach fits naturally in the scale-space framework,
therefore scale invariance is guaranteed when applying it in
a multi-scale approach.

- The Kadir-Brady detector [9] computes maps of the
local entropy at different scales. Interest points are extracted
at locations that exhibit both a local maxima of entropy over
scale, and locations in space where the intensity probability
density function varies fastest.

The first and second method are implemented in a multi-
scale scheme, so that all methods are scale-invariant.

3.3.2 Descriptors

- Sift features [13] are computed from gradient informa-
tion. A first step consists of evaluating a main orientation
for each feature, in order to obtain orientation-invariance. A
second step describes local appearance by histograms of lo-
cal gradients sorted into 16 locations bins and 8 orientation
bins, for a descriptor dimension of 128. The histogramming
process ensures a smooth transition of descriptor when lo-
cation is shifted.

- PCA-Sift [14] computes a primary orientation simi-
larly to Sift. Local patches are then projected onto a lower-
dimensional space by using PCA analysis. The PCA pro-
jection matrix is learned beforehand from an independent
set of patches. At the moment we have only code for its
combination with DOG detector (as was described in [14]

- Steerable filters [10] are generated by applying banks
of oriented Gaussian derivative filters to an image.

- Differential invariants [5] start from local derivatives
of the intensity image (up to 3rd order derivative), and com-
bine them into quantities which are invariant with respect to
rotation. Those invariants avoid the problem of computing
the major orientation of a patch, which is discarded.

- Spin images [11] represent an overall object as seen
from the interest point. The reference orientations are the
normal and tangent plane to the surface. The spin descriptor
stores histograms of greylevels indexed by the coordinates
in the feature’s reference frame.

4 Performance evaluation

4.1 Setup and decision scheme

The features detectors and descriptors were evaluated in
terms of performance on a keypoint matching problem.

Each feature from a test image was compared with 105

features from a database. The database contained both fea-
tures from one image of the same object (viewed in different
lighting conditions or from a different viewpoint), as well as
a large number of features extracted from unrelated images.

Figure 4: (Top) Diagram showing our decision strategy for the
feature matching problem. (Bottom) Result as a ROC

The diagram in Fig. 4 shows the decision strategy. A
match to a feature is identified by searching for the closest
neighbour to its appearance vector, in a tree containing the
whole database (random objects and views of the correct
object). Given a threshold T on the quality of the apperance
match, the keypoint returned by the search is accepted or
rejected. Note that only one potential match is considered
for each feature, unlike [15] where multiple database points
may be accepted for each query feature.

If the candidate match is accepted, it can be correct, i.e.
correspond to the same physical point, or incorrect. If it
comes from a wrong image, it is incorrect. If it comes
from a view of the correct object, we use the double epipo-
lar constraints with the following method. Starting from
A1 in image A, candidate matches are identified along the
corresponding epipolar line in image C. Besides, the ob-
ject lies on the turntable which has a certain width, so that
only a known region on the epipolar line is allowed. There
remains n candidate matches C1...Cn in C (typically 0-4
points). These points generate epipolar lines in B, which
intersect the epipolar line from A1 at points B1...Bn. If the
candidate match is one of these points we declare it as a
correct match, in the alternative it is considered incorrect.

In case no feature was found along the epipolar line in
image C, the initial point A1 is discarded and doesn’t con-
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tribute to any statistics, since our inability to establish a
triple match is not caused by a poor performance of the de-
tector on the target image B.

Note that this method doesn’t guarantee the absence of
false alarms. But it offers the important advantage of being
purely geometric. Any method involving appearance vec-
tors as an additional constraint would be dependent on the
underlying descriptor and bias our evaluation.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25
distribution of ratios (distance to nearest neighbour / distance to second nearest neighbour)

correct matches
wrong matches

Figure 5: Distributions of the distance ratio between best and
second best match for correct correspondences (green) and incor-
rect matches (red). These curves are similar to the ones in Fig.11
of [13]. Note that the shape of the result for the correct matches
is significantly different to Lowe’s curve. We do not know yet
the reason for this discrepancy. The major difference between his
analysis and ours is that we used 3D objects, while he used flat
images with added noise.

4.2 Distance measure in appearance space

In order to decide on acceptance or rejection of a candidate
match (first decision in Fig. 4), we need a metric on ap-
pearance space. Instead of using the euclidean distance as
in [15, 14], we use the distance ratio introduced by Lowe
[13].

The proposed measure compares the the euclidean dis-
tances of the query point to its best and second best matches.
In Fig. 4 the query feature and its best and second best
matches are denoted by f , f ′ and f ′′ respectively. The used
criterion is the ratio of these two distances, i.e. d(f,f ′)

d(f,f ′′) . This
ratio characterizes how distinctice a given feature is, and
will avoid ambiguous matches. A low value means that the
best match performs significantly better than its best con-
tender, and will thus be a reliable match. A high value of
the distance ratio will be obtained when the features points
are clustered in a tight group in appearance space. Those
features are not distinctive enough relatively to each other.
In order to avoid a false alarm it is safer to reject the match.

Fig. 5 shows the resulting distribution of distance ratios
corresponding to our database. The distance ratios statistics
were collected while running our matching problem, these
distributions correspond to the (steerable filters / spin) com-
bination. Correct and incorrect matches were identified us-
ing the process described in 4.1.

4.3 ROC curve

As seen in the previous section and Fig. 4, the system can
have 3 outcomes. In the first case, the match is rejected
based on appearance (probability p0). In the second case,
the match is accepted based on appearance, but the ge-
ometry constraints are not verified: this is a false alarm
(probability p1). In the third alternative, the match veri-
fies both appearance and geometric conditions, this is a cor-
rect detection (probability p2). These probabilities verify
p0 +p1 +p2 = 1. The false alarm rate is further normalized
by the number of database features (105). Detection rate
and false alarm rate can be written as

falsealarmrate ==
#false alarms

#attempted matches · #database
(1)

while the detection rate is

detection rate = p2 =
#detections

#attempted matches
(2)

5 Results and Discussion

Fig 6 shows the detection results when viewing angle was
varied. Each of the first 4 rows displays results when vary-
ing the descriptor for a given detector. The last row is a
summary displaying for each detector, only the descriptor
that performed best.

The left hand side graphs display the ROC curves ob-
tained by varying the threshold T in the first step of the
matching process (threshold limiting the distance ratio to
first and second best matches). The Sift descriptor per-
formed consistently best with all detectors. The Harris de-
tector obtained the best performance among all feature de-
tectors, although the other combinations (detector / Sift) had
a comparable performance. In our graphs the false alarm
rate was further normalized by the size of the database
(105)so that the maximum false alarm rate was 10−5. The
right hand side curves show the detection rate as a function
of the viewing angle for a fixed false alarm rate of 10−6

was chosen (one false alarm every 10 attempts). This false
alarm rate corresponds to distinct distance ratio thresholds
for each detector / descriptor combination. Those thresh-
olds varied between 0.56 and 0.70 (a bit lower than the 0.8
value chosen by Lowe in [13]). For two detectors (Dog and
Kadir/Brady), steerable filters were slightly more reliable,
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in the other cases Sift was winning again. Again, the Harris
detector was the best detector by a very small margin. Re-
garding descriptors, with our setting and 3D objects, PCA-
Sift didn’t seem to outperform Sift as would be expected
from [14].

Note that in the stability curves, the detection rate at 0◦
is only of the order of 1/3. This corresponds to the case
where the query image and the target image are shots taken
exactly at the same position. The large drop in detections is
due to fact that the match to the auxiliary image (see section
2) succeeded on average in 1 out of 3 attempts. Since the
difference in angle between cameras A and C is known to
be 9◦, we obtain the value of the angle pA1(θAC) mentioned
in section 2: pA1(θAC = 9◦) ≈ 1/3. This is consistent
with the value of pA1(θAB=10◦), which is the ratio between
the detection rates at 10◦ and 0◦ ( detection(10◦)

detection(0◦) ≈ 0.1
0.3 =

1/3). If we want to estimate the detection rates that should
be obtained for pairwise matching only (without camera C),
we can scale the detection curves by a factor of 3.

Another observation concerns the dramatic drop in num-
ber of matched keypoints with viewpoint change. For a
viewpoint change of 30◦ the detection rate was of the or-
der of 3%. Even if we rescale by a factor 3, this means that
only about 10% of the features can be matched safely.

Fig. 7 shows the results obtained when changing lighting
conditions and keeping the viewpoint unchanged. This sit-
uation was much easier to handle: since the position of the
features shouldn’t change, we don’t need to introduce the
auxiliary image C. The 4 panels on the left display again
the ROCs obtained by varying the descriptor for a given
detector, while the last panel on the right summarizes the
best results and shows only one descriptor for each detector.
This time, the steerable filters obtained consistently the best
performance, while the best detector seemed to be again the
Harris method.

6 Conclusion

This paper presented a new method for evaluating interest
point detectors and feature descriptors. Using epipolar con-
straints, we are able to extract with high reliability ground
truth matches from 3D images, instead of using planar sur-
faces or synthetic images.

The Sift descriptor is the representation that performed
best with respect to viewpoint changes, while the represen-
tation based on steerable filters was the winner when con-
sidering changes in lighting conditions. In both conditions,
the multiscale Harris detector performed best in both condi-
tions among the interest point operators that were tested.

Our setup is inexpensive and easy to reproduce in order
to collect statistics on correct matches between 3D images.
In particular, those statistics will be helpful for probabilistic

recognition algorithms, e.g. the ones developed in [20, 21].
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Figure 6: (left)ROC curves showing the performance of combinations of feature finders and coders using constant light-
ing condtions. The ROC curves were obtained by averaging performance across ten objects and eleven viewpoint differences:
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a full rotation of the platform. The bottom plot compares the performance of each coder paired with the detector that performed best with
that coder. (right) Corresponding detection rate as a function of change in angle. The false alarm rate was fixed at 1e-6.
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Figure 7: Detection rate as a function of change in lighting conditions. The detection rate is averaged over 10 objects and 3 changes in
lighting conditions.

Figure 8: Our calibrated database consists of photographs of 100 objects which were imaged in three lighting conditions: diffuse lighting,
light from left and light from right. We chose our objects to represent a wide variety of shapes and surface properties. (Top) Eight sample
objects from our collection. (Bottom) Each object was rotated with 5◦ increments and photographed at each orientation with both cameras
and three lighting conditions for a total of 72 × 2 × 3 = 432 photographs per object. Eight such photographs are shown for one of our
objects.

Figure 9: Sample of the images that were used to load the feature database. 535 images were obtained from the Google Image search
engine by typing ‘things’. Out of the detections generated by these images, 105 keypoints were randomly selected and included in our
database of features.
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