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ABSTRACT 

 
This paper describes a systematic desktop study of the 

non-linear dynamic behavior of monopod platforms. The aim 
of this work is to highlight some important factors in the 
dynamics of minimum structures in shallow water. The analysis 
is performed in the time domain with regular wave loading. 
The non-linearities are due to the wave theory (Stream function 
of 8th order), to the shallow water environment and to the drag-
dominated situation. Idealizations of two braced monopod 
configurations are compared with the simpler and more 
commonly studied unbraced monopod. Aspects highlighted for 
each configuration include the effect of wave period and top 
mass on the dynamic amplification factor.  In particular, the 
analysis focuses on the highly non-linear behavior in the wave 
zone.  

 
The results show that braced monopods are dynamically 

more sensitive than unbraced monopods. In particular, braced 
monopods exhibit more energy at higher harmonics in the 
quasi-static response. This yields a consistently stronger 
dynamic response even if the wave period and the natural 
period of the structure are very different. The importance of the 
mass at the top of the structure in the dynamic response and in 
particular its role in increasing the dynamic amplification factor 
up the water column are highlighted. 
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INTRODUCTION 
 
Minimum structures such as mono-towers and braced 

monopods are widely used in Australia’s North West Shelf. The 
dynamic behavior of these structures with a braced lower 
structure is complicated by several factors. First, such 
structures are generally located in relatively shallow water, 
where non-linear wave kinematics are important, especially in 
harsh environments. Second, unlike most fixed platforms, their 
configuration is such that the fundamental dynamic bending 
behavior is concentrated in the wave zone, rather than 
throughout the water column. 

The importance of this highly non-linear wave zone has 
been illustrated by Ronalds et al. (2000). Previous studies have 
focused on the relationship between the maximum quasi-static 
environmental load and the maximum wave height, expressed 
by the wave height exponent α (Tuty et al., 2001b). Research 
has confirmed that α varies with platform water depth, 
structural configuration and member diameters (Ronalds et al., 
2001; Tuty et al., 2001a), showing that drag-dominated 
platforms are more likely to experience larger values of α 
(reaching the value of four, or more, in comparison with the 
usual value of two for drag-dominated structures) higher up the 
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water column. This demonstrates that the wave zone is a 
sensitive region. Indeed, the failure of a braced monopod 
(Campbell) on the North West Shelf during a tropical cyclone 
was localized in the wave zone (Ronalds et al.,1998). 

The previous studies are based on quasi-static results. On 
the other hand the dynamic approach yielded interesting insight 
into the behavior of braced monopods in the North Sea 
(Nedergaard et al., 1996) and of jack-ups units (Williams et al., 
1999).  

The dynamic approach is pursued in this paper, with a 
particular focus on minimum structures in a North West Shelf 
environment. By analyzing the energy content at different 
harmonics and the dynamic amplification factor of lateral 
displacements and bending moments, we show that these 
structures exhibit an inherently different dynamic behavior 
compared to the single degree of freedom case and therefore 
require a comprehensive dynamic analysis. 

 

WAVE THEORIES AND FORCES 
 
We consider here a typical monopod location on 

Australia’s North West Shelf. The water depth is 42.3 m and no 
currents or wind are acting. Generally, monopods are slender 
structures which, together with the shallow water environment, 
causes drag forces (Fd) to dominate over inertia forces (Fi). For 
a given wave height and water depth, the ratio Fd / Fi depends 
on the diameter of the caisson. This is typically between 1.2 to 
5 m, depending on where the conductors and risers are 
positioned (Tuty et al., 2001a). As a representative value for 
monopods we investigate a structure of 1.8 m diameter.  Figure 
1 shows how these structures can be considered to be drag 
dominated, having maximum Fd / Fi values between 1.5 and 6. 

The non-linearity of the drag term u⋅|u|, where u is the 
horizontal wave velocity in Morison’s formula, has the effect of 
introducing changes in the statistics and in the frequency 
content of the forcing. Statistical changes have been studied for 
example by Pierson and Holmes (1965) and Borgman (1969) 
and are not addressed in this paper. For the purpose of 
determining the dynamic behavior, the frequency content of the 
forcing will be outlined briefly. It is known that the u⋅|u| term 
introduces two important harmonics in the forcing Fd, one at 
the wave frequency fw and one at 3fw (Baltrop and Adams, 
1991).  

Hereafter we investigate another mechanism which is 
shown to be responsible for the introduction of new harmonics 
in Fd, namely the non-linear motion of the free surface. We 
consider the simple case of a vertical cylinder of 1 m diameter 
in 42.3 m of water. From Fig. 1 it can be seen that this 
configuration has Fd / Fi = 7, so we can concentrate only on the 
drag force. For simplicity, wave velocities have been calculated 
following Airy’s linear theory.   The characteristics of the wave 
are those shown in Table 1. These data refer to the Wandoo 
location, on the North West Shelf. 
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Figure 1 Ratio of drag and inertia forces for different 
caisson diameters using environmental parameters from 
Table 1. 

 
  

Water depth [m] Wave period [s] Wave height [m] 
42.3 12.5 20.9 

 
Table 1 Wave characteristics of the Wandoo location 
(North West Shelf) for a 100 year return period 

 
The integral dF̂  of Morison’s drag force Fd over the depth of 
the water column is defined as: 
 

dztutuF
th

d ⋅⋅∝ ∫
+ )(

0

)()(ˆ
η

   (1) 

where h is the water depth and η(t) is the water elevation. Since 
we are only interested in the frequency content of dF̂ , the 
proportionality factors in (1) have been neglected. The power 
spectral density (PSD) of dF̂  has been computed using Welch’s 
algorithm. Four energy peaks (at fw, 2fw, 3fw and 4fw) are 
observed instead of the two expected from the non-linearity in 
u⋅|u| (at fw and 3fw). In Fig. 2 these peaks are 
nondimensionalized by the energy of the first peak (the one at 
fw) and are represented as functions of H/h, where H is the 
wave height. It can be seen how the second and fourth peaks 
become more important in shallow water, where the wave 
approaches the water depth until limited by wave breaking.  
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 Figure 2 Energy of the 2nd, 3rd and 4th peaks of the power 
spectral density of the drag force (PSDn), normalized by the 
maximum value of the energy of the 1st peak (PSD1)  
 
Therefore a drag-dominated structure in shallow water, forced 
by a linear monochromatic wave, is in fact subject to a force 
having four important harmonics. This means that even if the 
period of the wave and the natural period of the structure are 
very different, the structure could be dynamically sensitive to 
the wave load if the two periods are in a ratio of 2:1, 3:1 or 4:1, 
in which case one of the higher harmonics can excite the 
dynamic behavior of the structure. If the structure is inertia 
dominated and in deep water, on the other hand, these non-
linearities do not arise, since the inertia term in Morison’s 
formula is linearly dependent on the wave height. 
Similar arguments apply for any other deterministic wave. In 
our case the Stream Function of 8th order has been used and 
each of the eight fundamental harmonics develops frequency 
changes in shallow water, as illustrated for the linear wave. 
Determining the exact frequency contents is beyond the scope 
of this paper. 
 

METHOD OF ANALYSIS 

Description of the models 
 
Three different models are considered to compare a range 

of minimum structures (Fig. 3). The models have been kept 
simple on purpose to highlight some trends in monopod 
behavior. Model 1 is the most commonly analyzed single 
vertical cylinder, restrained at the mud-line. It should be noted 
that Model 1 is too flexible to be considered a realistic model 
for a monopod in this water depth, and it is included in the 
analysis mainly for the purpose of comparison with the other 
more realistic models. Model 2 is also a vertical cylinder, 
restrained at the height of the apex, the point where the braced 
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substructure starts. This is to simulate a case with substantial 
stiff bracing below the apex. Model 3 is a simple 3D braced 
monopod with the apex in the same position as Model 2. Apex 
location (31 m) and water depth (42.3 m) have been chosen 
following examples on the North West Shelf.  

SWL 31.0

31.035.1
42.3

56.0

MODEL 2 MODEL 1 MODEL 3

Wave zone

mud-line 

apex 

z

 
Figure 3 Geometric characteristics of the three models and 
of the wave considered 

 
All models have the same caisson section with a diameter 

of 1.8 m and the same material characteristics and damping 
ratio (ξ=1.5%). We have chosen to impose the fundamental 
natural period (Tn = 2.5 s) to be the same for all the models by 
varying the lumped mass at the top of the structure (see Table 
2) in order to consistently compare their dynamic behavior. A 
study of the influence of the mass at the top of the structure on 
its dynamic behavior has also been carried out by changing the 
mass at the top of Model 1 and is presented in a later section. 
The natural period has been chosen so that   Tw / Tn = fn / fw = 5, 
which is not untypical for minimum structures, where Tw and fw 
are, respectively, the wave period and frequency, while Tn and 
fn are the natural period and frequency of the structure. For 
wave characteristics see Table 1. 

 
 

 Top mass [t] Structure mass [t] 
Model 1 6.6 86.5 
Model 2 220.9 43.2 
Model 3 118.6 189.7 

 
Table 2 Masses of the models 

 
A sensitivity study has been conducted to show how the 

number of nodes used for discretizing the structure influences 
the dynamic behavior. This sensitivity study has been carried 
out for the dynamic amplification factor (DAF), since this will 
be taken as an indicator of the importance of the dynamics in 
the remainder of the paper. The DAF is defined as the ratio of 
the maximum dynamic response versus the maximum static 
response. Figure 4 shows how the DAF of the displacements at 
3 Copyright © 2002 by ASME 
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the top of Model 1 varies as a function of the number of nodes 
down the caisson. The increase in the DAF with the number of 
nodes can be explained by considering that a large number of 
nodes gives the structure a large number of degrees of freedom 
which, in turn, allows a more accurate dynamic response. The 
dynamic response appears to be fully developed when ten or 
more nodes are considered. The reason is that ten elements are 
needed in order to model the shape function for the first natural 
mode of the structure. These considerations are particularly 
relevant if one considers that it is often common design 
practice to use the single degree of freedom model (a single 
mass at the top and a weightless caisson). We chose to use the 
minimum number of elements (ten) necessary to achieve a 
stable estimate of the DAF. 
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Figure 4 DAF of displacements versus the number of nodes 
for Model 1 

Analysis 
 
The analysis has been performed quasi-statically and 

dynamically using SESAM with wave kinematics predicted by 
the Stream function theory of 8th order. The quasi-static 
approach will be referred to as “static” hereafter, for simplicity. 
The wave for 100 years return period has its crest at 56.0 m 
from the mud-line and the trough at 35.1 m. The top of the 
structure, then, is always above the maximum wave elevation 
and the apex is always under the minimum. 

The dynamic analysis has been carried out by direct time 
integration with an integration time step of 0.05 s.  

RESULTS 

Time series 
 
This section presents results for static and dynamic 

analyses of the three models in term of caisson displacements 
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and bending moments. Results are presented for the ninth, tenth 
and eleventh wave cycles to allow transient effects to decay. 

Figure 5 shows the lateral deflections at the top of each 
model for the static and dynamic analysis. Static and dynamic 
displacements have been nondimensionalized by the maximum 
static displacement δmax.  The dynamic response peaks just after 
each wave crest has passed. The three models are all 
dynamically sensitive, since the dynamic displacements are 
twice or more the static ones.  While Model 1 has the largest 
top deflection, as we could expect from its configuration (Fig. 
3), it appears to be less dynamically sensitive than Models 2 
and 3.  
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Figure 5 Time series of static and dynamic top 
displacements δ, normalized by the maximum value of the 
static displacements, δmax 

 
This can be explained from Fig. 6, where the power spectral 
density of the static response for the three models is shown. In 
order to better compare the energies for the three models, the 
PSD for each model has been divided by the square of its 
maximum static displacement (δmax). Models 2 and 3 exhibit a 
more pronounced non-linear behavior than Model 1, since 
more energy is distributed at high frequencies. Model 3 has a 
greater energy component in the second harmonic of the wave 
than the first one. Moreover both Models 2 and 3 have a 
comparable amount of energy at f / fw = 5. This is important 
because the energy at that frequency dominates the dynamic 
response. The different PSD distributions are attributed to the 
structural configurations of the monopods. As the trough of the 
wave passes statically through the structure, Model 3 is given a 
small positive displacement at the deck level (seen in Fig. 5), 
while Model 1 experiences a negative displacement and Model 
2 is little affected due to the fixity at the apex. The double 
excitation experienced by Model 3 as each wave passes causes 
the second harmonic to dominate.  
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Figure 6 Power spectral density of static displacements 
divided by the square of the maximum value of the static 
displacement (δ2

max) for each model 
 
 
Figure 7 presents the static and dynamic moments for each 

model in the wave zone (49.6m from mud-line) and at the 
height of the apex, nondimensionalized by the maximum static 
moment at each location. The static moments are the same for 
all three models. However, the pattern of static loading is seen 
to change up the water column due to the effect of partial 
inundation. This causes the forcing function to become 
increasingly like a pulse with duration comparable to half the 
natural period. As for the top displacements of Fig. 5, the 
response of the structure peaks just after the wave crest has 
passed. At the apex the dynamic moments are about twice the 
static ones. The same trend can be noticed as for the 
displacements of the different models, with Model 3 being 
more dynamically sensitive than Models 1 and 2. Moreover, up 
the water column, while the static moments are obviously 
decreasing, the dynamic moments become five to ten times 
larger than the static ones. This peculiar behavior of the wave 
zone, where the dynamic response of the structure is strongly 
enhanced, is the focus of this paper and is investigated in more 
detail in the following section in terms of the DAF. 
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Figure 7 Time series of bending moments M at the apex 
and in the wave zone (z=49.6 m), normalized by the 
maximum static moment Mmax 

 

Dynamic amplification factor (DAF) 
 
To investigate further the behavior highlighted in the 

previous section we study the dynamic amplification factor, 
both for displacements and for moments. Figure 8 shows the 
DAF for lateral displacements of the three models as a function 
of the vertical position in the water column. Two main features 
are observed. First, the DAF increases essentially linearly up 
the water column. Second, the different slopes of the three lines 
indicate that the dynamic sensitivity increases considerably 
faster up the water column for Models 2 and 3, as compared to 
Model 1. This is due to three reasons. The first is the stronger 
non-linear behavior of Models 2 and 3, explained in terms of 
energy distribution in the previous section and illustrated in 
Fig. 6. The second reason depends on the different magnitude 
of displacements for the three models. Since Model 1 exhibits 
larger displacements, and therefore velocities (the natural 
period being the same) than Models 2 and 3, damping plays a 
stronger role in the dynamic response of Model 1. The third 
reason is related to the different masses at the top of each 
structure, with the DAF increasing more rapidly for larger 
masses.  
5 Copyright © 2002 by ASME 
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Figure 8 Dynamic amplification factor for displacements 
as a function of the vertical position in the water column  
 

To better understand how the mass at the top influences the 
DAF of the displacements we suggest the following simplified 
explanation. In the static analysis the displacements xs are 
computed as: 

 
 FKxs =      (2) 
 

where K is the stiffness and F the forcing function. Dynamic 
displacements xd are computed from: 
 
        FKxxCxM ddd =++ &&&    (3) 
 
where M is the mass, C the damping and the dot denotes 
differentiation with respect to time. If we neglect damping and, 
as a first approximation, consider the equations to be uncoupled 
for each node, the DAF of the displacements can be considered 
as the maximum of: 
 

 
F

xMF
x
x

DAF d

s

d &&−
==      (4)          

Thus, in this simplified model the DAF depends only on the 
wave forcing F and on the inertia of the structure dxM && . We 
computed this simplified DAF for Model 1 at three locations 
along the water column (z = 43.4, 24.8 and 6.2 m) using the 
wave kinematics to compute F and the structure acceleration 

dx&&  computed by SESAM. The results are given in Table 3 
along with those computed by SESAM (Fig. 8). While the 
analytical values are only of the same order, the increasing 
trend up the water column is maintained, despite the 
simplifications in Eq.(4). Therefore, we can conclude that the 
inertia of the structure has a relevant role on the increase of the 
DAF up the water column. 
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Vertical 
position 

Simplified DAF DAF from SESAM 

z = 43.4 m 3.49 2.80 
z = 24.8 m 3.21 2.75 
z =  6.2 m 1.90 2.70 

 
Table 3 DAF for displacements in three vertical positions in 
the water column (Model 1) 

 
As a further verification of this statement we modified 

Model 1 by changing its mass at the top. In particular, we 
analyzed two new configurations with SESAM. The first is 
Model 1 with no mass at the top (Model 1a). The second is 
Model 1 with the same mass as Model 2 (Model 1b). We 
maintained the same natural period of Tn =2.5 s for both 
Models 1a and 1b, by changing the stiffness through adjusting 
Young’s modulus E (see Table 4). By doing so the cross-section 
of each model remains the same and the structures are still 
drag-dominated. 

 
Models Top mass [t] E [N/m2] 

M1 6.6 2.10 e+11 
M1a 0.0 1.63 e+11 
M1b 220.9 1.76 e+12 

 
Table 4 Top masses and Young’s modulus for Model 1 and 
its modifications 
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Figure 9 DAF for displacements for different top masses 
and same natural period as a function of the vertical 
position in the water column  

 
Figure 9 shows the DAF for lateral displacements of Models 1, 
1a, 1b, and 2 as a function of the vertical position in the water 
column. The slope of the DAF for Model 1 increases when the 
top mass becomes larger (Model 1b) and becomes almost zero 
when there is no mass at the top  (Model 1a). This confirms our 
6 Copyright © 2002 by ASME 

ttp://www.asme.org/about-asme/terms-of-use



Download
previous conclusions about the importance of the structure’s 
inertia in determining the DAF’s slope up the water column. On 
the other hand, even if Model 2 has the same top mass and the 
same natural period as Model 1b, its DAF exhibits a 
significantly larger slope (Fig. 9). Therefore, the particular 
structural configuration is in itself responsible for a stronger 
dynamic sensitivity up the water column, which cannot simply 
be explained by adopting a model with the same top mass and 
natural period. 

As done for displacements, we analyzed the trend of 
bending moment along the water column for Models 1, 2 and 3, 
as the moments are the most important parameter for the design 
of these structures. Fig. 10 shows the DAF for moments as a 
function of the vertical position in the water column. The DAF 
of Models 2 and 3 reaches very large values (9 and 17, 
respectively) in the upper part of the wave zone, while from the 
apex to the still water level the values of the DAF for the three 
models are more similar. As expected from the previous 
discussion and from Figs. 6 and 8, Model 3 has a larger DAF 
than Model 2. Whereas displacements at any point are related 
to the entire structural response, quasi-static bending moments 
in the caisson are a function of only the loading above the point 
in question. This difference is one cause of the very large DAFs 
for moments high up the water column.  
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Figure 10 Dynamic amplification factor for moments as a 
function of the vertical position in the water column  

 
In order to assess the relevance of the results found in this 

and the previous section, we investigate here the behavior of 
the DAF when the wave period Tw is not an exact multiple of 
the structure’s period Tn. In order to do so, we carried out an 
analysis of Model 1 for a given wave height (H=20.9 m) and 
several wave periods, ranging from 9.8 to 18.25 s. Results for 
displacements at the top and bending moments at the mud-line 
of the structure are displayed in Fig. 11. Also shown is the DAF 
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for the single degree of freedom (SDOF) case, given by the 
well-known formula: 
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Figure 11 Dynamic amplification factor for top 
displacements and base moments at different wave periods 
Tw for Model 1 
 
The effect of the higher wave harmonics can be clearly seen, 
and the structure is still dynamically excited for Tw/Tn = 7. 
Moreover, while the DAF obviously peaks when Tw is a 
multiple of Tn, it is also evident that its value is consistently 
larger than that of the SDOF case also when Tw / Tn is not an 
integer. While the value of the DAF for the SDOF case is close 
to 1 and almost constant for this range of wave periods, and 
could therefore discourage a dynamic analysis of the structure, 
such an analysis is clearly necessary given the behavior of the 
DAF for Model 1.  
This shows the importance of the previous results even for the 
case when Tw is not a multiple of Tn. 

CONCLUSIONS 
 

We analyzed the non-linear dynamic behavior of three 
monopod configurations in a shallow water environment. The 
wave conditions assumed are typical for Australia’s North West 
Shelf and the Stream function theory of 8th order has been 
chosen to describe the wave field. The non-linearity is due to 
three factors: to the wave theory (Stream function), to the drag-
force (u⋅|u| term in Morison’s formula) and to the shallow 
water environment (large H/d). These non-linearities spread the 
energy of the wave load over higher harmonics.  

The dynamic response of each configuration has been 
compared in terms of the power spectral density of the forcing 
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function and the dynamic amplification factor (DAF). We 
found that braced monopods (Models 2 and 3) are dynamically 
more sensitive than the more common analytical model of a 
vertical cylinder. The power spectral density of the static 
response has shown that Models 2 and 3 have more energy at 
higher frequencies than Model 1. They can be dynamically 
excited by a wave with a period 4 or 5 times their natural 
period more easily than Model 1. Thus, a dynamic analysis is 
essential for this kind of structure even if the wave frequency is 
very different from the first natural frequency and even if the 
DAF for the equivalent single degree of freedom is only 
marginally larger than unity. 

This dynamic sensitivity and non-linear behavior of 
Models 2 and 3 is also reflected by the increase up the water 
column of the DAF for both displacements and moments. 
Moreover, we showed that the mass on the top of the structure 
plays an important role on the increase of the DAF up the water 
column. 

The results highlight some key parameters influencing the 
dynamic response of minimum structures. These conclusions 
do not by themselves carry direct implications with respect to 
design. However, they form the fundamental premise for an 
investigation on the dynamic response of these structures in 
random seas, which forms the next step of this research. 
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