
ENGAGING TESTERS EARLY AND THROUGHOUT THE SOFTWARE DEVELOPMENT PROCESS: SIX MODELS
AND A SIMULATION STUDY

Journal of Information Technology Management, Volume XXII, Number 1, 2011 8

Journal of Information Technology Management

ISSN #1042-1319

A Publication of the Association of Management

ENGAGING TESTERS EARLY AND THROUGHOUT THE

SOFTWARE DEVELOPMENT PROCESS: SIX MODELS AND A

SIMULATION STUDY

MARK L. GILLENSON

UNIVERSITY OF MEMPHIS
mgillnsn@memphis.edu

MICHAEL J. RACER

UNIVERSITY OF MEMPHIS
mracer@memphis.edu

SANDRA M. RICHARDSON

UNIVERSITY OF MEMPHIS
srchrdsn@memphis.edu

XIHUI ZHANG

UNIVERSITY OF NORTH ALABAMA
xzhang6@una.edu

ABSTRACT

Software testing is indispensable in ensuring software quality. Traditionally, testing has been viewed as a separate
and distinct stage at the end of the software development process. However, testing activities have evolved from the “code
and fix” process of executing a piece of software in an attempt to find coding errors, to a collaborative coordinated effort with
testing activities embedded throughout the entire software development life cycle. The benefits of contemporary testing
activities include: linking together of perspectives across the entire organization, development of a better software product
with fewer errors, and reduced cost by avoiding or finding errors earlier in the development life cycle. In spite of an
emerging view that testing activities should be included early and throughout the software development process, there is little
research in the area of how this can be accomplished. This paper attempted to address this void by offering six models for
engaging testers early and throughout the software development process. It also carried out a simulation study with the in-
depth surveyed data from 13 software testing professionals, for the purpose of determining which of the six models would be
best under different development environment circumstances.

Keywords: software development, software testing, model simulation

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357526275?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ENGAGING TESTERS EARLY AND THROUGHOUT THE SOFTWARE DEVELOPMENT PROCESS: SIX MODELS
AND A SIMULATION STUDY

Journal of Information Technology Management, Volume XXII, Number 1, 2011 9

INTRODUCTION

As software is becoming critical to almost every
organization, the art and complexity of software
development has become a perennial topic of interest in
both research and practice. The practice of software
development has evolved steadily from its beginning half
a century ago, and numerous methods and models (e.g.,
life cycle models and agile methods) have been proposed
to enhance its efficiency and effectiveness. Royce [31] is
widely recognized for introducing the first formal
methodology for software development, now known as
the waterfall methodology. Royce’s waterfall model
introduced a sequential process that emphasized
systematic development and divided software
development processes into separate and distinct phases,
including requirements analysis, program design, coding,
testing, and operations. Royce’s model has been refined
by organizations and researchers for decades, resulting in
a vast number of waterfall model variations collectively
referred to as the Software Development Life Cycle
(SDLC) methodology.

SDLC models represent a structured approach to
software development which has been praised for
providing necessary order and control for large complex
projects, and criticized for being inflexible and time
consuming. Over the past four decades the SDLC models
have been refined to cope with increasingly larger,
collaborative, inter-organizational, and complex software
development projects [2]. Today, new development
models (e.g., progressive, iterative, and agile methods)
have emerged and been proposed to tackle some of the
criticisms of the SDLC methodology [36]. However, in
spite of the seeming popularity of these new agile models
and the persistent criticism of the SDLC, evidence
suggests that the SDLC continues to be the preferred
development methodology in contemporary organizations
[2][21][22][30][36]. In fact, a recent Gartner study
estimated that newer development methods such as agile
development account for less than 15% of the software
developed in organizations today [17].

Software testing is indispensable in ensuring
software quality [7]. The inclusion of software testing
activities in early waterfall models provided testament to
the importance of testing a piece of software prior to its
use within an organization. However, these early models
placed software testing activities at the end of a sequential
structured process relegating software testing activities to
a “code and fix,” or error finding approach [4]. Over
time, it was recognized that the cost of finding an error
after the development process had been completed was

much more expensive than finding the error during the
development process itself [3][4][5][13]. More recently,
views on testing propose software testing activities as an
integral part of the overall development life cycle
[13][29][32] and view testing as more of a coordinated
collaborative effort [6][19][20]. It has also been
recognized that integrating software testing activities into
earlier phases, if not all phases, of development provides
benefits, including: appropriate time allocation and better
scheduling of testing activities [28], more productive
collaboration that links together all aspects of an
organization that results in a better software product
[6][20][27], improved project performance in terms of
cost and cycle time [35], and cost savings by catching
bugs earlier [3][5][37].

In spite of this recognition, software testing
activities have been slow to move from the end of the
development life cycle and into all phases of the
development process. Relatively little research has been
conducted in this area leaving a void in the current
literature for the introduction and analysis of new formal
models for engaging software testers early and throughout
the software development life cycle. In this paper, we
attempt to address this void. Specifically, we address a
major research question: How can testers be embedded in
the software development life cycle to obtain the most

beneficial testing results? We address the question by
first offering six formal models for engaging software
testers early and throughout the software development
process and then developing a simulation study with
surveyed data from 13 software testing professionals, for
the purpose of determining which of the six models would
be best under different development environment
circumstances.

This paper proceeds as follows. First, we
provide a review of the software development and testing
literature. Then, we propose six formal models for
engaging testers early and throughout the software
development process. Next, we describe the development
and the analysis of a simulation study to test the models
using surveyed data from software testing professionals.
Finally, we offer a brief conclusion.

LITERATURE REVIEW

The software development life cycle has a rich
history in the IS research literature. Research has
illustrated the importance and evolution of the SDLC over
the past four decades. Each of the SDLC’s general phases
(e.g., requirements, design, implementation, and testing)
has evolved into individual research streams. However,
while requirements, design and implementation each have

ENGAGING TESTERS EARLY AND THROUGHOUT THE SOFTWARE DEVELOPMENT PROCESS: SIX MODELS
AND A SIMULATION STUDY

Journal of Information Technology Management, Volume XXII, Number 1, 2011 10

been investigated extensively, research on testing
activities has been less prevalent. While more
contemporary SDLC models emphasize the importance of
embedding testing activities early and throughout the
development life cycle, little research has been conducted
in this area.

In the following sections, we provide a review of
the literature related to the SDLC and software testing
activities to illustrate the co-evolution of both. This
literature review reveals a void in the current literature
related to the development and analysis of formal models
for embedding testing activities early and throughout the
entire software development life cycle.

Software Development Life Cycle

The art of software development is a perennial
topic that both researchers and practitioners have grappled
with for decades. Software development methodologies
have evolved as a result. In the 1950’s, there were only
two steps in the software development process: an
analysis step followed by a coding step [31]. Early
systems development projects focused on hardware.
Systems development was primarily dominated by
engineers who tended to adopt linear processes that
focused on hardware conservation, a philosophy
consistent with the computing economics of the time. A
decade later, in the 1960’s, systems development
processes began to change as people recognized that
software was easier to modify than hardware and did not
require expensive production environments to develop.
The result was a shift toward a “code and fix” approach to
development [4][25]. As organizational systems
increased in complexity and numbers, the “code and fix”
approach often resulted in unwieldy “spaghetti code” and
frequent patches [3][4]. In reaction, the classic waterfall
model was introduced by Royce in 1970 as an attempt to
introduce structure and controls into the software
development process.

The widespread adoption of the waterfall
methodology resulted in the evolution of a framework for
software development that incorporated important
organizational issues into the development process, such
as incorporating the stakeholder perspective, emphasizing
requirements analysis, and the importance of testing
activities [27]. New models divided the development
process into well-defined phases, typically including
analysis, design, coding, testing, and implementation [23].
Strict adherence and emphasis on the sequential nature of
the SDLC phases persisted in the decades that followed,
leading to a misinterpretation of the SDLC as an
inflexible sequential process. This perspective was

solidified in part by government process standards
emphasizing a purely sequential interpretation of the
model [4][24].

In the decades following its introduction, the
waterfall methodology has continuously evolved as
organizations have adapted it to meet individual and
context specific needs [2]. However, the SDLC continues
to be frequently identified as inflexible, time consuming,
and costly [30]. As a result, many new models of
software development have emerged, including modified
SDLC models, progressive, iterative, and agile
development methodologies. Interestingly, a search of
the related research literature and professional journals
would lead one to believe that the adoption of these newer
methodologies were contributing to the quick demise of
structured waterfall models [21]. However, current
studies estimate that software developed using agile
methods accounts for less than 15% of the software
developed in organizations today [17], and that
organizations continue to use traditional structured
approaches for the majority of their development projects
[2][21][22][30].

The stages of the SDLC have been refined over
the past five decades. More recent models have tweaked
the granularity of the initial models; however, most
continue to include the basic phases of planning (problem
and scope identification, financial implications, strategy),
analysis (determine user needs), design (system
specification), implementation (new system development,
installation, integration, testing and training), and finally
maintenance (ongoing operations and improvements to
software). This general model is often refined and each
of these phases made more or less granular, by breaking
them into additional or fewer phases [18]. Many newer
models break logical and physical design into two
separate phases; some include testing as a separate phase.
Other models emphasize business requirements, systems
requirements, high-level logical design, detailed physical
design, and implementation. However, most newer
models continue to place testing activities near the end of
the sequential life cycle.

The impact of software development teams on
the quality and effectiveness of software products has
been investigated in the research literature. Research
related to the impact of team size on software quality and
effectiveness has investigated coordination efforts and
cost as well as communication issues. Results reveal that
increasing team size does not necessarily increase costs
and if effectively managed can improve outcomes
[11][14][26]. Investigation into the coordination of
project team members illustrated the need to create a
standard understanding among developers, testers, and

ENGAGING TESTERS EARLY AND THROUGHOUT THE SOFTWARE DEVELOPMENT PROCESS: SIX MODELS
AND A SIMULATION STUDY

Journal of Information Technology Management, Volume XXII, Number 1, 2011 11

managers to achieve quality software [6][9]. Research
also reveals that effective coordination, or management,
of team members’ expertise (knowledge management)
positively impacts outcomes [10]. Early models proposed
that effective quality controls for software development
required a division of labor and responsibilities across
developers and testers, reinforcing the notion that testing
activities should be isolated and conducted at the end of
the development process. Dahlbom and Mathiassen [8]
supported this notion by proposing that independence is
required between developers and testers in order to avoid
self deception in having developers evaluate their own
work. However more recently, it has been suggested that
different individuals on a team can have different goals
and responsibilities, resulting in mutual interdependence,
and allowing for the benefits of collaboration among team
members throughout the entire process [6]. More
contemporary models suggest that the benefits of testing
early and often place less emphasis on independence and
division of labor [4][6][13][27][34][36][37]. In spite of
this changing philosophy regarding testing activities,
current research has not explored the development of new
formal models for embedding testing activities throughout
the life cycle. This void provides an opportunity for
researchers to develop formal testing models that analyze
the impacts of embedding testers over the development
life cycle.

Software Testing

One of the most significant criticisms of
traditional structured SDLC methodologies is the
placement of testing activities at the end of the
development life cycle. Early definitions of testing
describe testing as simply being “the process of executing
a program with the intent of finding errors” [25, p. 16].
The placement of testing activities at the end of the life
cycle often results in increased cost associated with
software development [3][34] as “finding and fixing a
software problem after delivery is often 100 times more
expensive than finding and fixing it during the
requirements or design phase” [5, p. 135]. Relegating
testing activities to a “hand-off” activity at the end of the
development process can result in a number of problems,
including: poor planning and tight schedules for testing
work leaving too little time to fix code and design flaws
[6][13], and negatively impacting decisions determining if
software products meet requirements given there is not
enough time to systematically search, judge requirements
satisfaction, or determine when and how to stop testing
activities [6][15].

Contemporary views of testing emphasize testing
as prevention rather than correction. Hetzel [16] was the
first to illustrate this trend with his definition of software
testing as activities aimed at evaluating the capability of a
system and determining if the system meets the
documtented organizational and user requirements. In
addition, Gelperin and Hetzel [13] captured the evolution
of testing by classifying the history of testing activities,
including: debugging-oriented testing (until 1956),
demonstration-oriented (1957-1978), destruction-oriented
(1979-1982), evaluation-oriented (1983-1987), and
prevention-oriented (1988-). This classification
illustrated a slow but continuous trend of software testing
slowly emerging to more importance in the development
process itself.

In the 1990’s, new concepts of software testing
as part of the overall software development life cycle
started to emerge. Dalal et al. [9] captured this new view
of embedding software testing as an integral part of every
stage of the development life cycle, and considered
software testing as a coordinated effort that is part of the
overall software engineering process. Software testing
was identified as an important part of a cooperative
process where multiple actors (testers, designers,
programmers, etc.) link together different parts of an
organization to accomplish a collective set of tasks over
the entire life cycle [6][20]. Software testing activities
were no longer an error finding activity after the fact, but
were seen as prevention activities that not only reduced
cost but improved the quality of the software that was
developed [35].

The introduction of formal software development
methodologies, such as the waterfall method, established
clearly defined phases of software development and
testing activities were decidedly at the end of this
sequential process [4][31]. The emphasis on coordinated
efforts brought attention to this placement that often
resulted in software testing actitives being the poorest
planned part of the development process resulting in less
effective results than could be realized if software testing
were moved earlier in the development life cycle.

More contemporary views of testing emphasize
the importance of integrating testing activities into each
phase of the overall development life cycle [6][9][13][36].
Pyhäjärvi and Rautiainen [29] argue that testing is “an
integral activity in software development” and
recommend that “testing should be included early in
software development” (p. 33). Schach [32] also suggests
that “testing should be performed throughout the software
life cycle” (p. 277) and predicts that “the future role of
testing will be to prevent faults rather than to detect them”
(p. 278). Several empirical studies have shown that

ENGAGING TESTERS EARLY AND THROUGHOUT THE SOFTWARE DEVELOPMENT PROCESS: SIX MODELS
AND A SIMULATION STUDY

Journal of Information Technology Management, Volume XXII, Number 1, 2011 12

engaging testers earlier and throughout the software
development process is beneficial to a project team’s
performance. Waligora and Coon [35] present
quantitative evidence that, by starting testing earlier in the
development life cycle, project performance, in terms of
cost and cycle time, is improved without sacrificing the
overall quality of the end product. As today’s
organizational environment rapidly evolves into an
increasingly networked environment of outsourcing
relationships, alliances, and partnerships; the demand for
cooperative, collaborative, and interpersonal testing
activities is emerging [6][27].

Current research does not offer formal models
for embedding testing activities early and throughout in
the software development life cycle. In the following
section, we describe the development of six formal
models, based on our experiences and the existing
literature related to software development and testing.

SIX MODELS FOR ENGAGING

TESTERS EARLY AND

THROUGHOUT THE SOFTWARE

DEVELOPMENT PROCESS

As captured by the literature review described in
the previous section, the SDLC has been widely used and
researched over the past several decades. As a result,
there is not a single SDLC model that serves as the
standard model. Researchers and organizations have
adjusted the granularity of phases and have also
reorganized the activities included in each phase.
Therefore, it is necessary for us to define the SDLC
model that will be used in this project. We adhere to
generally accepted SDLC phases and activities that have
persisted in the literature across the decades. For the
purposes of this project, we will define five software
development process phases or stages, as follows:

• Business Requirements: The set of
specifications of what the business unit
expects the application to accomplish.

• Systems Requirements: The systems
analysis stage in which the business
requirements are translated into graphical
formats that show processes and data flows.

• High-Level Design: The specification of the
code modules and their functions, and the
flow of data among the code modules.

• Detailed Design: The design of the functions
within each code module.

• Implementation: The programming of each
code module.

Having established a software development
process framework with which to work, we now turn to
the nature of the participation of the testers at each
software development process stage. This concept can be
broken down into two possibilities, as we noted earlier,
one or both of which can be practiced. One, which is
applicable at all of the stages, is the idea of testing the
output of the stage. Do the requirements make sense, do
they meet a set of accepted standards, and what are those
standards? Do the diagrams that result from the systems
analysis stage flow correctly and make sense? Have the
systems analysis diagrams been constructed to meet
accepted standards and what are those standards? Are the
program design specifications and the database design
acceptable?

The second possibility regarding the nature of
the participation of the testers is directed toward the
creation of systems that will lend themselves to being
more easily and effectively tested. This would begin in
the systems analysis stage and significantly impact the
systems design stage. This could have profound
implications in systems testing, in streamlining the
process in general, and in specifics such as determining
the test datasets to use.

There are a number of factors to consider in
formulating a model to use in integrating testers into the
application development team and process. An initial
factor is whether a company believes there is value in
embedding testers at all levels of the software
development process. As we have stated, we believe that
the arguments for doing so are compelling and so for our
purposes we will assume that this is the case.

Assuming there is significant value in
embedding testers earlier in the software development
process, one factor in deciding which model to use is the
skill set of the individuals in the testing department or
organization. We will assume that any tester assigned to
represent the testing organization in an application
development project is skilled in testing in at least one of
the application development stages. This can even be
extended back into the education and training
backgrounds of the individuals. It is as difficult to
imagine a tester without a business background leading a
business requirements review, as it is imagining a tester
without a programming background leading a code
review. Pursuing this further, the Tester Embedding
Model chosen will also depend on whether the company’s
testers tend toward breadth of skill or depth of skill. Are
the individual testers expected to have skills that range

ENGAGING TESTERS EARLY AND THROUGHOUT THE SOFTWARE DEVELOPMENT PROCESS: SIX MODELS
AND A SIMULATION STUDY

Journal of Information Technology Management, Volume XXII, Number 1, 2011 13

from business to technical skills or are their skill sets
expected to be narrowly focused?

Another factor is the amount of resources the
company is willing to invest in testing. This certainly will
depend on the company’s commitment to testing and on
the size of the application development project.
Generally, in this regard, more would seem to be better;
however, even a company that takes testing seriously
would not want to overwhelm the application
development teams with testers.

With the previous discussion as background, we
propose six “Tester Embedding Models” for embedding
testers early and throughout the software development
process.

Model 1: “The Single Tester Model”

As the name implies, in The Single Tester
Model, one tester is assigned to an application

development project and stays with it through all of its
stages (see Figure 1). This has the advantage of
continuity as one person begins learning about the project
from the very beginning of the business requirements
phase and continues building her project knowledge
through each successive stage. The disadvantages of this
model include a project over dependency on one person
and the expectation that the one person must be well-
versed in a breadth of skills ranging from requirements
analysis to systems design and programming. Assuming
you can find such a person, if she gets sick or leaves the
company, the project is left in the lurch. And, if The
Single Tester Model is attempted without a sufficiently
broadly skilled tester, then clearly the principle of having
strong testing expertise at each development stage will
have been defeated.

Figure 1: The Single Tester Model

Model 2: “The Specialist Model”

If The Single Tester Model is one extreme, then
The Specialist Model is the other extreme. In The

Specialist Model, a different, highly specialized tester
works on the application development project in each of
its stages (see Figure 2). Presumably, each tester is a true
expert in the work being done at their particular
development stage and thus the advantage is the level of

ENGAGING TESTERS EARLY AND THROUGHOUT THE SOFTWARE DEVELOPMENT PROCESS: SIX MODELS
AND A SIMULATION STUDY

Journal of Information Technology Management, Volume XXII, Number 1, 2011 14

testing expertise that can be applied at each stage.
Conversely, each tester does not have to possess a broad
skill base. However, there are some disadvantages as
well. One disadvantage is that each Specialist must learn
the nature and details of the project when they cycle onto

the project. Another disadvantage is the lack of
communication between the testers in the different stages.
Indeed, it is this lack of communication that inspires
certain aspects of the next four models.

Figure 2: The Specialist Model

Model 3: “The Leapfrog Model”

The Leapfrog Model is designed to overcome
some of the problems associated with both The Single
Tester Model and The Specialist Model (see Figure 3).
The Leapfrog Model begins with Tester A, who is a
requirements testing specialist, working on the Business
Requirements stage. Tester A continues working on the
project in the Systems Requirements stage, where she is
joined by Tester B, whose expertise is more geared
towards systems analysis and high-level systems design.
As both Testers A and B work on the Systems
Requirement stage, Tester A is able to gradually transfer
her project knowledge to Tester B. At the end of the
Systems Requirements stage, Tester A leaves the project.
At the beginning of the High-Level Design stage, Tester
B is joined by Tester C, whose expertise is focused on

both high-level and detailed systems design. Similarly, at
the end of the High-Level Design stage, Tester B leaves
the project and at the beginning of Detailed Design stage,
Tester C is joined by Tester D, whose expertise is focused
on detailed program design and programming. Tester C
leaves the project at the end of the Detailed Design stage.
An advantage of The Leapfrog Model includes having
two testers working on each development stage except for
the first and last stages. At each of the intermediate
stages there is the opportunity for one tester to gradually
transfer her project knowledge to the next tester.
However, as with The Specialist Model, The Leapfrog
Model assumes the availability of a stable of relatively
specialized testers and, with two testers involved at each
of the intermediate stages, it is even more resource
intensive.

ENGAGING TESTERS EARLY AND THROUGHOUT THE SOFTWARE DEVELOPMENT PROCESS: SIX MODELS
AND A SIMULATION STUDY

Journal of Information Technology Management, Volume XXII, Number 1, 2011 15

Figure 3: The Leapfrog Model

Model 4: “The Balanced Bifurcated Model”

In the Balanced Bifurcated Model, there are two
testers, A and B (see Figure 4). Tester A has a broadly-
based systems analysis background that extends to
requirements on the one end and to high-level systems
design on the other. Tester B has a programming
background that includes the higher levels of systems
design. In this model, Tester A begins at the Business
Requirements stage and stays with the project through the
High-Level Design stage, after which she leaves the
project. Tester B joins the project at the High-Level
Design stage and continues with it to its conclusion in the
Implementation stage. With both Testers A and B
working together in the High-Level Design stage, they
have the opportunity to transfer project knowledge from
A to B. Their skill bases must be broader than those of
the testers in either The Specialist Model or the Leapfrog
Model, but not as broad as the testers in The Single Tester
Model. While there is a shift back toward the problem of
over-dependence on individuals as in The Single Tester

Model, there is also not as much of a resource drain as in
either The Specialist Model or the Leapfrog Model.

Model 5: “The Top-Loaded, Unbalanced

Bifurcated Model”

The difference between The Balanced Bifurcated
Model and the two Unbalanced Bifurcated Models is the
point of hand-off of responsibilities. The principle of the
Top-Loaded, Unbalanced Bifurcated Model is that one
tester, Tester A, will work with all aspects of the project
through and including the Detailed Design stage (see
Figure 5). Then, Tester B will join her in the Detailed
Design stage and be responsible for testing in the
Implementation stage. This model heightens the
personnel dependency issue, plus Tester A must be very
broadly based. The clear advantage of this model is it
provides specialized testers whose sole purpose and total
focus is to look at the detailed design and then work in the
highly technical pursuit of code testing.

ENGAGING TESTERS EARLY AND THROUGHOUT THE SOFTWARE DEVELOPMENT PROCESS: SIX MODELS
AND A SIMULATION STUDY

Journal of Information Technology Management, Volume XXII, Number 1, 2011 16

Figure 4: The Balanced Bifurcated Model

Figure 5: The Top-Loaded, Unbalanced Bifurcated Model

ENGAGING TESTERS EARLY AND THROUGHOUT THE SOFTWARE DEVELOPMENT PROCESS: SIX MODELS
AND A SIMULATION STUDY

Journal of Information Technology Management, Volume XXII, Number 1, 2011 17

Model 6: “The Bottom-Loaded, Unbalanced

Bifurcated Model”

In the Bottom-Loaded, Unbalanced Bifurcated
Model, the point of hand-off is the Systems Requirements
stage (see Figure 6). That is, Tester A handles the
Business Requirements stage and the Systems
Requirements stage. He is joined in the Systems
Requirements stage by Tester B who begins working in

this stage and then follows the project to its conclusion in
the Implementation stage. In many structural respects it is
similar to The Top-Loaded, Unbalanced Bifurcated
Model, except that now, one tester, Tester A, is focused
on business requirements, and the other tester, Tester B,
begins with system requirements and then proceeds
through both of the design stages and the implementation
stage.

Figure 6: The Bottom-Loaded, Unbalanced Bifurcated Model

There are two possible considerations that could

lead to variations in some or all of Models 1-6. One is
that as a practical matter, depending on the size of the IT
organization, the scope of the development project, and
the company’s dedication to testing, the testers described
in any of the six models may well serve as “test leads”
and bring additional testing personnel into the application
development process as required. In all cases, this could
obviously be simply a matter of handling the volume of
work at hand. Also, in all cases, this decreases the
dependency on only one or two people at any given
development stage. Naturally, it also increases the
amount of resources expended in testing. In addition, in
Model 1, The Single Tester Model, and to a lesser extent
in Models 4, 5, and 6, the three bifurcated models, it

could involve calling in specialists to supplement the
skills of the test leads in those models.

The other consideration has to do with the
overlap between the testers at the various intermediate
stages of development. Models 1 and 2 have no overlap.
If we eliminate the overlap in Model 3, The Leapfrog
Model, it effectively reverts to Model 2, The Specialist
Model. The issue is whether in Models 4, 5, and 6, the
three bifurcated models, the overlap could be eliminated.
This has the advantages of reducing the expenditure of
resources and of not requiring the testers to be quite so
broad in their skill sets. On the other hand, there will
clearly be a cost in losing the transfer of project
knowledge from one tester to the next that is provided by
the overlap. Perhaps the elimination of the overlap is

ENGAGING TESTERS EARLY AND THROUGHOUT THE SOFTWARE DEVELOPMENT PROCESS: SIX MODELS
AND A SIMULATION STUDY

Journal of Information Technology Management, Volume XXII, Number 1, 2011 18

most appealing in Model 5, the Top-Loaded, Unbalanced
Bifurcated Model. Eliminating the overlap in Model 5
would isolate Tester B who is responsible for code
testing. Historically, this responsibility has in many
organizations been the only real job for testers. Even in
those instances in which testing is embedded early and
throughout the software development process, the nature
of code testing and its specific and highly technical
techniques make it a candidate for being largely separable
from the other software development process stages. In
fact, as a practical matter in today’s IT environment, code
testing can be looked upon as a candidate for outsourcing,
which would fit the variation that we might now call the
Unbalanced Bifurcated Model Without Overlap.

SIMULATIONS OF THE SIX

TESTER EMBEDDING MODELS

Simulation Background

One of the most widely-used tools in analysis
today is simulation. Simulation is “the process of
designing a model of a real system and conducting
experiments with this model for the purpose of
understanding the behavior of the system and/or
evaluating various strategies for the operation of the
system” [33, p. 7]. Some have argued that simulation is
indispensable as a means of approaching and solving real-
world problems [1][12]. The fundamental goal in
simulation is to mimic the essential elements involved in
a process. A simulation model is very user-friendly, in
the sense that the components of the simulation reflect
actual components of the process being modeled.
Consequently, simulations are extremely robust.
Simulations allow for the collection of data at all stages of
the process, so hidden factors might be easily revealed.
And the most appealing attribute of simulation is the
“what if..?” capability. That is, the user has the ability to
alter conditions in the model, identify how the changes
influence the outcomes, and project that same behavior to
the real-world. Once the fundamental model is in place,
the potential for investigating these alternative scenarios
is practically limitless.

Within the context of software testing, the
progress of the development of a piece of software from
conception to completion is a good example of the use of
simulation. From the model development standpoint,
there may be components in the simulation that mimic
contributors at every stage (business requirements,
systems requirements, high-level design, and detailed
design) and processes developed that show how these
various factors interact and influence the quality of the

final implementation. From the quality standpoint, we
may capture the testing layer, and show how the
performance of the various testers embedded throughout
product development ultimately and collectively influence
the final product.

The “what if?” standpoint is often the most
significant element of a simulation. For example, a
simulation model can be developed to show how a change
in testing strategy (e.g., single-tester vs. specialist) can
influence both costs and product quality. If we can
understand the system better, we can make decisions on
the front end of the suitability of a particular tester
framework in a particular set of development environment
circumstances.

While econometric and statistical models have
capabilities to capture and explain some very basic
relationships, they lack the capability to address detailed
relationships within the process. For either of these
models, it is extremely difficult to reveal the nature of
interactive relationships (e.g., “How do certain business
requirements influence the quality of the product when a
bifurcated testing system is used?”). Compounding this,
as econometric and statistical models increase in
complexity, their comprehensibility declines - the model
becomes less understandable to the original user, and
consequently, less defensible.

In summary, the fundamental value of a
simulation lies in these three characteristics:

• Dynamic: a simulation truly mimics the real-
world process itself, allowing for in-depth,
yet understandable modeling.

• Interactive: a simulation allows the user to
capture the impact of complex relationships.

• “What if?”: a simulation allows the user to
“witness” the impact of a change in
conditions, within the computer, rather than
an expensive, impractical, real-world test.

The key to simulating the alternative testing
environments is understanding the system components
and their attributes, and how those attributes interact.
Some of those basic components and their attributes are
the software length, complexity, and number of
programmers required. In addition, there is the
experience and expertise of the tester, and the nature of
the testing environment (i.e., the variations expressed in
the six tester engaging models). Finally, there are the
issues surrounding the errors to be found in the testing,
such as their location, their severity, and the period at
which they were introduced (business requirements,
systems requirements, high-level design, detailed design,
and implementation.)

ENGAGING TESTERS EARLY AND THROUGHOUT THE SOFTWARE DEVELOPMENT PROCESS: SIX MODELS
AND A SIMULATION STUDY

Journal of Information Technology Management, Volume XXII, Number 1, 2011 19

Scenario Analysis
Empirical data on the employment and

evaluation of software testing is sparse. As a result, we
elected to rely on a combination of survey considerations
and special case analysis. Given the phased structure of
software development, in order to do some comparative
analyses, we chose three test scenarios:

• Error rates based on surveyed expectation
o This scenario considers user

experiences, and hence provides a
reasonable basis for an initial evaluation

• Error rates decreasing by phase
o This scenario captures the worst-case

environment, particularly if such errors
are not recognized immediately

• Error rates evenly distributed over each
phase
o By assuming errors occur evenly

throughout the development process,
this scenario gives an “average-case”
study, the results of which can be
analyzed against the other two scenarios

Given an error within the code, the next step in
the process is to discern the point at which the error is
caught and corrected. This is the point at which the
various testing strategies will affect performance. Again,
survey results were used to determine the likelihood of
recognizing a particular type of error at a given test stage.
With this combination of scenarios, we will be able to
show how the various testing schemes influence the
development and testing process, as well as the final
product quality and cost.

A Survey of Software Testing Professionals

(Error Rates): An initial data set is required for all

simulation programs. We supplemented information from
the literature with data collected from a survey of 13
software testing professionals in order to develop an
initial data set for the simulation. The addition of
surveyed data provides a more robust initial data set for
our simulation than relying on the literature alone.

In developing the initial data set, we surveyed 13
software testing professionals. Information related to the
individuals who completed the survey was kept
anonymous and the results of the surveys were kept
confidential. Each of the 13 individuals who completed
the survey had over 10 years of testing experience.

One of the survey questions we asked the
participants was the likely location of software errors.
This provided a basis for a “representative” environment

to investigate. In this scenario, the likelihood of an error
occurring at each stage was estimated to be:

• Business Requirements: 56%

• Systems Requirements: 19%

• High-Level Design: 9%

• Detailed Design: 4%

• Implementation: 12%
Our simulation involved 250 replications. That

is, based on the above distribution, we created 250
software “cases,” with each containing an error at some
level of the development.

The simulation then proceeded to identify the
error. The likelihood of identifying an error at each phase
was a function of that phase, and the phase in which the
error was created. This leads to a matrix of values, P,
where Pij is the probability of finding an error created in
phase i during phase j, when j ≥ i; 0, when j < i.

The matrix P was created, based on the survey of
13 software development experts. Note in particular that
the P matrix is a function of the testing environment.
Each of the six models evaluated would promulgate a
different value for the Pij’s. This is the essence of our
analysis – to investigate the effectiveness of error
recognition for each of three test scenarios, given a
particular testing scheme. The diverse nature of the three
scenarios, along with the varied impacts of testing
schemes will be revealed in the simulation results.

The evaluation framework is at two levels:
Macro View and Conditional View. The Macro View
indicates, for each Model, the percentage of errors
identified at each phase. Note that this then is a function
of both the error generation scheme as well as the Model.
As such, we may compare Model performances within a
given error generation environment, and provide analysis
on the relative merits of each Model. Since the analysis is
performed on three variant error generation schemes, one
may also recognize the manner in which the anticipated
error environment might influence the choice of a tester
Model.

The Conditional View of evaluation answers a
slightly different, more focused question: Given an error
occurs in Phase i, what is the expected proportion
discovered in Phase j? Again, this is a function of the
Model itself, and provides a deeper insight into the value
of the various tester set-ups. In particular, a cost-benefit
analysis could be applied to determine the preferred
strategy to employ.

The baseline case, which used only data
provided by those surveyed results in Table 1, indicates
the probability of errors located in each phase, for each of
the six models tested.

ENGAGING TESTERS EARLY AND THROUGHOUT THE SOFTWARE DEVELOPMENT PROCESS: SIX MODELS
AND A SIMULATION STUDY

Journal of Information Technology Management, Volume XXII, Number 1, 2011 20

Table 1: Distribution of Recognition Location by Testing Model - Baseline Study

 Testing Model

 MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 MODEL6

1 0.144 0.14 0.104 0.096 0.096 0.104

2 0.268 0.276 0.236 0.268 0.352 0.324

3 0.296 0.268 0.328 0.348 0.264 0.324

4 0.212 0.228 0.244 0.196 0.228 0.188

Phase of
recognition

5 0.08 0.088 0.088 0.092 0.06 0.06

Note in particular the highlighted values, which

indicate the maximum value in each row. This suggests
that MODEL1 was more likely to recognize an error in
the first phase, while MODEL5 was more likely to
identify those problems in phase 2. Such information
would be very important in deciding which testing model
to implement. This would primarily involve a cost-
benefit analysis. If the cost of not recognizing an error
until later phases were very high – indicating significant
re-work or redevelopment, then MODEL1 or MODEL5
would be preferable, since they identify errors earlier in
the process. Note that each of the models was evaluated
with respect to the same 250 simulated replications.

In addition to the summary table above, we also
collected the following statistics, indicating the proportion
of errors found in each phase, conditioned on the location
in which the error originated (see Table 2). Note that this

information takes into account the surveyed distribution
of where the error is located along with the P matrix
mentioned above – which was also survey-generated.

Such information allows us to further pinpoint
the efficacy of each testing Model, with respect to the
error profile. For example, suppose that our company is
prone to making errors at Phase 1, Business
Requirements. (This is the profile of this simulation, in
which 59% of all errors originate in Phase 1.) MODEL3
tends to identify these errors prior to Implementation,
with only 1% of our trials not being recognized
beforehand. All other models allowed two to three times
as many cases to reach Implementation. This suggests
that MODEL3 might well be the testing model of choice
if it is vital to avoid problems at Implementation, resulting
from Business Requirements errors.

Table 2: Detailed Phase-based Error Recognition - Baseline Study

MODEL Probability (error is recognized in…)

MODEL1 1 2 3 4 5

1 0.23 0.30 0.28 0.16 0.02

2 0.00 0.24 0.39 0.31 0.07

3 0.00 0.00 0.33 0.50 0.17

4 0.00 0.00 0.00 0.20 0.80

Given
error
made
in…

5 0.00 0.00 0.00 0.00 1.00

MODEL2 1 2 3 4 5

1 0.21 0.38 0.23 0.15 0.02

2 0.00 0.18 0.38 0.29 0.15

3 0.00 0.00 0.17 0.58 0.25

4 0.00 0.00 0.00 0.17 0.83

Given
error
made
in…

5 0.00 0.00 0.00 0.00 1.00

MODEL3 1 2 3 4 5

1 0.18 0.32 0.32 0.17 0.01

2 0.00 0.21 0.33 0.35 0.11

3 0.00 0.00 0.28 0.44 0.28

4 0.00 0.00 0.00 0.00 1.00

Given
error
made
in…

5 0.00 0.00 0.00 0.00 1.00

MODEL4 1 2 3 4 5

1 0.19 0.35 0.28 0.17 0.02

2 0.00 0.24 0.40 0.29 0.06

3 0.00 0.00 0.41 0.36 0.23

4 0.00 0.00 0.00 0.60 0.40

Given
error
made
in…

5 0.00 0.00 0.00 0.00 1.00

MODEL5 1 2 3 4 5

1 0.17 0.30 0.31 0.18 0.03

2 0.00 0.24 0.32 0.33 0.12

3 0.00 0.00 0.21 0.57 0.21

4 0.00 0.00 0.00 0.71 0.29

Given
error
made
in…

5 0.00 0.00 0.00 0.00 1.00

MODEL6 1 2 3 4 5

1 0.18 0.34 0.33 0.12 0.03

2 0.00 0.28 0.42 0.24 0.05

3 0.00 0.00 0.21 0.38 0.42

4 0.00 0.00 0.00 0.25 0.75

Given
error
made
in…

5 0.00 0.00 0.00 0.00 1.00

ENGAGING TESTERS EARLY AND THROUGHOUT THE SOFTWARE DEVELOPMENT PROCESS: SIX MODELS
AND A SIMULATION STUDY

Journal of Information Technology Management, Volume XXII, Number 1, 2011 21

Another significant result is in comparing
MODEL5 and MODEL6. Suppose that an error is
introduced in Detailed Design. MODEL5 is almost three
times as likely to identify that error immediately, while
MODEL6 will generally not recognize that error until
Implementation.

Balanced Error Rates: In this second case, we

altered the error origination probabilities, suggesting that

the likelihood of an error occurring at each stage would
be:

• Business Requirements: 20%

• Software requirements: 20%

• High-Level Design: 20%

• Detailed Design: 20%

• Implementation: 20%

The summary probabilities are shown in Table 3.

Table 3: Distribution of Recognition Location by Testing Model - Balanced Error Study

 Testing Model

 MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 MODEL6

1 0.048 0.032 0.04 0.028 0.036 0.024

2 0.16 0.116 0.136 0.228 0.14 0.184

3 0.248 0.292 0.276 0.236 0.256 0.244

4 0.296 0.312 0.332 0.32 0.352 0.34

Phase of
recognition

5 0.248 0.248 0.216 0.188 0.216 0.208

We again highlight the maximum value in each

row, indicating the Model most likely to recognize an
error at that phase. Two perspectives are noteworthy. We
may, at this point, compare the same MODEL over this
scenario and the previous one. For instance, note that
MODEL1 recognized 14% of the errors in Phase 1, for
the first scenario, and roughly 5% in this scenario. This
result reflects both the capabilities of the testing Model, as
well as the error environment.

The second perspective, as before is in
comparing two models. If we have a fairly good
understanding of whether the origin of errors follows the
first scenario or the second, we would be in a better
position to select the appropriate testing model. In this
scenario for instance, MODEL4 recognizes 3-6% more
errors prior to Implementation than any other model.

We again created the conditional matrices,
indicating the likelihood of locating an error, given the
origin. Again, it is noteworthy to compare to the previous
scenario. For example, suppose that your company
consistently employed MODEL6, but did not have a good
idea of the distribution of error occurrences. If we
compare Table 2-MODEL6 and Table 4-MODEL 6, we
will notice a significant change in performance with
respect to identifying problems prior to Implementation.
For errors originating in Phase 1, the two scenarios are
comparable (3% vs. 2%). The same is true for errors
originating in Phase 2 (5% vs. 6%). However, for errors
originating in Phase 3, the results are significantly
different (42% vs. 14%). Likewise for errors in Phase 4

(75% vs. 52%). We may use this information to promote
consideration of some alternative to MODEL6 if we
believe more errors are likely in Phases 3 or 4 because the
delay of recognizing them in Implementation is
expensive.

Declining Error Rates: In this third case, we altered

the error origination probabilities, suggesting that the
likelihood of an error occurring at each stage would be:

• Business Requirements: 40%

• Software requirements: 30%

• High-Level Design: 10%

• Detailed Design: 10%

• Implementation: 10%
In this scenario, we suggest that errors tend to be

front-loaded, that is more likely to occur early in
development. The summary probabilities are shown in
Table 5, and the detailed probabilities are shown in Table
6.

ENGAGING TESTERS EARLY AND THROUGHOUT THE SOFTWARE DEVELOPMENT PROCESS: SIX MODELS
AND A SIMULATION STUDY

Journal of Information Technology Management, Volume XXII, Number 1, 2011 22

Table 4: Detailed Phase-based Error
Recognition - Balanced Error Study

MODEL Probability (error is recognized in…)

MODEL1 1 2 3 4 5

1 0.21 0.19 0.31 0.21 0.07

2 0.00 0.28 0.47 0.18 0.08

3 0.00 0.00 0.27 0.46 0.27

4 0.00 0.00 0.00 0.56 0.44

Given
error
made
in…

5 0.00 0.00 0.00 0.00 1.00

MODEL2 1 2 3 4 5

1 0.18 0.30 0.30 0.20 0.03

2 0.00 0.22 0.30 0.33 0.15

3 0.00 0.00 0.29 0.51 0.20

4 0.00 0.00 0.00 0.33 0.67

Given
error
made
in…

5 0.00 0.00 0.00 0.00 1.00

MODEL3 1 2 3 4 5

1 0.13 0.32 0.32 0.16 0.07

2 0.00 0.24 0.47 0.18 0.11

3 0.00 0.00 0.36 0.47 0.17

4 0.00 0.00 0.00 0.49 0.51

Given
error
made
in…

5 0.00 0.00 0.00 0.00 1.00

MODEL4 1 2 3 4 5

1 0.15 0.36 0.33 0.09 0.07

2 0.00 0.22 0.42 0.30 0.06

3 0.00 0.00 0.28 0.47 0.25

4 0.00 0.00 0.00 0.48 0.52

Given
error
made
in…

5 0.00 0.00 0.00 0.00 1.00

MODEL5 1 2 3 4 5

1 0.30 0.21 0.23 0.19 0.06

2 0.00 0.24 0.34 0.34 0.08

3 0.00 0.00 0.34 0.52 0.14

4 0.00 0.00 0.00 0.69 0.31

Given
error
made
in…

5 0.00 0.00 0.00 0.00 1.00

MODEL6 1 2 3 4 5

1 0.13 0.34 0.30 0.21 0.02

2 0.00 0.20 0.46 0.27 0.06

3 0.00 0.00 0.33 0.52 0.14

4 0.00 0.00 0.00 0.48 0.52

Given
error
made
in…

5 0.00 0.00 0.00 0.00 1.00

Table 6: Detailed Phase-based Error
Recognition – Declining Error Study

MODEL Probability (error is recognized in…)

MODEL1 1 2 3 4 5

1 0.24 0.32 0.23 0.15 0.06

2 0.00 0.22 0.32 0.29 0.18

3 0.00 0.00 0.32 0.38 0.30

4 0.00 0.00 0.00 0.86 0.14

Given

5 0.00 0.00 0.00 0.00 1.00

MODEL2 1 2 3 4 5

1 0.21 0.32 0.29 0.13 0.06

2 0.00 0.25 0.28 0.30 0.16

3 0.00 0.00 0.16 0.48 0.35

4 0.00 0.00 0.00 0.64 0.36

Given
error
made
in…

5 0.00 0.00 0.00 0.00 1.00

MODEL3 1 2 3 4 5

1 0.15 0.29 0.33 0.19 0.04

2 0.00 0.20 0.46 0.23 0.11

3 0.00 0.00 0.53 0.33 0.15

4 0.00 0.00 0.00 0.25 0.75

Given
error
made
in…

5 0.00 0.00 0.00 0.00 1.00

MODEL4 1 2 3 4 5

1 0.19 0.37 0.33 0.10 0.01

2 0.00 0.24 0.37 0.30 0.10

3 0.00 0.00 0.34 0.48 0.17

4 0.00 0.00 0.00 0.50 0.50

Given
error
made
in…

5 0.00 0.00 0.00 0.00 1.00

MODEL5 1 2 3 4 5

1 0.22 0.26 0.30 0.18 0.04

2 0.00 0.18 0.47 0.28 0.07

3 0.00 0.00 0.20 0.57 0.23

4 0.00 0.00 0.00 0.64 0.36

Given
error
made
in…

5 0.00 0.00 0.00 0.00 1.00

MODEL6 1 2 3 4 5

1 0.14 0.43 0.17 0.22 0.04

2 0.00 0.20 0.37 0.29 0.14

3 0.00 0.00 0.25 0.53 0.23

4 0.00 0.00 0.00 0.67 0.33

Given
error
made
in…

5 0.00 0.00 0.00 0.00 1.00

Table 5: Distribution of Recognition Location by Testing Model – Declining Error Study

 MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 MODEL6

1 0.08 0.092 0.068 0.08 0.088 0.06

2 0.256 0.24 0.204 0.26 0.268 0.28

3 0.272 0.348 0.352 0.388 0.276 0.348

4 0.256 0.228 0.28 0.204 0.276 0.236

Stage of
recognition

5 0.136 0.092 0.096 0.068 0.092 0.076

ENGAGING TESTERS EARLY AND THROUGHOUT THE SOFTWARE DEVELOPMENT PROCESS: SIX MODELS
AND A SIMULATION STUDY

Journal of Information Technology Management, Volume XXII, Number 1, 2011 23

Expected Cost Analysis: We might use the

probability information in a much more direct fashion,
and determine the costs inherent within a particular
environment. Suppose for instance, that we postulate the
cost of creating each type of testing model as follows:

• MODEL1 - $2000

• MODEL2 - $2500

• MODEL3 - $2650

• MODEL4 - $3000

• MODEL5 - $6000

• MODEL6 - $12000
Further suppose that the costs of recognizing and

rectifying an error increased significantly as development
advanced, as suggested in [5]:

• An error recognized in the Business
Requirements (BR) stage costs $100 to
rectify

• An error recognized in the Systems
Requirements (SR) stage costs $1000 to
rectify

• An error recognized in the High-Level
Design (HLD) stage costs $10000 to rectify

• An error recognized in the Detailed Design
(DD) stage costs $100000 to rectify

• An error recognized in the Implementation
(Imp) stage costs $1,000,000 to rectify

In such an environment, the long-term cost to
rectify errors, when employing MODEL1, is:

= (the proportion of errors recognized in BR)
*(cost to rectify in BR) +

 (the proportion of errors recognized in SR)
*(cost to rectify in SR) +

 (the proportion of errors recognized in HLD)
*(cost to rectify in HLD) +

 (the proportion of errors recognized in DD)
*(cost to rectify in DD) +

 (the proportion of errors recognized in Imp)
*(cost to rectify in Imp)

= (.144)*100 + (.268)*1000 + (.296)*10000 +
(.212)*100000 + (.08)*1000000

= $104,442.40
Similarly, the error rectifying costs for the other

five models are:
MODEL2: $113,770.00
MODEL3: $115,926.40
MODEL4: $115,357.60
MODEL5: $85,801.60
MODEL6: $82,374.40

Finally, total costs (including tester costs) for
each MODEL would be:

MODEL1: $104,442.40 + $2000 = $106,442.40
MODEL2: $113,770.00 + $2500 = $116,270.00
MODEL3: $115,926.40 + $2650 = $118,576.40
MODEL4: $115,357.60 + $3000 = $118,357.60
MODEL5: $85,801.60 + $6000 = $91,801.60
MODEL6: $82,374.40 + $12000 = $94,374.40

This suggests that, in the long-term, if we are

operating under the framework of the first scenario, that
the best testing structure is MODEL5. Although the team
cost is higher, that is countered by the significantly lower
expected error recognition costs.

It might be the case, however, that we do not
have a very good understanding of the probabilities as
presented in Table 1. In such a case, we might consider a
graphical, sensitivity analysis approach. Consider Figure
7 below.

Noting that the expected costs for MODEL5 and
MODEL 6 are comparable, we might wish to consider
any uncertainty we have in the probability of finding an
error at Implementation in MODEL5. That is, how would
this uncertainty influence our decision-making process?
Recall that the total expected cost under MODEL6 was
$94374.40. As long as the probability of finding an error
at Implementation is within 4% of the base value, our
expected costs are less than MODEL6, and we would
prefer to institute MODEL5. However, if our true value
is potentially more than 4% of the base, then we would
prefer to institute MODEL6.

We may perform a similar sort of sensitivity
analysis, when there are uncertainties with respect to cost
values. Suppose that there were uncertainty with respect
to recognizing an error in the High-Level Design stage.
How then does MODEL5 compare to MODEL6?

If we change the cost to recognize and correct an
error in the High-Level Design stage, we see the results in
Figure 8. Note that, as long as the decrease is no more
than about 480% - a huge amount – MODEL5 remains
preferable. Thus, there is little sensitivity with respect to
this cost parameter.

Note that a similar sort of analysis could be
executed, if cost information were available with respect
to recognizing or remediating a problem in one phase,
given it was created in some specific phase. This would
explicitly make use of the probabilities in Tables 2, 4, and
6.

ENGAGING TESTERS EARLY AND THROUGHOUT THE SOFTWARE DEVELOPMENT PROCESS: SIX MODELS
AND A SIMULATION STUDY

Journal of Information Technology Management, Volume XXII, Number 1, 2011 24

Figure 7: Cost Sensitivity

Figure 8: Sensitivity to HLD Costs

ENGAGING TESTERS EARLY AND THROUGHOUT THE SOFTWARE DEVELOPMENT PROCESS: SIX MODELS
AND A SIMULATION STUDY

Journal of Information Technology Management, Volume XXII, Number 1, 2011 25

CONCLUSION

This paper proposed six models for engaging
testers early and throughout the software development
process. It also described the development and the
analysis of simulation models of these six tester
embedding models. Overall, the goal is higher quality
application code with fewer errors produced, leading to
higher quality applications being introduced into
production. Furthermore, by engaging early and
throughout the software development process, testers will
see themselves as stakeholders in the quality of the
finished applications by virtue of their work throughout
the software development process. This will lead to the
further development of software testing as a recognized
and respected specialty within software development
organizations.

REFERENCES

[1] Banks, J. “Introduction to Simulation,”
Proceedings of the 1999 Winter Simulation

Conference, Phoenix, Arizona, December 5-8,
1999, pp. 7-13.

[2] Benediktsson, O., Dalcher, D., and Thorbergsson,
H. “Comparison of Software Development Life
Cycles: A Multiproject Experiment,” IEE

Proceedings Software, Volume 153, Number 3,
2006, pp. 87-101.

[3] Boehm, B. “Software and Its Impact: A
Quantitative Assessment,” Datamation, Volume 19,
Number 5, 1973, pp. 48-59.

[4] Boehm, B. “A View of 20th and 21st Century
Software Engineering,” Proceedings of the 28th
International Conference on Software Engineering,
May 20-28, 2006, Shanghai, China, pp. 11-29.

[5] Boehm, B. and Basili, V.R. “Software Defect
Reduction Top 10 List,” Computer, Volume 34,
Number 1, 2001, pp. 135-137.

[6] Carstensen, P.H., Sorensen, C., and Tuikka, T.
“Let’s Talk about Bugs!” Scandinavian Journal of
Information Systems, Volume 7, Number 1, 1995,
pp. 33-54.

[7] Cohen, C.F., Birkin, S.J., Garfield, M.J., and Webb,
H.W. “Management conflict in software testing,”
Communications of the ACM, Volume 47, Number
1, 2004, pp. 76-81.

[8] Dahlbom, B. and Mathiassen, L., Computers in
Context – The Philosophy and Practice of Systems

Design, Blackwell Publishers, Cambridge,
Massachusetts, 1993.

[9] Dalal, S.R., Horgan, J.R., and Kettering, J.R.
“Reliable Software and Communications: Software
Quality, Reliability and Safety,” Proceedings of the
15

th
 International Conferences on Software

Engineering, Baltimore, Maryland, 1993, pp. 425-
435.

[10] Faraj, S. and Sproull, L. “Coordinating Expertise in
Software Development Teams,” Management

Science, Volume 46, Number 12, 2000, pp. 1554-
1568.

[11] Fried, L. “Team Size and Productivity in Systems
Development,” Journal of Information Systems

Management, Volume 8, Number 3, 1991, pp. 27-
41.

[12] Fuerst, W.L., and Martin, M.P. “Effective Design
and Use of Computer Decision Models,” MIS

Quarterly, Volume 8, Number 1, 1984, pp. 17-26.
[13] Gelperin, D. and Hetzel, B. “The Growth of

Software Testing,” Communication of the ACM,
Volume 31, Number 6, 1988, pp. 687-695.

[14] Gorla, N. and Lam, Y.W. “Who Should Work with
Whom? Building Effective Software Project
Teams,” Communication of the ACM, Volume 47,
Number 6, 2004, pp. 79-82.

[15] Hamlet, R. “Special Section on Software Testing,”
Communications of the ACM, Volume 31, Number
6, 1988, pp. 662-667.

[16] Hetzel, B., The Complete Guide to Software

Testing, QED Information Sciences, Wellesley,
Massachusetts, 1983.

[17] Hotle, M. “Agile Development: What’s Still Facts
and What’s Still Fiction?” Gartner Research, (ID:
G00175807), June 14, 2010.

[18] Huang, A.H., “Model for Environmentally
Sustainable Information Systems Development,”
Journal of Computer Information Systems, Volume
49, Number 4, 2009, pp. 114-121.

[19] Johnson, P.M. and Tjahjono, D. “Improving
Software Quality Through Computer Supported
Collaborative Review,” Proceedings of the Third
European Conference on Computer-Supported

Cooperative Work, Milan, Italy, 1993, pp. 61-76.
[20] Kraut, R.E. and Streeter, L.A. “Coordination in

Software Development,” Communications of the
ACM, Volume 38, Number 3, 1995, pp. 69-81.

[21] Laplante, P.A. and Neill, C.J. “The Demise of the
Waterfall Model Is Imminent and Other Urban
Myths,” ACM Queue, Volume 1, Number 10, 2004,
pp. 10-15.

[22] Light, M. “How the Waterfall Methodology
Adapted and Whistled Past the Graveyard,”

ENGAGING TESTERS EARLY AND THROUGHOUT THE SOFTWARE DEVELOPMENT PROCESS: SIX MODELS
AND A SIMULATION STUDY

Journal of Information Technology Management, Volume XXII, Number 1, 2011 26

Gartner Research, (ID: G00173423), December 18,
2009.

[23] McKeen, J.D. “Successful Development Strategies
for Business Application Systems,” MIS Quarterly,
Volume 7, Number 3, 1983, pp. 47-56.

[24] Moore, W., Nolan, E., and Gillard, S. “Towards a
Higher-Level Systems Development Life Cycle,
with Universal Applications,” International Journal
of Management, Volume 23, Number 3, 2006, pp.
646-652.

[25] Myers, G.J., The Art of Software Testing, John
Wiley and Sons, New York, New York, 1979.

[26] Pendharkar, P.C. and Rodger, J.A. “The
Relationship between Software Development Team
Size and Software Development Cost,”
Communications of the ACM, Volume 52, Number
1, 2009, pp. 140-145.

[27] Pettichord, B. “Design for Testability,” Presented
at the Pacific Northwest Software Quality

Conference, Portland, Oregon, October 2002.
[28] Pressman, R.S. “Making Software Engineering

Happen – A Guide for Instituting the Technology,”
Prentice Hall, Englewood Cliffs, New Jersey, 1988.

[29] Pyhäjärvi, M. and Rautiainen, K. “Integrating
testing and implementation into development,”
Engineering Management Journal, Volume 16,
Number 1, 2004, pp. 33-39.

[30] Ragunath, P.K., Velmourougan, S., Davachelvan,
P., Kayalvizhi, S., and Ravimohan, R. “Evolving a
New Model (SDLC Model-2010) for Software
Development Life Cycle (SDLC),” International
Journal of Computer Science Network Security,

Volume 10, Number 1, 2010, pp. 112-120.
[31] Royce, W.W. “Managing the Development of

Large Software Systems,” Proceedings of the IEEE
WESCON, Los Angeles, California, August 1970,
pp. 1-9.

[32] Schach, S.R. “Testing: Principles and practice,”
ACM Computing Survey, Volume 28, Number 1,
1996, pp. 277-279.

[33] Shannon, R.E. “Introduction to the art and science
of simulation,” Proceedings of the 1998 Winter

Simulation Conference, Washington DC, December
13-16, 1998, pp. 7-14.

[34] Vijay, N. “Little Joe Model of Software Testing,”
Proceedings of the 3rd Annual International

Conference on Software Testing, Bangalore, India,
2001, pp. 1-12.

[35] Waligora, S. and Coon, R. “Improving the Software
Testing Process in NASA’s Software Engineering
Laboratory,” NASA’s Software Engineering
Laboratory, 1996.

[36] Zhang, X., Hu, T., Dai, H., and Li, X. “Software
Development Methodologies, Trends and
Implications: A Testing Centric View,” Information
Technology Journal, Volume 9, Number 8, 2010,
pp. 1747-1753.

[37] Zhu, H., Hall, P.A.V, and May, J.H.R. “Software
Unit Test Coverage and Adequacy,” ACM

Computing Surveys, Volume 29, Number 4, 1997,
pp. 366-427.

AUTHOR BIOGRAPHIES

Mark L. Gillenson is Professor of Management
Information Systems in the Fogelman College of Business
and Economics of the University of Memphis. He
received his B.S. degree from Rensselaer Polytechnic
Institute and his M.S. and Ph.D. degrees in Computer and
Information Science from the Ohio State University. Dr.
Gillenson worked for the IBM Corp. for 15 years and has
consulted for major corporations and government
organizations. Dr. Gillenson’s research has appeared in
MIS Quarterly, Communications of the ACM, Information
& Management, and other leading journals. His latest
book is Fundamentals of Database Management Systems,
2005, John Wiley & Sons.

Michael J. Racer is Associate Professor of

Marketing and Supply Chain Management in the
Fogelman College of Business and Economics at the
University of Memphis. He is the Associate Director of
eSOL, the Enterprise Simulation and Optimization
Laboratory, and the Associate Director for Supply Chain
in the Center for Biofuels Energy and Sustainable
Technologies. Dr. Racer has been a member of
INFORMS since 1990, and is currently the VP-Special
Projects for INFORM-ed. Dr. Racer’s current research
and outreach topics include the following: (1) modeling,
simulation and optimization tools for decision-making in
a wide range of applications, and (2) design of
metaheuristics for combinatorial optimization problems.

Sandra M. Richardson is an Assistant
Professor in the Department of Management Information
Systems at the University of Memphis. Her research
focuses on strategic leveraging of information technology
to enable economic and social value creation and the role
of individual stakeholders in this process. She conducts
her research in two primary contexts: healthcare and the
social sector (social entrepreneurism). Current projects
focus on the impact of information technology on
enabling emergent leadership, global collaboration, and
autonomy for individual stakeholders. She has published

ENGAGING TESTERS EARLY AND THROUGHOUT THE SOFTWARE DEVELOPMENT PROCESS: SIX MODELS
AND A SIMULATION STUDY

Journal of Information Technology Management, Volume XXII, Number 1, 2011 27

in Communications of the AIS, Decision Support Systems,
Journal of Information Systems Education, and
Information Systems Frontiers.

Xihui Zhang is an Assistant Professor of
Computer Information Systems in the College of Business
at the University of North Alabama. He earned a Ph.D. in
Business Administration with a concentration in
Management Information Systems from the University of
Memphis. His teaching and research interests include
technical, behavioral, and managerial aspects of
Information Systems. His research has appeared or will
appear in Journal of Strategic Information Systems,
Journal of Database Management, e-Service Journal,
Journal of Information Technology Management, Journal

of Information Technology Education, Information

Technology Journal, International Journal of Operations
Research and Information Systems, Communications of
the International Chinese Information Systems

Association, and Pacific Asia Journal of the Association
for Information Systems.

