
A Multidimensional Empirical Study on Refactoring Activity

Nikolaos Tsantalis†, Victor Guana*, Eleni Stroulia*, Abram Hindle*

†Department of Computer Science and Software Engineering
Concordia University, Montreal, Quebec, Canada

*Department of Computing Science
University of Alberta, Edmonton, Alberta, Canada

Abstract

In this paper we present an empirical study
on the refactoring activity in three well-known
projects. We have studied five research ques-
tions that explore the different types of refac-
torings applied to different types of sources, the
individual contribution of team members on
refactoring activities, the alignment of refac-
toring activity with release dates and testing
periods, and the motivation behind the applied
refactorings. The studied projects have a his-
tory of 12, 7, and 6 years, respectively. We have
found that there is very little variation in the
types of refactorings applied on test code, since
the majority of the refactorings focus on the
reorganization and renaming of classes. Addi-
tionally, we have identified that the refactoring
decision making and application is often per-
formed by individual refactoring “managers”.
We have found a strong alignment between
refactoring activity and release dates. More-
over, we found that the development teams ap-
ply a considerable amount of refactorings dur-
ing testing periods. Finally, we have also found
that in addition to code smell resolution the
main drivers for applying refactorings are the
introduction of extension points, and the reso-
lution of backward compatibility issues.

Copyright c© 2013 Nikolaos Tsantalis, Victor
Guana, Eleni Stroulia, and Abram Hindle. Permission
to copy is hereby granted provided the original copy-
right notice is reproduced in copies made.

1 Introduction

In the past, refactoring activity has been empir-
ically investigated with respect to its frequency
[15], the adoption of refactoring tools [10], its
relation with bug fixing [7] and testing [11], and
its perception by developers [9]. There are still
some interesting questions that have not been
explored yet. For instance, what are the prin-
cipal drivers behind the application of refactor-
ings, and how do different team roles and code
artifacts affect refactoring practice.

In this paper, we inspected the refactoring
history of three well known projects, namely
JUnit, HTTPCore, and HTTPClient, and in-
vestigated 5 research questions related to im-
portant aspects of refactoring practice. These
questions are:

RQ1: Do software developers perform different
types of refactoring operations on test
code and production code?

RQ2: Which developers are responsible for
refactorings?

RQ3: Is there more refactoring activity before
major project releases than after?

RQ4: Is refactoring activity on production
code preceded by the addition or mod-
ification of test code?

RQ5: What is the purpose of the applied refac-
torings?

It is our strong belief that answers to these
research questions will help the community bet-
ter reflect on the actual refactoring practice.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357526198?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Furthermore, they will increase the awareness
of the software maintenance community on the
drivers behind the application of refactorings
and help motivate the creation of refactoring
tools (e.g., code smell detectors, IDEs) address-
ing the actual needs of developers in a princi-
pled and empirical manner. This study pri-
marily focuses on high and medium level refac-
torings, as defined by Murphy-Hill et al. [10].
High level refactorings are those that change
the signatures of classes, methods, and fields,
while medium level refactorings change also
blocks of code (e.g., Extract Method) in addi-
tion to the aforementioned changes [10]. To the
best of our knowledge, this is the first empiri-
cal study that investigates the purpose of the
applied refactorings with respect to the design
problems being faced or the design decisions
being made. Additionally, this work makes a
distinction between the refactoring operations
applied on production and test code.

The rest of the paper is organized as fol-
lows. Section 2 presents the related work re-
garding refactoring activity analysis and refac-
toring detection; Section 3 shows our experi-
mental setup, selection of case studies, issues
on decentralized repository analysis, and our
refactoring detection methodology; Section 4
presents our experimental results along with a
discussion around the research questions; Sec-
tion 5 discusses the threats to the validity of
the study; Section 6 summarizes the paper and
discusses its main conclusions.

2 Related Work

One among the earlier empirical studies on
refactoring practice was that of Xing and
Stroulia [15] who examined the structural
changes in the evolution of the Eclipse JDT, us-
ing the UMLDiff [14] algorithm, in order to in-
vestigate (a) what proportion of these changes
are due to refactorings, (b) which are the typ-
ical refactorings applied in practice, and (c)
which types of refactorings are “safe” to client
applications that reuse the refactored system.
They concluded that about 70% of structural
changes may be due to refactorings and for
about 60% of these changes, the references to
the affected entities in a component-based ap-

plication can be automatically updated by a
refactoring-migration tool.

Murphy-Hill et al. [10] investigated the refac-
toring practices followed by the developers us-
ing the version history of the Eclipse code base
as extracted from its CVS repository. They
concluded that (a) commit comments are not
useful for predicting refactoring activity, (b)
refactoring is frequently used as a means to
reach a specific end, such as adding a fea-
ture or fixing a bug (floss refactoring), and (c)
the percentage of low-level and medium-level
refactorings (i.e., sub-method level refactor-
ings) is significant (40-60% of the total number
of refactorings) compared to high-level refac-
torings (i.e., refactorings changing the signa-
ture of classes, methods and fields).

Kim et al. [7] investigated the role
of API-level refactorings (i.e., package/-
class/method moves/renames, and method sig-
nature changes) using the fine-grained evolu-
tion history (i.e., revisions) of three open source
projects, namely Eclipse JDT Core, JEdit and
Columba. They concluded that (a) there is an
increase in the number of bug fixes after API-
level refactorings, (b) the time taken to fix bugs
is shorter after API-level refactorings than be-
fore, (c) a large number of refactoring revisions
include bug fixes at the same time or are re-
lated to later bug fix revisions implying that
refactorings introduce bugs or refactorings are
applied to facilitate bug fixes, and (d) API-level
refactorings occur more frequently before than
after major software releases.

Kim et al. [9] surveyed developers at Mi-
crosoft regarding their use and understanding
of refactoring. They found that many develop-
ers did not view refactoring solely as “semantic-
preserving code transformations” but more as
efforts related to code quality improvement.
Some developers were motivated to refactor
in order to decrease dependencies to aid code
reuse. They repeated some of their prior anal-
ysis on Microsoft products [7].

Rachatasumrit and Kim [11] studied the im-
pact of refactoring operations on regression
tests. The main concern of the study was to
identify whether code that has been refactored
preserves its original behavior or, in some cases,
introduces faulty enhances that need to be re-
tested. Among others, the study found that



only 22% of refactorings are tested, and that at
least half of the failed test affected after code
modifications, included exercising code that in-
volved refactoring edits. From our particular
interest, this empirical study reports the ratio
of failure-inducing changes out of all the refac-
toring edits in three open source projects.

With respect to refactoring detection tools
several approaches have been proposed in the
literature. Dig et al. [3] combined a fast
syntactic analysis based on Shingles encoding
to detect refactoring candidates and a more
expensive semantic analysis to refine the re-
sults. Weissgerber and Diehl [13] developed a
signature-based analysis to detect refactoring
candidates and clone detection to rank these
candidates. Kim et al. [8] proposed a rule-
based program differencing approach that au-
tomatically discovers and summarizes system-
atic code changes as logic rules.

3 Study Design

In this section we discuss the experimental de-
sign of our empirical study. First, we discuss
our rationale for selecting the particular soft-
ware systems for our study. Second, we expose
the technical problems we faced in our attempt
to compare subsequent revisions in decentral-
ized repositories, and the solutions we devel-
oped for these problems. Lastly, we explain
our conceptual and practical framework for de-
tecting refactorings within successive revisions
of code.

3.1 Selecting Repositories

For our study we selected three medium-size
projects: the JUnit testing framework, the
Jakarta HTTPCore, and the Jakarta HTTP-
Client. These systems have a development his-
tory ranging from 6 to 12 years. We chose
JUnit because it is a well studied system and
the two Jakarta HTTP components because
they are managed by the same team of peo-
ple and the comparison of their histories would
enable us to investigate if the types of applied
refactorings depend on the development team,
or whether they are dictated by the specific
project requirements. All three selected sys-
tems were developed in Java and provide a re-

liable build automation system, since our refac-
toring detection mechanism requires to analyze
compiled Java sources.

3.1.1 JUnit

JUnit is perhaps the most widely known and
used testing framework for Java programs.
Its development started by Erich Gamma and
Kent Beck in 2000. Its development history
spans over 12 years. Particularly, between re-
leases 3.8.1 (in September 2002) and 4.0 (in
February 2006) the project went through a rel-
atively inactive period of activity. We analyzed
1018 revisions ranging from JUnit 3.5 to 4.6.

3.1.2 Jakarta HTTPComponents

HTTPCore is a set of Java components used
to implement client and server side HTTP-
based services. It has been mirrored in a pub-
licly available git repository exposing 7 years
of history (February 2005 to March 2012). We
have analyzed 1588 revisions produced in this
period of time. HTTPClient provides client
side applications with authentication, connec-
tion state representation, and general connec-
tion management capabilities. It has been also
mirrored in git repository covering its develop-
ment history from December of 2005 to March
2012. We have analyzed a total 1838 revisions
registered during its 6 years of development.

3.2 Determining Successive Revi-
sions

In order to identify the refactorings applied
throughout the evolution of a software system,
it is necessary to extract the changes that oc-
curred between successive revisions. However,
in contrast to centralized repositories (such as
SVN) which have a linear commit history, the
history of decentralized repositories is a di-
rected acyclic graph (DAG) due to the presence
of implicit branches. In git, as explained by
Bird et al. [2], when two collaborating develop-
ers commit changes to their local repositories,
their repositories diverge (i.e., they contain dif-
ferent commits). When one of the developers
pulls from the other, git creates a new commit
that merges the remote sequence of commits
into the pulling developer’s repository.



As a result, the definition of successive re-
visions cannot be based on the commit time,
as is possible in the case of centralized reposi-
tories. In our approach, we compare each ex-
amined revision with its parent revision in the
commit history DAG. In order to avoid the du-
plicate report of refactorings we excluded from
our analysis the merge commits. A merge com-
mit has at least two parents and thus the com-
parison of the merged revision with all parent
revisions from the merged branches would re-
sult in duplicate refactoring reports in the case
where refactoring activity has taken place in
at least one of the branches. In the example
depicted in Figure 1, c5 is a merge commit in
which two branches are merged. If a refactor-
ing took place in commit c4, then comparing
the revisions corresponding to commits c2 and
c4 is sufficient to detect it. The comparison
of the revisions corresponding to c3 (the last
commit of the branch where no refactoring ac-
tivity took place) and c5 (the merge commit)
would erroneously report that the same refac-
toring was applied twice.

Figure 1: An example of implicit branching.

3.3 Detecting Refactorings

To detect the refactorings applied between
two successive revisions, we have adopted a
lightweight version of the UMLDiff [14] algo-
rithm for differencing object-oriented models.
First, our process matches the model elements
in a top-down order (starting from the classes
and going to the methods and fields) based
on their names and the similarity of their sig-
natures (in the case of methods). This step
performs exact matching and returns a set of
matched elements, a set of elements that were
removed from the first model, and a set of ele-
ments that were added to the second model.
Next, the removed/added elements between
the two models are matched based only on the
equality of their names in order to find changes

in the signatures of fields and methods (in the
case of multiple removed/added methods hav-
ing the same name, an equal number of param-
eters is also required). This process returns a
set of changed elements which are deleted from
the corresponding sets of removed/added ele-
ments. Third, the removed/added classes are
matched based on the similarity of their mem-
bers at signature level. This process tolerates
changes of types in the signatures of the class
members and returns a set of moved/renamed
classes which are deleted from the correspond-
ing sets of removed/added classes. This process
is more lightweight than the original UMLDiff
algorithm in the sense that it does not take into
account the dependencies between the model
elements to compute their similarity.

We adopted and extended the refactoring-
detection rules defined by Biegel et al. [1]. For
each revision v ∈ V we extract the following
sets:

• Cv: The set of system classes/interfaces.
This set contains tuples (p, n, m), where
p is the name of the package to which the
class belongs, n is the class name and m
is the set of class members (methods and
fields) belonging to the class.

• Mv: The set of system methods. This
set contains tuples (c, m, p, r, b), where
c is the fully qualified name of the class
to which the method belongs, m is the
method name, p is the parameter list of
the method, r is the return type of the
method and b is the set of class members
(methods and fields) being accessed within
the body of the method (b = {x: (x ∈Mv)
or (x ∈ Fv)}).

• Fv: The set of system fields. This set con-
tains tuples (c, f , t), where c is the fully
qualified name of the class to which the
field belongs, f is the field name and t is
the field type.

• Gv: The set of generalization relationships
in the system. This set contains tuples (ci,
cj), where class ci extends class cj and ci,
cj are fully qualified names.

• Rv: The set of realization relationships in
the system. This set contains tuples (ci,



cj), where class ci implements interface cj
and ci, cj are fully qualified names.

Next, for each transaction t, which corre-
sponds to the comparison of two successive re-
visions v1, v2 ∈ V , we determine the entities
that were added, removed and remained. For
example, C+

t is the set of classes that were
added in transaction t, C−t is the set of classes
that were removed in transaction t and C=

t is
the set of classes that remained in transaction
t. The same notation (i.e., “+” for added, “-
” for removed, and “=” for remained) is used
for the other sets of entities as well. Using this
conceptual framework, Table 1 presents a set
of rules used to identify 11 different types of
refactorings in successive code revisions.

4 Results

This section discusses the findings of our ex-
ploration of the research questions we identi-
fied in the introduction and the details of the
methodology used to investigate each question
based on our revision extraction mechanism,
and refactoring detection tool. More impor-
tantly, we discuss the observations from our
empirical study, and address possible explana-
tions of the examined behaviors.

4.1 RQ1: Do software develop-
ers perform different types of
refactoring operations on test
code and production code?

The first step towards answering this question
is to make a distinction between classes cor-
responding to test code and those correspond-
ing to production code. In JUnit, test code
is placed within package junit.tests, since
the beginning of the project. Thus refactor-
ings on classes/methods/fields with qualified
names matching junit.tests were classified
as test code refactorings. Out of the total 383
detected refactorings, 219 (57%) were produc-
tion code refactorings, while 164 (43%) were
test code refactorings.

For the HTTPCore and HTTPClient
projects we followed a different approach, since
the test classes are not placed within a specific

Table 1: Refactoring detection rules

Refactoring Rule

∃ (c, mi, pi, ri, b
′
i) ∈M=

t ∧

Extract
∃ (c, mj , pj , rj , bj) ∈M+

t ∧

Method
bj ⊆ bi ∧
(c, mj , pj , rj , bj) ∈ b′i
b′i: body of mi after refactoring

bi: body of mi before refactoring

Move* ∃ (c, f , t) ∈ F−t ∧
Field ∃ (c′, f , t) ∈ F+

t

Move*
∃ (c, m, p, r, b) ∈M−t ∧

Method
∃ (c′, m, p′, r, b) ∈M+

t ∧
p ⊆ p′

∃ (p, n, m) ∈ C+
t ∧

Extract
∃ (px, nx, m′x) ∈ C=

t ∧

Superclass
∃ (px.nx, p.n) ∈ G+

t ∧
m ⊆ mx ∧ m′x ⊆ mx

m′
x: members of nx after refact.

mx: members of nx before refact.

∃ (p, n, m) ∈ C+
t ∧

Extract
∃ (px, nx, m′x) ∈ C=

t ∧

Interface
∃ (px.nx, p.n) ∈ R+

t ∧
m ⊆ mx ∧ m′x = mx

Move ∃ (p, n, m) ∈ C−t ∧
Class ∃ (p′, n, m) ∈ C+

t

∃ (p, n, m) ∈ C−t ∧

Rename
∃ (p, n′, m) ∈ C+

t

Class
Note: constructor names and

field/parameter types may be

renamed accordingly

* ∃ (c, c′) ∈ G=
t , then Move ⇒ Pull Up

∃ (c′, c) ∈ G=
t , then Move ⇒ Push Down

package. We noticed that the names of test
classes had a prefix of Test or a suffix of Mock.
Out of the total 527 detected refactorings
in HTTPCore, 421 (80%) were applied to
production code, while 106 (20%) were applied
to test code. In HTTPClient, 161 (81%) where
applied to production code and 37 (19%) to
test code out of 198 total refactorings. We
manually inspected the detected refactorings
in all examined projects.

We found 8 False Positives for the Extract
Method refactoring (96.4% precision) and 4
False Positives for the Rename Class refactor-
ing (97.6% precision), while the precision for
all the other types of refactorings was 100%.



Table 2 reports the number of detected refac-
torings on production code and test code, for
each examined project. The variety of the
refactorings applied to production code and test
code differed: in test code of the examined
projects we found only 3 types of refactorings,
namely Move Class, Rename Class and Move
Method. The goal of the applied refactorings
on test code was often to organize the tests into
new packages, reorganize inner classes, rename
some test classes by giving a more meaningful
name and move methods between test classes
for conceptual reasons. Conversely, the refac-
torings that were applied to production code,
of the examined systems, were intended to im-
prove the design of the system by modularizing
the code and removing design problems. The
three most dominant refactorings on production
code were Move Class, Extract Method and
Rename Class followed by refactorings related
to the reallocation of system’s behavior (Move
and Pull Up Method). The refactorings related
to the reallocation of system’s state (Move and
Pull Up Field) as well as the introduction of
additional inheritance levels (Extract Super-
class/Interface) are less frequent. Finally, the
refactorings that move state or behavior to sub-
classes (Push Down Method/Field) are rarely
applied.

4.2 RQ2: Which developers are
responsible for refactorings?

The JUnit project version control system ref-
erences 32 developers, although most of them
are not big contributors, they have at least one
commit. Figures 2a and 2b show the percent-
age of the refactoring activities performed by
JUnit committers on production and test code,
respectively. It is evident that the refactorings
are performed by a limited number of devel-
opers (7 contributors on production code and
4 on test code). Additionally, the proportion
of the refactorings contributed by each devel-
oper is almost identical between production and
test code. The top two refactoring contributors,
namely David Saff and Kent Beck (the current
and the former project managers), are also the
two top committers with 63% and 12% of the
commits, respectively.

Figures 2c and 2d show the distribution of

(a) JUnit production
code

(b) JUnit test code

(c) HTTPCore produc-
tion code

(d) HTTPCore test code

(e) HTTPClient produc-
tion code

(f) HTTPClient test
code

Figure 2: Refactoring contributors.

the refactoring activities contributed to the
HTTPCore production code and test code, re-
spectively. In this case, only 4 developers
actively applied production code refactorings,
while 3 applied test code refactorings. We
have identified Oleg Kalnichevski (top commit-
ter with 78% of the commits), and Roland We-
ber (third in the list of top committers with
8% of the commits) as the two main refactor-
ing contributors of this project. The second
in the top list of committers (Sebastian Baz-
ley) with 11% of the total commits has con-
tributed a small number of refactorings only
on test code.

Figures 2e and 2f present the refactoring dis-
tribution for the HTTPClient production and



Table 2: Number of detected refactorings on the production and test code of the examined projects.

Production code Test code

Refactoring/
JUnit

HTTP HTTP
JUnit

HTTP HTTP
Project Core Client Core Client
Move Class 94 199 52 131 48 28
Extract Method 66 81 71 2 0 0
Rename Class 22 75 14 22 25 7
Move Method 15 14 8 9 33 2
Pull Up Method 17 11 2 0 0 0
Move Field 1 10 7 0 0 0
Extract Interface 1 12 1 0 0 0
Extract Superclass 4 7 1 0 0 0
Pull Up Field 0 7 1 0 0 0
Push Down Method 1 2 0 0 0 0
Push Down Field 0 3 0 0 0 0

test code, respectively. HTTPClient shares the
same development team with HTTPCore ex-
cept for one additional developer (Jonathan
Moore, fourth in the list of top committers
with 6% of the commits) who is the second
most active refactoring contributor after Oleg
Kalnichevski. Similarly to the HTTPCore
project, Oleg Kalnichevski (top committer with
58% of the commits) is also the top refactoring
contributor. However, Sebastian Bazley and
Roland Weber (the second and third in list of
top committers with 18% and 16% of the to-
tal commits, respectively) have not contributed
any refactorings in the HTTPClient project.

It is worth noticing that although HTTP-
Core (with 8 committers) and HTTPClient
(with 9 committers) share almost the same
team of developers, only Oleg Kalnichevski
contributes refactorings in both projects. This
means that the rest of the developers, although
they commit code in both projects, they con-
tribute refactorings in only one of them (prob-
ably the project they are more familiar with).

Based on these observations, we can conclude
that most of the applied refactorings are per-
formed by specific developers that usually have
a key role in the management of the project.
Moreover, we did not notice any substantial
change in the distribution of the refactoring
commits by the developers to the product code
and test code of the three projects under study.

4.3 RQ3: Is there more refac-
toring activity before major
project releases than after?

We inspected the refactoring activity around
the release points along the lifetime of the three
projects under study. We have tracked each
project major release dates (based on the pub-
lic software release dates) and manually exam-
ined their relevance in order to filter minor re-
leases such as isolated application of patches,
major documentation migration, or change of
license types. In order to perform a homoge-
neous study, we have selected windows of 80
days around each release date. Each window
was divided in two groups of 40 days in or-
der to split the analysis in the periods before
and after a release point. In our three case
studies the window size met two fundamental
conditions. First, a high volume of change ac-
tivity was registered in the repository during
the framed time period, and second, the time
window did not overlap with others. While in
some cases the HTTPCore project had major
releases within 2 months of distance, in the JU-
nit project the commit activity decreased sub-
stantially 30 days after the release dates. We
found that a window of 80 days is a practical
time frame around the release dates, and co-
hesive with the development style of the three
projects under observation.

Figures 3, 4, and 5 present the refactoring
activity around the release dates of JUnit (13



releases), HTTPCore (9 releases), and HTTP-
Client (7 releases), respectively. The distribu-
tion of the refactoring frequency around the re-
lease dates of each project has been summa-
rized with violin plots [6]. The advantage of
a violin plot over a box plot is that the for-
mer also includes frequency density informa-
tion. First, for each project using a single win-
dow, we projected the distribution of the refac-
toring activity by adding the daily refactoring
activity counts. This projection allowed us to
condense the information of the total refac-
toring activity per day in a single dimension,
and to analyze each project refactoring activ-
ity trends around a generic release point. Fig-
ure 3b for example, presents the distribution of
the refactoring activity around the generic re-
lease day for the JUnit project. On the left, the
violin plot shows the distribution of the refac-
toring activity before the release dates of the
project, while on the right it portrays the after
release counterpart.

In the JUnit project, Figure 3a shows a refac-
toring activity peak around 20 days before the
release day. Moreover, it shows constant refac-
toring activity 10 days before the release day in
multiple release points. On the right side (after
the release day) no significant refactoring activ-
ity was detected in less than 25 days. Figure
3b shows a wide and tall distribution of refac-
toring activity before the projected release day.
A very small distribution body was spotted on
the right, exposing the small significance of the
activity after the release point.

Regarding the HTTPCore project, Figure 4
shows a similar behavior. In this case, most
of the refactoring activity that occurred be-
fore the release day is situated within a single
week. Figure 4a shows significant activity after
10 days of the release day. However, this activ-
ity has a much minor scale compared to the
one registered before the same release. The
violin plot presented in Figure 4b shows the
high refactoring distribution before the release
days of the project. However, an important but
smaller in comparison body was found for the
period after the release point.

With respect to the HTTPClient project,
Figure 5a shows a common refactoring zone in
the period between 36 and 28 days before the
project release date. Another common consid-

erable peak can be observed just one week be-
fore the release day. In general, the refactoring
activity after the release point is very small in
comparison to the window before the release.
This is also observable in Figure 5b where both
distribution bodies are compared.

In the three projects we studied, we observed
a common behavior where the refactoring ac-
tivity is high before the release dates. More-
over, our results expose that the refactoring ac-
tivity after the releases is almost non-existent,
and that in the cases where some activity was
found, it was very small compared to the activ-
ity observed before the releases. The analysis
of commits before and after the release dates
revealed that the developers were always com-
mitting changes after the releases, although in
most cases the number of commits is lower in
comparison to the number of commits before
the releases. However, this means that the ob-
served absence of refactoring activity after the
releases is not due to the absence of commits.

4.4 RQ4: Is refactoring activity
on production code preceded
by the addition or modifica-
tion of test code?

Our methodology for studying this question in-
volved three steps: (i) test activity detection,
(ii) manual inspection of test hotspots, and (iii)
window analysis construction. In the first step,
we built an algorithm that explored the revi-
sion history of the projects and detected the
addition and modification of test files, count-
ing its occurrences along the lifetime of each
project. We followed the same approach pre-
sented in Section 4.1 to differentiate production
code from test code. Next, based on the time
periods identified as test hotspots, we manually
inspected the commit comments, and their re-
spective new or modified sources. Through a
manual inspection process we found a number
of false positives that were excluded from the
analysis. In these cases several test classes were
modified, but the actual changes were: reor-
ganization of the import headers, addition of
copyright notices, or documentation of specific
cases. Lastly, in the third step, we grouped the
contiguous test hotspots and identified the ac-
tual test periods of each project. Taking the



Figure 3: Refactoring Activity Comparison (Release) - JUnit (40 days before and after release)

Figure 4: Refactoring Activity Comparison (Release) - HTTPCore (40 days before and after release)

Figure 5: Refactoring Activity Comparison (Release) - HTTPClient (40 days before and after release)



last day of each period as our pivot point, we
followed the same window analysis as the one
presented in Section 4.3. Figures 6, 7, and
8 present the refactoring activity of our three
case studies around the end of each testing pe-
riod. The pivot of the window (the zero point)
is labeled as End of Testing Period (E.T.P).

In the case of the JUnit project, Figure 6a
summarizes the refactoring activity around the
end of 10 testing periods. Here, we can ob-
serve a common pattern where the refactoring
activity was particularly high during the test-
ing phases of the project. Furthermore, in al-
most all cases, the refactoring activity substan-
tially increased the last days before (and even
the same day) the end of testing periods. In the
context of the same project, Figure 6b presents
the frequency distribution bodies of the project
during (left) and after (right) testing periods.
A higher refactoring density can be easily ob-
served during the testing phases of the project.

Figure 7a shows the results obtained for the
HTTPCore project with 8 testing periods un-
der analysis. In this case, a very peculiar pat-
tern emerged. In almost all cases, the signif-
icant refactoring activity peaks occurred the
same day the testing period ended. This phe-
nomenon exposed for this project that both
testing and refactoring activities were linked
and specially ordered. Since the E.T.P day
is included in the left portion of the window
frequency density analysis, Figure 7b portrays
a large density body for the period under the
project testing phases.

The refactoring activity around testing pe-
riods for the HTTPClient project is very sim-
ilar to the one observed in the JUnit project.
Figure 8a shows two interesting sections. In
the first section, around 30 and 10 days be-
fore the end of the testing activities, the project
presents a considerably high refactoring activ-
ity, while the refactoring activity after the end
of testing periods is almost non-existent. Con-
sequently, the density summary in Figure 8b is
flat and no significant volume of refactorings is
observed after the testing end point.

The three projects under examination
demonstrate a strong alignment of refactoring
activities with testing periods. In each of the
analyzed windows, significant refactoring op-
erations were applied along with test modifica-

tions. Especially in the HTTPCore project, the
majority of refactoring activity was performed
on the ending day of testing periods. We be-
lieve that one possibility for the alignment be-
tween refactoring and test modifications is the
adoption of test-driven development practices.
In some cases, we observed that the develop-
ers updated their test code first and then per-
formed refactorings.

4.5 RQ5: What is the purpose of
the applied refactorings?

To answer this question two of the authors
(Tsantalis and Guana) inspected together the
source code involved in each detected refactor-
ing, in order to postulate the main drivers that
motivated the developers towards the applica-
tion of the refactorings. The process was per-
formed in two rounds. In the first round, a sub-
set of randomly selected refactorings was ex-
amined by inspecting the relevant source code
before and after the application of the refac-
toring with a text diff tool. Next, they defined
rules (described in the rest of the section) that
should apply in order to classify a refactoring
instance in each of the defined categories in the
first round. In the second round, they per-
formed a systematic labeling of all refactoring
instances using the same inspection method by
applying the aforementioned rules. For each
refactoring instance, the authors inspected the
text diff report as well as the corresponding
commit logs and suggested a label. In the case
of disagreement, a discussion with arguments
from both sides took place in order to reach
a consensus. In total, 210 Extract Method
and 70 Inheritance related refactorings were
inspected over the span of approximately 40
hours (i.e., 5 working days). The inspection
time for each refactoring was between 5 to 10
minutes depending on the complexity of the diff
report and the number of files affected by the
corresponding refactoring.

4.5.1 Extract Method refactoring

The Extract Method refactoring can be applied
to resolve a large variety of code smells [4]
either directly or as a part of a more complex
transformation, as well as to facilitate the



Figure 6: Refactoring Activity Comparison (Test) - JUnit (40 days before and after release)

Figure 7: Refactoring Activity Comparison (Test) - HTTPCore (40 days before and after release)

Figure 8: Refactoring Activity Comparison (Test) - HTTPClient (40 days before and after release)



introduction of new functionalities and bug
fixes. To provide an insight to this diversity,
we inspected in total 210 instances (detected
in the three examined projects) and found
three main motivations, namely Code smell
resolution, Extension and Backward compat-
ibility, which are further divided into more
fine-grained sub-categories:

Code smell resolution:

• Remove duplicate code: Duplicate code
fragments are replaced with a single
method call to the extracted method.

• Decompose method : A code fragment hav-
ing a distinct functionality is extracted
into a new separate method in order to
decompose and simplify a long or complex
method (Long Method [4]).

• Hide message chain: A chain of method
calls is extracted and replaced with a sin-
gle method call in order to simplify the
original method (Message Chain [4]).

• Encapsulate field : A field access/assign-
ment is replaced with a call to a newly
introduced getter/setter method and the
visibility of the field is reduced in order to
enforce the design principle of encapsula-
tion or data hiding.

Extension:

• Facilitate functionality extension: The ex-
tracted/original method contains newly
added code apart from the extracted/re-
moved one. The goal is to simplify the
code in the original method and make eas-
ier the addition of the new functionality.

• Introduce polymorphism: The extracted
method is abstract and the extracted code
is moved to a subclass providing a con-
crete implementation for the newly intro-
duced abstract method. The purpose is
to enable future extension of the system
through polymorphism.

• Self encapsulate field : A field access/as-
signment is replaced with a call to a newly
introduced getter/setter method, but the
access modifier of the field remains the

same. The goal is to enable the future ex-
tension of the system, since indirect vari-
able access allows subclasses to override
the superclass getter/setter and manage
the data with more flexibility (e.g., lazy
initialization).

• Introduce factory method : The creation
of an object is replaced with a call to a
newly introduced factory method creating
the same object. The goal is to enable
future extension of the system, since con-
structors can only return an instance of
the object that is asked for, while a fac-
tory method can return instances of sub-
class types as well [4].

Backward compatibility:

• Extract Delegate: The entire body of a
method or a single method call (without
chain) is extracted into a new method.
The goal is (a) to improve the name of a
method, (b) to remove unnecessary or un-
used parameters from a method, or (c) to
deprecate a method and at the same time
preserve the public API of the class.

Table 3: Motivations for the application of Ex-
tract Method refactorings.

Motivation Sub-category Count (%)

Code smell

Decompose method 32 (15%)

Remove duplication 21 (10%)

Hide Message chain 19 (9%)

Encapsulate field 20 (10%)

Extension

Facilitate extension 23 (11%)

Use Polymorphism 9 (4%)

Self encapsulate field 24 (11%)

Factory method 37 (18%)

Backward
Extract Delegate 25 (12%)

compatibility

Total 210 (100%)

As one can observe from Table 3, the Ex-
tract Method refactoring serves a large variety
of different purposes. With respect to the code
smells being resolved in the examined projects,
the use of the Extract Method refactoring for
the decomposition of methods is more domi-
nant compared to the other three code smells.



Additionally, there is an almost equal use of
the Extract Method refactoring for the pur-
poses of removing duplicate code, hiding mes-
sage chains and encapsulating fields. With re-
spect to the extension motivation, the Extract
method refactoring has been primarily used to
introduce factory methods. Moreover, it has
been used to facilitate the introduction of new
functionality and self encapsulate fields, while
it has been more rarely used for the introduc-
tion of polymorphism (actually instances of the
latter motivation were found only in HTTP-
Core project). Finally, the Extract Method
refactoring has been used a significant num-
ber of times across the three examined projects
for preserving the backward compatibility and
public API of the classes. By analyzing the
results for each project separately, we found
out that the application of the Extract Method
refactoring is driven more by code smells in JU-
nit (where 53% of the refactorings were applied
for the resolution of code smells) and HTTP-
Client (where 63% of the refactorings were ap-
plied for the resolution of code smells), while it
is more extension driven in HTTPCore (where
74% of the refactorings were applied for exten-
sion purposes).

4.5.2 Inheritance related refactorings

For the inheritance related refactorings (Pull
Up/Push Down Method/Field, Extract Su-
perclass/Interface) we inspected in total 70
instances (detected in the three examined
projects) and found three main motivations,
namely Code smell resolution, Extension and
Abstraction level refinement :

Code smell resolution:

• Remove duplicate code: Duplicate meth-
ods or fields declared in multiple classes
are moved to an already existing or newly
introduced common superclass. The goal
is to make the subclasses inherit and not
copy the duplicate behavior/state.

Extension:

• Form template method : The Template
Method design pattern [5] is introduced
by “pulling up” into a template method
the behavior of methods having the same

signature but different functionality. The
body of the template method calls a newly
introduced abstract method in the super-
class and the subclasses provide a concrete
implementation for the abstract method
by copying the bodies of the pulled up
methods.

Abstraction level refinement:

• Generalize by pulling up code: A method-
/field is moved from a subclass to an al-
ready existing or newly introduced super-
class. The goal is to reallocate behavior/s-
tate to a higher level of abstraction.

• Specialize by pushing down code: A
method/field is moved from a superclass
to a subclass. The goal is to reallocate the
behavior/state that is not used by a super-
class to a lower level of abstraction.

• Generalize contract : A new interface is
created containing methods which are al-
ready implemented in existing classes.
The goal is to introduce an additional level
of abstraction to capture the behavior be-
ing common between different classes.

• Decompose interface: A portion of the
methods declared in an existing interface
is moved to a new interface that extends
the original. The goal is to make the orig-
inal interface “thinner” and cover future
classes that do not need to implement the
removed methods.

As one can observe from Table 4, the ap-
plication of inheritance-related refactorings is
mainly motivated by the removal of dupli-
cate code and the generalization of abstrac-
tion (either by pulling up code or extracting
common superclasses and interfaces). On the
other hand, the specialization of abstraction
(by pushing down code) and the decomposition
of interfaces are rarely applied practices and
have been mainly observed in the HTTPCore
project. Finally, the application of inheritance-
related refactorings in order to form instances
of the Template Method design pattern was ob-
served only in the JUnit project and thus we
cannot draw any general conclusion about this
specific motivation.



Table 4: Motivations for the application of In-
heritance related refactorings.

Motivation Sub-category Count (%)

Code smell Remove duplication 22 (31%)

Extension Template method 14 (20%)

Abstraction
Generalize (pull up) 12 (17%)

level
Generalize contract 12 (17%)

refinement
Specialize (push down) 6 (9%)

Decompose interface 4 (6%)

Total 70 (100%)

5 Threats to Validity

Internal validity is threatened by the pres-
ence of false negatives (i.e., undetected actual
refactorings). Our refactoring detection tech-
nique, as mentioned in Section 4, has a small
number of false positives and thus high pre-
cision, yet it was not possible to compute its
recall due to the absence of the actual refactor-
ings applied in the examined projects. Further-
more, we tried to mitigate inconsistencies in
the labeling of refactorings into the intent cat-
egories through a consensus building process.

External validity is threatened by the
scope of the study. The selected projects are
developed in Java, are managed by relatively
small teams and constitute libraries (in the case
of HTTP Components) or frameworks (in the
case of JUnit). Consequently, we cannot claim
that the results of the study can be generalized
to other programming languages where refac-
toring tool support may be different, projects
with a significantly larger number of develop-
ers or different team organization, and different
software systems (e.g., applications) where the
need for backward compatibility and extensi-
bility might be less important.

6 Conclusions

In this empirical study we investigated five
questions addressing different refactoring activ-
ity in three projects.

RQ1: Do software developers perform
different types of refactoring operations
on test code and production code? We
concluded that there is a wider variety of refac-

toring types applied to production code. Ad-
ditionally, we observed that this activity was
primarily focused on design improvements such
as, resolution of code smells and modulariza-
tion refinement. In terms of the refactorings
observed on test code, there is a clear focus on
internal reorganization of the classes of each
project into packages and renaming of classes
for conceptual reasons.

RQ2: Which developers are responsi-
ble for refactorings? We observed that spe-
cific developers have taken over the responsi-
bility of planning and performing refactorings.
We have found for all of the projects that we
studied this role was mainly fulfilled by a single
developer acting as a refactoring manager.

RQ3: Is there more refactoring ac-
tivity before major project releases than
after? In our three case studies, we ob-
served that the refactoring activity is signifi-
cantly more frequent before a release than af-
ter. We believe this activity is motivated by
the desire to improve the design, and prepare
the code for future extensions before stable ver-
sions of the API are released to the public.

RQ4: Is refactoring activity on pro-
duction code preceded by the addition or
modification of test code? We found a tight
alignment between refactorings and active pe-
riods of test code changes. We detected intense
refactoring activity during the testing periods
of the projects that declined immediately after
the test period ended. Our results and poste-
rior manual inspection led us to conclude that
testing and refactoring are dependent implying
the adoption test-driven development practices
in the examined projects.

RQ5: What is the purpose of the ap-
plied refactorings? We found a wide variety
of reasons motivating the application of the
Extract Method refactoring. With respect to
code smells, the decomposition of methods was
the most dominant motivation for applying
Extract Method refactorings. With respect to
facilitating extension, the primary motivation
was the introduction of Factory Methods.
Regarding inheritance related refactorings, the
main motivation was the removal of duplicate
code and the generalization of abstraction,
while the decomposition of interfaces and spe-
cialization of abstraction were rarely applied.



Lessons learned : Continuous Code Qual-
ity Management platforms (e.g., Sonar) have
mainly incorporated code convention checkers
(e.g., FindBugs, Checkstyle, and PMD) to
assess and improve code quality. There is also
evidence that open-source projects fix code
convention violations before public releases
[12]. We believe that the results of the study
highlight the need for incorporating code smell
detection and resolution tools in Code Quality
Management platforms. Additionally, research
around the detection of refactoring opportu-
nities has mainly focused on refactorings that
remove code smells. Based on the results of the
study, developers refactor their code for other
reasons as well (e.g., extension, and backward
compatibility). Consequently, current and fu-
ture refactoring recommendation tools should
support refactorings serving multiple purposes.

Acknowledgments: The authors would
like to acknowledge the generous support of
NSERC, AITF (former iCORE), and IBM.

References

[1] Benjamin Biegel, Quinten David Soetens,
Willi Hornig, Stephan Diehl, and Serge De-
meyer. Comparison of similarity metrics for
refactoring detection. In Proceedings of the
8th Working Conference on Mining Software
Repositories, pages 53–62, 2011.

[2] Christian Bird, Peter C. Rigby, Earl T. Barr,
David J. Hamilton, Daniel M. German, and
Prem Devanbu. The promises and perils of
mining git. In Proceedings of the 6th IEEE
International Working Conference on Mining
Software Repositories, pages 1–10, 2009.

[3] Danny Dig, Can Comertoglu, Darko Marinov,
and Ralph Johnson. Automated detection of
refactorings in evolving components. In Pro-
ceedings of the 20th European Conference on
Object-Oriented Programming, pages 404–428.
2006.

[4] Martin Fowler. Refactoring: improving the de-
sign of existing code. Addison-Wesley, Boston,
MA, USA, 1999.

[5] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[6] J.L. Hintze and R.D. Nelson. Violin plots: a
box plot-density trace synergism. American
Statistician, 52(2):181–184, 1998.

[7] Miryung Kim, Dongxiang Cai, and Sunghun
Kim. An empirical investigation into the role
of api-level refactorings during software evolu-
tion. In Proceedings of the 33rd International
Conference on Software Engineering, pages
151–160, 2011.

[8] Miryung Kim, David Notkin, and Dan Gross-
man. Automatic inference of structural
changes for matching across program versions.
In Proceedings of the 29th International Con-
ference on Software Engineering, pages 333–
343, 2007.

[9] Miryung Kim, Thomas Zimmermann, and
Nachiappan Nagappan. A field study of refac-
toring challenges and benefits. In Proceed-
ings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software
Engineering, pages 50:1–50:11, 2012.

[10] Emerson Murphy-Hill, Chris Parnin, and An-
drew P. Black. How we refactor, and how
we know it. In Proceedings of the 31st Inter-
national Conference on Software Engineering,
2009.

[11] Napol Rachatasumrit and Miryung Kim. An
empirical investigation into the impact of
refactoring on regression testing. In Proceed-
ings of the 28th IEEE International Confer-
ence on Software Maintenance, pages 357–
366, 2012.

[12] Michael Smit, Barry Gergel, H. James Hoover,
and Eleni Stroulia. Code convention adher-
ence in evolving software. In Proceedings of the
27th IEEE International Conference on Soft-
ware Maintenance, pages 504–507, 2011.

[13] Peter Weissgerber and Stephan Diehl. Iden-
tifying refactorings from source-code changes.
In Proceedings of the 21st IEEE/ACM Inter-
national Conference on Automated Software
Engineering, pages 231–240, 2006.

[14] Zhenchang Xing and Eleni Stroulia. Umldiff:
an algorithm for object-oriented design differ-
encing. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Soft-
ware Engineering, pages 54–65, 2005.

[15] Zhenchang Xing and Eleni Stroulia. Refac-
toring practice: How it is and how it should
be supported - an eclipse case study. In Pro-
ceedings of the 22nd IEEE International Con-
ference on Software Maintenance, pages 458–
468, 2006.


