
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2015 1

An Enhanced Visualization Process Model
for Incremental Visualization

Hans-Jörg Schulz, Marco Angelini, Giuseppe Santucci, and Heidrun Schumann

Abstract—With today’s technical possibilities, a stable visualization scenario can no longer be assumed as a matter of course,
as underlying data and targeted display setup are much more in flux than in traditional scenarios. Incremental visualization
approaches are a means to address this challenge, as they permit the user to interact with, steer, and change the visualization
at intermediate time points and not just after it has been completed. In this paper, we put forward a model for incremental
visualizations that is based on the established Data State Reference Model, but extends it in ways to also represent partitioned
data and visualization operators to facilitate intermediate visualization updates. In combination, partitioned data and operators
can be used independently and in combination to strike tailored compromises between output quality, shown data quantity, and
responsiveness—i.e., frame rates. We showcase the new expressive power of this model by discussing the opportunities and
challenges of incremental visualization in general and its usage in a real world scenario in particular.

Index Terms—Visualization pipeline, data state reference model, progressive visualization, proactive visualization.

F

1 INTRODUCTION

In its most common form, the visualization process
follows a pipeline of operators. These operators can be
adjusted—e.g., exchanged or reparametrized—before
or after being applied to the data, but not while they
are used to generate the visualization. This mono-
lithic form of visualization works well for traditional
visualization scenarios, in which input and output
constraints to the visualization remain stable. For
example, it is suited in cases where the input data
is static and available in full and where the display
setup for which the visualization is generated stays
fixed.

Yet with today’s technical possibilities, such a stable
scenario can no longer be assumed as a matter of
course, as these constraints are much more in flux and
harder to pinpoint for the duration of the visualization
process. To stick with the examples of input data
and display setup, the input may be streaming data
of continuously changing quantity and quality, and
the display setup can be flexibly changed during
the process as displays become ubiquitous. For such
unstable scenarios, monolithic visualization fails to
address their specific needs. In the case of an infinite
data stream, adjusting the visualization pipeline can-
not be done after the visualization is completed, as it
never will be. This calls for an incremental visualization
process [1] instead, which permits the user to change

• H.-J. Schulz is with the Fraunhofer IGD Rostock, Rostock, Germany.
E-mail: hans-joerg.schulz@igd-r.fraunhofer.de.

• M. Angelini is with the Sapienza University of Rome, Italy.
E-mail: angelini@dis.uniroma1.it.

• G. Santucci is with the Sapienza University of Rome, Italy.
E-mail: santucci@dis.uniroma1.it.

• H. Schumann is with the University of Rostock, Germany.
E-mail: schumann@informatik.uni-rostock.de.

and interact with a visualization at intermediate time
points and not just after it has been completed.

While incremental visualization solutions are in-
creasingly being developed and used these days, the
same cannot be said for the modeling of the incremen-
tal visualization process. Existing visualization mod-
els, such as the data state reference model (DSRM) [2]
or the visualization pipeline [3], [4] date back to the
1990’s and are still in use as formal underpinnings
for dataflow-oriented visualization software, such as
AVS [5] and VTK [6]. For incremental visualization,
such a model is still needed in order to capture its
particular opportunities and challenges.

With this paper, which builds upon ideas first pre-
sented as a poster at IEEE VIS ’14 [7], we address
this need by taking a first step towards a visualization
model that is able to capture the intricacies of incre-
mental visualization. We do so specifically by extend-
ing the DSRM, so that we are able to model traditional
monolithic and more recent incremental visualization
processes alike. This is achieved by replacing selected
monolithic visualization operators with subdivided
operators yielding intermediate results and mono-
lithic datasets with streams of data chunks, or both.

We then use the new expressive power of this
model to highlight the opportunities and challenges
particular to incremental visualization. One of these
opportunities is, for example, that through an ap-
propriate user interface, incremental visualization al-
lows a user to view and interact with early “draft
visualizations” that may still miss parts of the data
(e.g., showing just a few first samples) or that may
still miss visualization layers (e.g., showing just data
points but no labels yet) or both. This does not only
support a quick readjustment of inadequate visualiza-
tions without having to wait for the visualization to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357526007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:hans-joerg.schulz@igd-r.fraunhofer.de
mailto:angelini@dis.uniroma1.it
mailto:santucci@dis.uniroma1.it
mailto:schumann@informatik.uni-rostock.de

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2015 2

be rendered in full, but the intermediate visualization
also facilitates a better understanding of how the final
visual representation came about.

Among the challenges of incremental visualization
is that it is more complex to set up (e.g., deciding
when, how, and from where to gather the interme-
diate visualization results) and to steer (e.g., decid-
ing when has the user seen “enough” to draw a
conclusion from the visualization). Hence appropriate
user interfaces are needed that support these tasks.
We demonstrate such a UI in the context of our
application scenario. This scenario entails a data anal-
ysis application in which the input data is chunked
and streamed to provide the user with a responsive
interactive visualization system for fluid interaction [8].

The remainder of this paper is structured as fol-
lows: Section 2 will further detail and define the
notion of incremental visualization, relate it to exist-
ing approaches, and outline the challenges it entails.
In Section 3, we propose our model for describing
incremental visualization scenarios in a more general
and abstract way. Considerations for using this model
are reviewed in Section 4 and then exemplified for
the concrete use case in Section 5. Finally, Section 6
concludes this paper by summarizing the key points
of the proposed model for incremental visualization.

2 INCREMENTAL VISUALIZATION

This section sets out to further discuss and assess
the concept of incremental visualization. This is done
from three angles. First, we define the principal ways
in which visualizations can be turned into incremental
visualizations—i.e., by subdividing the visualization
operators and/or chunking the data. Then we relate
these principal ways to a number of existing visual-
ization scenarios from the literature considering their
differences and commonalities. Finally, we highlight
some of the challenges arising from the notion of
incremental visualization.

2.1 Background and Definitions

For the remainder of this paper, we utilize the
state/operator model of the visualization process [2], [9].
We do so without loss of generality, as it has been
shown by Chi [10] that the state/operator model has
the same expressiveness as dataflow-oriented models,
commonly known as visualization pipelines [3], [11].

Data chunks: We define that a dataset of size n (i.e.,
containing n data items) is given in i data chunks with
1 ≤ i ≤ n. i = 1 denotes the traditional visualization
of the whole dataset in one pass. i = n denotes a
stream of individual data items.

Processing steps of a subdivided operator: We
define that a visualization operator consisting of m
processing operations is given in j processing steps with
1 ≤ j ≤ m. j = 1 denotes the traditional way of

generating the visualization in one monolithic proce-
dure and j = m steps denote its most fine-grained
modularization into individual processing operations.

Increasing both, the granularity of the data chunks
and the granularity of the processing steps, was sug-
gested early on in visualization research [12]. Since
then it has been used, for example, to facilitate parallel
architectures through chunking the data and subdi-
viding the visualization process in order to run them
concurrently [13]. For many visualization scenarios,
the chunking of data and the subdivision of visual-
ization operators are independent of each other.

Incremental visualization: Based on this model of
chunked data and subdivided operators, we define
incremental visualization as an iteratively refining visu-
alization process that adds or updates visualization
details in a stepwise effort to complete a dataset’s
visual representation. In this context, completeness is
understood with respect to the dataset and to its
processing—i.e., the visualization is complete when
all i data chunks have been processed by all j pro-
cessing steps. Once completeness is achieved, the
visualization process terminates. When completeness
cannot be achieved (e.g., infinite streaming data or
non-converging computations), the process can also
terminate when it is guaranteed that none of the
remaining unprocessed data and none of the remain-
ing iterative processing steps would visibly change
the outcome any further—i.e., the visualization is
sufficiently stable. If stability cannot be achieved, in-
cremental visualization becomes an infinite loop that
continuously modifies the visual representation.

Such an iteratively refining visualization provides
the user with a preliminary visualization result after
each iteration as intermediary stages. This is not a
mere one-way-street, as it gives the user a visual
output with which to interact while the final output is
still being generated. By doing so, the user effectively
sends early feedback to the visualization process that
can adjust input data and/or processing parameters
at intermediary stages. These adjustments can be the
specification of regions of interest within the (stream-
ing) data space or the reparametrization of processing
steps. This general notion of incremental visualization
does not only relate to a number of existing visualiza-
tion approaches, but the interaction throughout the
visualization process—i.e., the steering of this very
process—leads to novel challenges.

2.2 Related Work
Going through the literature, it appears that a number
of seemingly disjoint visualization approaches can be
understood as incremental visualization. These ap-
proaches can be fundamental visualization architec-
tures or specific visualization solutions, as well. The
following gives a few examples for both and discusses
thereafter, in which ways incremental visualization
differs from them.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2015 3

2.2.1 Fundamental Visualization Architectures
Out-of-core visualization [14], [15] is used when the
size of the dataset to be visualized exceeds the avail-
able memory space. In order to nevertheless generate
a visualization, the dataset is partitioned into smaller
chunks, which are then sequentially passed through
the visualization process to reduce its memory foot-
print. This idea of processing chunked data instead
of the whole dataset can be traced back as far as
1993 [16]. It thus works in the same spirit as the data
chunking in our concept of incremental visualization.

Progressive visualization aims to continuously
show visual updates even through long-running data
transmission [17], data loading [18], and rendering
procedures [19] for whose completion one would
otherwise have to wait. It aims to produce and show
partial, yet meaningful results from running pro-
cesses. This architectural paradigm makes use of data
chunking—e.g., chunking and reordering the data to
be transmitted, or sampling the data to be rendered
into chunks of increasing size. A similar notion is
progressive visual analytics, which provides partial re-
sults from long-running analysis operations [20]. The
partial results are generated by a recursive algorithm,
whose recursion steps map to a subdivision of the
process. In both cases, the chunking of data and the
subdivision of the process, progressive visualization
can be mapped to incremental visualization.

Parallel visualization [21], [22], [23] is used to dis-
tribute the visualization process across multiple pro-
cessing units and to run it concurrently. Parallelism
can be achieved (among other options) by chunking
and distributing the data (data parallelism) and/or by
subdividing and distributing the visualization pro-
cess (pipeline parallelism) [13], [23]. Additional caching
mechanisms [24] and scheduling mechanisms [25] can
further enhance the parallel execution by allowing
for reusing stored results from previous computations
and omitting unnecessary computations, respectively.
It is thus closely related to our concept of incremental
visualization, which additionally supports ongoing
interaction throughout the visualization process.

Computational steering is the “interactive control
over a computational process during execution” [26].
This control is usually facilitated by a visualization
of the progress or an intermediary outcome of the
computation with which the user can interact. The
information about the running process is extracted
and displayed at so called checkpoints, breakpoints,
or sync points during the computation. These points
along the running process can be either predefined or
interactively set by the user. As they clearly subdivide
the computational process, this corresponds to form-
ing processing steps in an incremental visualization.

2.2.2 Specific Visualization Solutions
Streaming data visualization [27], [28] is used mainly
for transient dynamic datasets that are continuously

generated and possibly infinite. Such data is gen-
erated, for example, in the form of news feeds or
sensor data. Apart from that, it is also employed
for transmitting large but finite datasets across slow
network connections. In both cases, the data comes as
a sequence of smaller chunks and is processed as such.
Hence, this scenario matches the idea of partitioned
data in our incremental visualization concept.

Layered visualization [29] is a concept borrowed
from the field of geographic information systems
(GIS) where cartographic representations are assem-
bled from independent layers showing different as-
pects of a map—rivers, streets, buildings, vegetation,
etc. This can be applied to visualization as well,
where we can likewise define independent layers,
such as the actual data layer showing the data items,
a reference layer showing coordinate axes and color
legend, an annotation layer showing labels, etc. Each of
these layers can be generated individually and shown
independently, building up the visualization layer by
layer and thus effectively subdividing the visualiza-
tion process in the sense of incremental visualization.

Online dynamic graph drawing [30], [31] is applied
to time-varying network-structured data, which is not
yet known in full at the time of its layout. It stands
in contrast to the typical dynamic graph drawing
approaches for which information about the entirety
of the dataset is already known a priori—for example,
the complete nodeset and edgeset over all time points
(supergraph, union graph). As the data is dealt with
in an incremental fashion, it maps directly to the
stepwise procedure that forms the essence of our
concept of incremental visualization.

2.2.3 Putting Incremental Visualization in Context
The approaches discussed above have in common that
they are reactive or problem-driven. By this, we mean
that they are either motivated by the demands of
the input data—known to be too large for the mem-
ory (cf. out-of-core visualization) or for the network
connection (cf. streaming data), or even of unknown
size (cf. online dynamic graph drawing). Or they are
motivated by unacceptably long runtimes of high-
end visualization techniques leading to sophisticated
interruption techniques (cf. computational steering),
to concurrency mechanisms (cf. parallel visualization,
layered visualization), or to subdivision strategies (cf.
progressive visualization).

In contrast to that, we suggest a proactive per-
spective on incremental visualization that is output-
driven—i.e., driven by its potential for the user rather
than by the requirements of data size or processing
times. This means that we propose incremental vi-
sualization as a highly flexible process that can and
often should be applied even when it would not
be necessary from a data or runtime point of view.
Anyone who ever watched a force-based network
layout unfold step by step knows that observing

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2015 4

the construction of a visualization “live” is a pow-
erful visual feedback that instills confidence in the
visualization result. Recent research shows that such
iterative refinement can speed up data exploration by
allowing for interaction with unfinished visualization
stages [32], [33], unlike any progress bar.

Yet, its benefits go well beyond the mere speed-up
of producing the first preview and delivering a nice
animation of the visualization process. For example,
the chunking and reordering of the data according
to the user’s wishes also allows for a reprioritiza-
tion of what shall be shown first. This mechanism
can be utilized for a “tour through the data”, as it
was already envisioned by Rosenbaum et al. [17] for
progressive visualization. Such a tour could be used
for a configurable, stepwise build-up of information
that would convey a sequential order in the data and
automatically draw attention to the data items drawn
first. It is output-driven in the sense, as it computes
a chunking and ordering of the dataset that reflects
what a user is interested in seeing first (analysis
scenario) or showing first (presentation scenario).

The incremental visualization process model pro-
posed in this paper, thus not only aims to provide
a generalized conceptual foundation for the diverse
approaches listed above by incorporating chunking of
data and subdivision of operators alike. It also aims to
capture such proactive approaches by making process
information like different metrics explicit, which in
turn helps the user to make informed changes to the
process and its parameters. It is thus not the focus of
our incremental visualization process model or this
paper to discuss or to introduce particular approaches
for subdivision on a technical level, as multiple such
approaches already exist—for example, incremental
querying [34], [35] or database sampling [36], [37]. In-
stead, we abstract from these issues that present
research fields in their own right by modeling the
generic parameters connected to such subdivision
mechanisms and allowing to instantiate them with
any particular mechanism. The challenges resulting
from our generic view on incremental visualization
are outlined in the following section.

2.3 Incremental Visualization Challenges
For concrete scenarios of incremental visualization,
like the ones given in the previous section, design
decisions are often already narrowed down by the
setup of the scenario or by commonly known ex-
periences with such scenarios. Yet when considering
incremental visualization as a generic concept, which
permits a user to facilitate any of the possible subdi-
vision scenarios, one needs to address the challenges
of authoring and using such a flexible approach.

When authoring incremental visualizations, the
author has to decide on the necessary chunking of
data and subdivision of operators. The simplest sce-
nario is to have no chunking for both (i = 1, j = 1)

and thus a traditional monolithic visualization. Then
there are the two cases of either chunking the data
(i > 1, j = 1) or subdividing the operators (i = 1, j >
1). We call the first case the quality-first strategy, as
it rather trades the amount of the shown data (i.e.,
only a few chunks instead of the full dataset) than
the image quality of the result, as the visualization
process is still carried out in full. Likewise, we call
the second case the quantity-first strategy, as it rather
makes concessions to the quality of the output visu-
alization (i.e., a quick and dirty preview instead of
a full-fledged high-res result) than to show anything
short of the full dataset. Yet the most interesting case
is certainly the combination of these two strategies to
produce a custom visualization compromise. While
this allows for negotiating and tailoring the design
decisions for every visualization problem anew, it also
requires extra consideration for which currently no
precedence exists. A more detailed discussion of the
considerations that go along with these subdivision
strategies will be given in Section 4.

When using incremental visualizations, the user
has to be aware that he or she is seeing and interacting
with an unfinished visualization. It is thus impor-
tant for the user to be able to judge the reliability
of the shown intermediate results—data-wise (i.e.,
how much of the full dataset is already shown) and
process-wise (e.g., how many layers of the visualiza-
tion are already shown). If the user interacts with
an incremental visualization too early, the interaction
has a high likelihood of being inappropriate or not
targeted well enough. Yet if it is done too late, the
user wasted valuable time waiting for further changes
to the visualization that did not occur. Since this can-
not be determined simply from looking at a current
visualization state, the incremental visualization must
provide meaningful and sufficient information about
the progress of the process.

These principal challenges are rarely described, let
alone addressed in the related work. The reason could
be, that the different scenarios subsumed by our in-
cremental visualization concept have so far been con-
sidered in isolation. As a framework and joint nomen-
clature for discussing these principal challenges and
possible solution strategies for them, we introduce an
extension of the DSRM to incremental visualization.

3 AN INCREMENTAL VISUALIZATION PRO-
CESS MODEL

While the definition of incremental visualization in
Section 2.1 gives an understanding of what we mean
by this term, this section models incremental visual-
ization in a manner that allows capturing its partic-
ularities that go beyond traditional monolithic visu-
alization. Section 3.1 thus starts from an established
process model for this traditional case and enhance it
where necessary for using it in the incremental case.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2015 5

We then discuss further considerations that govern
the specifics of data chunking in Section 3.2 and the
particularities of operator subdivision in Section 3.3,
before bringing them together in Section 3.4.

3.1 Extending the Data State Reference Model for
Incremental Visualization
A visualization pipeline models the visualization pro-
cess by encapsulating algorithmic steps in operators
that are usually depicted as rectangular nodes. The
passing of data between these algorithmic steps is
modeled through transitions that connect the nodes in
the form of directed edges. Each operator is respon-
sible for transforming data from one data state into
another. These states are commonly termed: incoming
(raw) data, derived data, geometry data, and image data.
The transformatory processes between them are usu-
ally called filtering (incoming data ⇒ derived data),
mapping (derived data ⇒ geometry data), and render-
ing (geometry data⇒ image data). This base model is
extended by the DSRM to also permit operators that
do not only transform between data states, but also
operate within a data state.

We extend the DSRM, so that its original form
becomes a subset of the extended DSRM. It is thus
able to model traditional monolithic visualization and
more recent incremental visualization approaches.
Hence, our model consists also of operators and tran-
sitions between them for passing the data. In addition,
we explicitly model the sources (i.e., datasets) and the
sinks (i.e., resulting views) in our model (Figure 1a),
as it is not only common nowadays that multiple data
sources are visualized in multiple views, but also that
these data sources are heterogeneous—e.g., some of
them are available in full, whereas others are available
as a stream of data chunks. With this addition to the
model, these sources can be clearly represented and
distinguished. Operators and transitions are further
enhanced to model their subdivision.

Enhanced operators model the subdivision of the
visualization process. They are represented through
a number of white to black marks at the bottom of
an operator node. Each of these marks symbolizes
an (intermediate) result: the black mark represents
the complete result, the gray marks represent partial
results, and the white mark represents the possibility
to simply pass the unchanged input as an output,
effectively making the operator optional. A traditional
monolithic operator is thus depicted as a node with a
black mark—or if it is optional, a white and a black
mark. Whereas an incremental visualization operator
is shown as a node with additional gray marks. The
different kinds of nodes according to how they are
marked are listed in Figure 1b. The number of the gray
marks can either denote the number of partial results
produced, or it can simply be used in a metaphorical
way to denote that partial results are available inde-
pendent of their number.

a

c

d

e

Data Source Resulting View
(Data Sink)

D V

Full Data Flow Sequential
Data Flow

S S

Sequencing the Full
Data into a Data

Sequence

Sequencing a Given
Sequence to Yield a

Finer Sequence

B B

Buffering a Given
Sequence to Yield a
Coarser Sequence

Buffering a Sequence
to Yield the Full Data

b

OP

Required Monolithic
Operator

OP

Optional Monolithic
Operator

OP

Required Operator
with Intermediate

Results

OP

Optional Operator
with Intermediate

Results

Fig. 1. Our extended model of the visualization pro-
cess adds explicit data sources and data views (a),
operators that make intermediate results available (b),
sequential data flow (c), as well as sequencing and
buffering mechanisms (d+e).

Executing such a subdivided operator simply
means that it returns a series of results—first a result
identical to the input if the operator is optional, then
partial results of increasing quality, until finally the
complete result is produced. Each produced result
(identity, partial result, complete result) must be a
valid input to all operators that follow immediately
after. This entails, for example, that a transformatory
operator that processes data from one state and out-
puts data from another state can never be optional.
It must process at least part of the data to serve a
valid input to the next operator that expects data
from a different state—e.g., geometry data instead of
derived data. How many partial results can be pro-
duced is operator-dependent, as different operators
permit access to different intermediate stages—e.g.,
iterations/recursions steps or levels of approximation.
How many partial results should be produced is user-
dependent, as different tasks require different update
rates as the resulting view is stepwise refined. This
means that it may not be sensible to show every
possible partial result, but maybe only every kth result
or to update the view only when a partial result differs
at least by a given ∆ from the previously shown one.

Enhanced transitions model the chunked data be-
ing passed among operators. They are represented
through a number of marks that cut across the con-
nector line. These marks denote the data flow to be

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2015 6

a stream of data chunks, as opposed to passing the
full dataset at once, which is denoted by an unmarked
connector (Figure 1c). In this case, we use the distance
between the marks along the connector line as a visual
cue to denote different sizes of the data chunks—i.e.,
the smaller the space between consecutive marks, the
smaller the chunk size. A stream of chunked data can
originate natively from a data source that delivers its
contents in this manner or from an incremental visu-
alization operator that sends its output in the form of
subsequent versions of increasing completeness. It can
also be generated by transforming a full dataset into
a stream of data chunks or simply larger data chunks
into smaller ones by sequencing the data (Figure 1d).
Conversely, a sequence of data can be buffered to
yield the full dataset again or simply to produce larger
data chunks out of smaller ones (Figure 1e).

As a result of these two enhancements, subdivi-
sion and chunking are modeled independently: the
subdivision of operators is modeled by enhancing
the nodes and the chunking of data is modeled by
enhancing the edges. A full model of an incremental
visualization process can be assembled from these
independent parts very much in the same spirit as the
original DSRM does: data sources, operators, and final
views are linked with each other through connectors.
The resulting model differs only in the aspect that
it explicitly shows in which parts of the visualization
process chunking of data, subdivision of operators, or
even both are utilized. In the following two sections,
we use this base model to reason about incremental
visualization and its more intricate details of chunking
the data and/or subdividing the operators.

3.2 Chunking Data
Sequencing and buffering data are highly data type
dependent operations. Hence, we give here an ab-
stract discussion of the different factors that influence
these operations in general and that can then be
translated to the specifics of a particular data type, as
for example a chunking of the incoming (raw) data
has different requirements than a chunking of the
image data that is to be displayed.

Sequencers chunk the incoming data and dispatch
the resulting data chunks in a sequential order. This
process can be configured via the parameters of Data
chunk size and Ordering strategy.

The Data chunk size s ∈ [1 . . . n] defines how small
to chunk the data. Since different scenarios and some-
times even different operators of the same scenario
ask for different data chunk sizes, this parameter
is rarely set to a fixed value, but can instead be
adjusted to cope with changing requirements or data
properties. Such data properties can for instance be
defined by different data levels, such as hierarchy
levels, abstraction levels, and contextual levels [38].
As a result, chunks may have different sizes—e.g.,
when chunking the data by geopolitical regions.

The Ordering strategy defines the order in which the
chunked data is dispatched. Since the user’s interest
in the data may change, different chunks of data may
be of particular interest at different time points—e.g.,
sometimes the user may wish to see overall trends
first, whereas at other times he or she may want
to jump ahead to outliers or other features. Given
that the chunks have been partitioned in a way that
permits for quantifying their relevance with respect to
the user’s interest, they can also be ordered and thus
prioritized according to that relevance to satisfy the
user’s interest as early as possible [17], [39].

Buffers merge a number of smaller data chunks into
larger ones—either for efficacy reasons (smaller data
chunks may not constitute meaningful input for the
next operator) or for efficiency reasons (many small
data chunks might produce more computation over-
head than a few larger chunks). Buffering parameters
determine when the buffer has accumulated enough
chunks to dispatch them as one larger chunk. This can
be defined, for example, through a desired Data chunk
size or a given Time interval.

The Data chunk size s ∈ [1 . . . n] ∪ [∞] sets the
threshold to an output size that must be reached
before dispatching the data chunk. Similar to the data
chunk size defined for sequencers, data properties can
be taken into account as well, in order to group the
data on particular data levels that do not necessarily
break down into partitions of equal size. For infinite
data streams or data streams of unknown length,
s = ∞. This will accumulate the incoming data
forever, output the full data up to the current chunk,
and repeat this for every incoming chunk.

The Time interval t ∈ [0 . . .∞] sets the threshold to
include any data that arrives within the given interval
at the buffer. For t = 0, a chunk is passed on as
soon as it arrives without any accumulation, whereas
t = ∞ has the same function as described above for
the data chunk size. This parameter can be viewed
as a frame rate and is used, for example, to prevent
flicker caused by too frequent updates/redraws of the
resulting view. Note that a time interval threshold can
also be combined with a given data chunk size. These
two thresholds can either be used in conjunction
(triggering only when both are met) or in disjunction
(triggering when either of the two is met).

Sequencers and buffers with different parametriza-
tions can further be combined to produce a wide
variety of chunking behavior. For instance, by using
the sequencer as it is, the data gets chunked into
disjoint data chunks, with the union of all data chunks
forming the entire dataset. We call these partition
chunks, as they contain only a part of the complete
data. By simply adding a buffer with s = ∞ right
after a sequencer, we can also generate data chunks
that subsume all previous data chunks, with the last
data chunk being equal to the entire dataset. We call
these revision chunks, as each chunk represents a more

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2015 7

up-to-date/refined version that replaces any earlier
chunk. The partial results of increasing quality orig-
inating from a subdivided operator, as described in
the previous section, are examples of revision chunks.
Note that these two types of chunks correspond to the
chunking strategies for data identified by Mühlbacher
et al. [40]: Their “Strategy S3: Divide and Combine”
produces partition chunks, whereas their “Strategy S1:
Data Subsetting” utilizes revision chunks. Yet differ-
ently configured sequencers and buffers can also be
cascaded to yield more complex behavior. For exam-
ple, it is possible to combine multiple sequencers to
realize multi-level partitioning schemes, such as first
chunking with respect to a spatial data property (e.g.,
by country) and then further chunking with respect
to a temporal data property (e.g., by year).

3.3 Subdivided Operators

Operators that potentially lend themselves to subdivi-
sion are those that produce the final outcome in mul-
tiple stages or over a number of iteration/recursion
steps. Both of these possibilities tie in with the
two prevalent strategies for subdividing operators, as
identified by Mühlbacher et al. [40]: Their “Strategy
S2: Complexity Selection” applies different algorithms
of increasing accuracy to yield intermediate results
in stages until the exact computation is finished.
Whereas their “Strategy S4: Dependent Subdivision”
iteratively/recursively applies the same algorithm and
outputs the intermediate results at each step. For the
sake of clarity, we focus our discussions mainly on
Strategy S4, but we show in the use case that our
model applies to Strategy S2 in the very same manner.

In principal, an operator’s subdivision has two
aspects: the input side that configures the operator’s
subdivision via appropriate parameters (e.g., how
many and/or how often intermediate results should
be generated), as well as the output side that derives
metrics about the quality and completeness of the
(partial) results. We denote parameters and metrics in
our graphical notation as triangles oriented towards
or away from the operator, respectively (Figure 2).

The metrics are essential for various purposes, such
as making the user aware of the performance of an
operator (e.g., how much longer until the final result is
produced?), allowing her or him to better understand
the process behavior (e.g., is it converging or stabi-
lizing?), as well as to judge the trustworthiness of the
outcome (e.g., how representative is the current result
of the overall result?). On top of communicating the
metrics to the user, they can also be used to steer the
process internally by using them as input parameters
for the same or other operators—for example, using
an error metric for step size control.

While the choice of suitable metrics depends on the
actual use case, some metrics are quite general and
useful in a broad range of applications. Specifically,

a b

Operator with Parameters Operator with Metrics

OP

P1 P2

OP

M2M1

Fig. 2. Our graphical notation for operators with pa-
rameters (triangles pointing towards the operators) and
metrics (triangles pointing away from the operators).

we determine three families of metrics to be of par-
ticular use for controlling and driving the process:
• for individual data chunks, quality metrics can be

used to assess the quality of an element traveling
the pipeline [41] (e.g., number of processing steps
this data has already passed through);

• for two subsequent data chunks, delta metrics can
be computed at data level and at view level to
measure the difference between them;

• for the entirety of all data chunks having been
processed so far, error metrics can be used to
estimate the error of the current partial result as
compared to the exact result (e.g., convergence
of an iterative algorithm, error introduced by
numerical approximations).

These metrics may and should be used in conjunction.
For example, an output of high visual quality (i.e.,
a fully processed, polished high-res visualization) is
meaningless if its error is too high, because the data
subset it shows is too small to be representative. The
same holds true for the opposite case of an accurate
output (i.e., no error as it shows all the data) of
extremely low visual quality that is unreadable for
all practical purposes.

3.4 Combining Chunked Data and Subdivided
Operators
There are two principal cases for such a combination,
which can then be combined to form more complex
scenarios: either the data chunking is performed be-
fore or after a subdivided operator is applied. In the
following, we assume that the data chunking pro-
duces i chunks and the subdivided operator produces
j (partial) results and thus j chunks.

In the case where the chunking is performed prior
to the subdivided operator, the operator has different
options of how to deal with the sequence of chunks
that constitutes its input. These options can be mod-
eled using a sliding window metaphor that assumes
the parameter Mem as its window size. This parameter
can take three principal values:

1) Mem = 1: the operator processes one chunk at
the time and outputs at most j revisions for this
one chunk before the next chunk arrives and the
operator starts to process it instead;

2) Mem > 1: the operator considers a sequence
of Mem consecutive chunks as input and also

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2015 8

outputs its j revisions for blocks of Mem chunks.
This is used for operators requiring a minimal
input size that is larger than the average chunk
size, e.g., to guarantee statistical significance;

3) Mem = ∞: the operator uses all incoming
chunks as an input. As a new chunk arrives, it is
added to all the previous chunks and the output
of the j revisions is updated accordingly.

The number of resulting chunks is at most i× j in the
cases of Mem ∈ {1,∞}, assuming that the operator
computes all j stages before the next chunk arrives.

In the second case, a subdivided operator is ex-
ecuted before the data is chunked. The number of
resulting chunks is at most j × i, assuming that each
intermediate result is fully sequenced into i chunks
before the next intermediate result arrives. Note that
in the same way as sequencers and subdivided oper-
ators multiply the number of chunks, buffers divide
it and monolithic operators leave it unchanged.

To steer whether an operator is to be terminated
early upon the arrival of a new data chunk (quantity-
first strategy) or gets to finish the current chunk
(quality-first strategy), we suggest to add a parameter
called Quality to subdivided operators. Quality can
be defined in terms of an operator’s input by speci-
fying how many new chunks have to arrive before a
running refinement of the current result is aborted to
take into account this new set of data chunks. Like-
wise, it can also be defined in terms of an operator’s
output by specifying how good the result must be at
least (e.g., as measured by a quality or delta metric)
before the operator can be interrupted with new data
chunks. Using the input-oriented quality definition, a
Quality = 1 would mean that the operator pursues a
pure quantity-first strategy that restarts the operator
as soon as a single new data chunk becomes available.
This would push as much data through the pipeline
as possible, regardless of the quality of the output.
If Quality = ∞, the operator would pursue a pure
quality-first strategy that lets the operator run through
all j processing steps until the final result is produced,
before restarting it for any new data that has arrived
in the meantime. Any value in between denotes a
compromise between these two extremes. Note that
input-oriented and output-oriented Quality defini-
tions can also be used in conjunction to formulate
more complex prioritization strategies.

4 CONSIDERATIONS FOR APPLYING THE
EXTENDED MODEL

This section highlights strategies for working with
the presented model. For this, we revisit the two
challenges introduced in Section 2.3: the authoring of
incremental visualizations through modeling the visual-
ization process and the use of incremental visualization
through steering the modeled visualization process at
runtime—both at a conceptual and at a practical level.

4.1 Authoring Incremental Visualizations

At design time, the most critical question is to decide
whether to chunk the data, to subdivide the operators,
or both. This issue can be discussed from three differ-
ent angles: from an input perspective, from an output
perspective, and from a processing perspective.

The input perspective is basically what we have
termed the reactive view on incremental visualization
in Section 2.2. It subsumes considerations, such as:
• If the dataset does not fit the memory, it speaks

for chunking the data.
• If the dataset is highly structured, it speaks

against chunking the data.
• If the runtime to produce the desired output is

rather long, it speaks for subdividing the long-
running operator.

• If a long-running operator produces merely an
optional embellishment and can easily be left out,
it speaks against subdividing this operator.

Note that these are only a few examples of such con-
siderations and each application scenario will require
its own considerations from the input perspective.

The output perspective is in line with our proactive
view on incremental visualization. It basically aims
to identify the requirements of the output of the
incremental visualization, rather than of the input.
These requirements can be split in the two afore-
mentioned strategies of quality-first and quantity-first.
These can either be mapped onto the prioritization
parameter Quality, or they can be “hardwired” into
the pipeline with quality-first being realized through
a data chunking, so that at least part of the data
can be rendered in full as early as possible. Whereas
quantity-first would be realized as a subdivision of
the operators, so that the entirety of the data can be
shown in some preliminary way as early as possible.

The processing perspective aims to streamline tech-
nical parameters, such as minimizing the number of
data chunks, as each chunk may carry substantial data
overhead or lead to a runtime overhead [29].

Once this decision has been made, it requires a
number of practical considerations to realize the cho-
sen subdivision in an implementation. For this, we
suggest a multi-threaded software architecture that
mirrors the process model with one asynchronous
worker thread per operator. These threads have access
to a priority queue of data chunks to work on. This
setup is sketched in Figure 3. It generalizes similar
architectural approaches, such as PIVE [32] that relies
on two threads for the whole process.

In our setup from Figure 3, a thread basically works
on a data chunk in an internal processing loop (c)
that carries out refinement operations in an iterative
fashion until the result matches a given break con-
dition. In case this break condition is a delta value,
the thread stops if two subsequent iteration steps
only change the outcome by less than the given delta

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2015 9

Operator 1

Operator 2

Operator 3

Worker
Thread 1

Worker
Thread 2

Worker
Thread 3(a)

(b)

(c) (d)

(e)

Fig. 3. Architecture using priority queues and asyn-
chronous threads to realize our conceptual model.
Incoming data chunks are added to the queue (a)
and retrieved by the worker thread when idle (b). The
worker thread computes better solutions in an internal
loop (c) until a good enough result according to a
given break condition is generated and passed on to
subsequent threads (d). If the result is not yet good
enough to be a final result, it is again added to the
queue for further processing (e). Different shades of
gray denote how close the queued data chunks are
to the final result. These correspond directly to the
marks at the bottom of the enhanced operators: white
= unprocessed input chunk, gray = intermediate result,
black = final result. As final results are not queued-up
again, no queue contains a black data chunk.

value—i.e., the solution has become sufficiently stable
with respect to that value to serve as an intermediate
result and thus to be passed to the threads of the
next operators in the pipeline (d). If the resulting
data chunk does not yet fulfill a final condition—
i.e., it is not yet stable enough to be considered the
final result—it is again added to the job queue to
be worked on further (e). This way, we can vary
three parameters for each thread: the size of the data
chunks, the prioritization of the data chunks in the
queue, and the break condition—e.g., the delta value.
These three parameters can be used to express the
various ways of chunking:

The size of the data chunks directly expresses the
amount of data chunking—i.e., data chunks of the
size of the whole dataset correspond to no chunking
and data chunks of the size of singular data items
correspond to maximal chunking.

The prioritization strategy of the queue directly
mirrors the processing strategy—e.g., in Figure 3, the
first queue is prioritized by a quantity-first strategy
that puts newly incoming and yet unprocessed data
(white cells) at the top of the list, whereas the second
queue uses a quality-first strategy that aims to finalize
intermediate results (gray cells) first before starting
on new data chunks (white cells), and finally the
third queue uses a simple, unordered first-in/first-out

strategy without any prioritization. It can thus be used
to reflect the Quality parameter set for each operator.

The break condition can be used to steer the degree
of operator subdivision—i.e., if the delta value is set to
0 only stable and thus final results will be produced
and the operator is effectively not chunked. Yet the
larger the delta value is, the more intermediate results
are produced as good enough approximations.

4.2 Using Incremental Visualization
Incremental visualization like any other visualization
is first configured, then run, and finally interactively
observed by a user. Depending on which of these three
aspects the particular focus lies, we distinguish three
scenarios of increasing user involvement.

Inspecting the visualization process focuses on
running&observing the visualization as it unfolds on
the screen. This scenario is all about witnessing the vi-
sualization process, in the sense that the observer gets
to see step-by-step how the final visualization came
about. It is not only common in the field of network
visualization where iteratively refined layouts are
subsequently displayed to illustrate the “untangling”
of the graph, but, for example, also for animating
(pre-)processing steps, such as clustering or sampling
the data. Overall, it serves to better understand the
visualization process and thus to be more confident
that the visualization truthfully shows the data.

Tailoring the visualization process focuses on con-
figuring&running the visualization in a way that con-
forms closely to the user’s needs. This scenario is all
about making sure that the visualization process is
aligned with the goals of the user, in the sense that
the visualization author carefully prioritizes what to
process in which order. Prioritization relates here to
data (i.e., chunk the data and order the chunks by
decreasing importance) as well as to operators (i.e.,
subdivide the operators so that visualization layers
of importance are finished first). For example, in a
monitoring scenario, data chunks that simply “confirm
the expected” can be held off until later, as they are
unimportant, but chunks of unexpected data should
immediately be taken into account and shown. By
defining what constitutes expected data, the incremen-
tal visualization can easily be tailored by the visual-
ization author to such an unexpected-first strategy.

Interacting with the visualization process focuses
on observing&configuring the visualization according to
what has been observed. This scenario is all about in-
teractively adjusting the visualization’s configuration
to tune the visualization process towards the incom-
ing data. For example, an adjustment of the Quality
parameter can easily resolve temporary “congestions”
of the visualization pipeline, if the load of input data
chunks rises unexpectedly. In practice, we suggest to
utilize the graphical notation of our conceptual model
for providing interaction handles for the various pa-
rameters of the subdivided operators, as well as for

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2015 10

the chunked data. Showing the incremental visual-
ization process model alongside the generated view
permits to inspect and adjust process details, such as
operator metrics and parameter settings, respectively,
through a common and consistent interface. Metrics
are an important aspect of this scenario, as they
give insight into the process if no visible changes
occur in the visualization (Where is the hold-up?)
and into its trustworthiness (How much of all data is
already shown?). The information conveyed through
the metrics can prompt the user to make on-the-fly
adjustments to steer the running visualization process.

The following use case illustrates this latter scenario
of the highest degree of user involvement.

5 USE CASE

We applied our incremental visualization model to a
concrete visualization scenario for the NTHSA FARS
(Fatality Analysis Reporting System) dataset that cov-
ers all US car crashes between 2001 and 2009 [42].
This data is too large to be displayed in interactive
frame rates, which makes it necessary to turn it into an
incremental visualization of appropriate quality and
with a justifiable error. The process of finding the
proper configuration that fulfills these constraints is
also demonstrated in the accompanying video.

5.1 Data Description and Requirements
The FARS dataset contains each car crash’s latitude
and longitude, as well as a number of characteristic
attributes. These include the hour of the day, the
number of involved people, the number of fatalities,
the speed limit, the weekday, and the number of in-
volved drunk people with an active role. This number
can include pedestrians, as well as drivers of cars,
trucks, motorcycles, or bicycles. In this scenario, it
was chosen to explore the dataset by generating a
density map representing the crashes that are similar
to a chosen reference crash, i.e., showing the 5%
most similar crashes. The similarity is computed using
the Euclidean distance on a subset of normalized
crash attributes. These crash attributes can be set by
interacting with six sliders, which then issues a query
for crashes with very similar attributes and plots them
on a density map. A possible visualization pipeline
realizing this procedure is modeled by the schema
shown in Figure 4. Each time the user changes a query
value through the sliders, the visualization pipeline
starts a similarity search, produces a scatterplot of the
resulting crashes, and computes a density map using
a nonlinear mapping that optimizes the number of
pixels that are assigned to each color.

However, the dataset contains more than 370,000
fatal crashes and processing them across the whole
pipeline requires a processing time PT of about 4
seconds on an Intel i7 quad-core processor. This delay
hampers a fluid exploration: each time the user moves

Fig. 4. Monolithic visualization pipeline for the crash
similarity scenario.

a slider, he or she has to wait about 4 seconds before
the result can be explored or the slider can be further
adjusted. This makes it tiresome to compare visualiza-
tions for different queries and makes the interaction
with the slider slow and unresponsive.

Hence, the designer of the system is looking for
a solution that incrementally produces the visual re-
sult at a rate of ≥ 5 frames per seconds (FPS), i.e.,
PT ≤ 0.2 seconds. With incremental visualization,
it is possible to chunk data and subdivide opera-
tors on one side, and to monitor the PT value and
the image quality of the output on the other side.
Chunking the data increases the speed inversely to
the size of the chunks—e.g., processing a chunk of
5,000 crashes takes about 0.05 seconds, allowing for
reasonably fluid interaction. However, the result being
the union of the 5% most similar data points that are
individually determined per data chunk introduces
a statistical error that is driven by the chunk size.
The bigger the chunk, the smaller the error and the
larger the PT . Yet, smaller chunks also introduce
computational overhead and present fewer data in the
first iterations.

To alleviate this problem, we can not only chunk
the data, but in addition also subdivide the process,
e.g., by introducing quicker density map algorithms
than the original nonlinear mapping to compute early
visual results. The designer of the system has now
to find a suitable tradeoff between data chunking
and process chunking that balances data quantity
(i.e., minimizing the error) and image quality (i.e.,
maximizing the faithfulness of the output), while
maintaining interactivity (i.e., keeping the visualiza-
tion responsive). The following sections illustrate how
to arrive at such a well-configured tradeoff and how
to use it. This procedure follows three steps:

1. Modeling the incremental visualization
pipeline. This entails to select the model components
that capture the data and operator characteristics,
focusing on how and where to chunk them. Some
general model parameters, such as Data chunk
size and Quality can be preset to suitable default
values, while it is up to the user to correctly set
semantics-dependent parameters, such as Mem.

2. Selecting process specific metrics. This step is
about selecting metrics that are able to measure errors,
quality, and differences in a way that it supports
the user in steering the visualization process. This
selection is dependent on the input data, the user’s
goals, and on the availability of metrics from the
implementation of the involved operators.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2015 11

3. Parametrizing for a quality/quantity tradeoff.
This means to set the quality constraints and the data
chunk size so that the incremental visualization allows
for the desired interactive exploration by balancing
the speed of the interaction against the quantity and
quality of the data that is shown. This ties together
the other two steps by observing the selected metrics
and setting the model parameters accordingly.

5.2 Modeling the Incremental Visualization
Pipeline
An incremental visualization pipeline that realizes the
aforementioned data chunking of the FARS dataset
and the subdivision of the density mapping operator
is shown in Figure 5. It introduces a sequencer right
at the beginning of the pipeline and each data chunk
is sent to the Similarity Search operator that
takes as parameters the characteristics of the actual
reference crash and a similarity threshold. It processes
each chunk independently (Mem = 1) and thus sub-
sequently yields for each chunk the top 5% similar
crashes to the chosen characteristics, with the percent-
age set by the threshold parameter. These most similar
crashes are then sent to the Scatterplot operator
that cumulates them in a scatterplot (Mem =∞). The
scatterplots are then sent to the Density Map op-
erator that is subdivided by means of a “Complexity
Selection” (cf. Section 3.3). It outputs three results gen-
erated by three algorithms of increasing computation
time: a monochromatic mapping (a), a linear mapping
(b), and the nonlinear mapping (c) as the original
operator did. The monochromatic mapping is about
20% faster than the nonlinear mapping that requires
to inspect the collision distribution to compute the
color coding. In addition, it can simply pass on the
incoming scatterplot, practically omitting the operator
altogether. Chunking the data and subdividing the
process allows for speeding-up the first output of a
draft visualization using intermediate results.

Our prototype system features a UI that is tailored
for investigating and confirming the efficacy of the in-
cremental visualization pipeline (Figure 6). It displays
the pipeline in the top-right view and selecting one of
its elements opens a window at the bottom-right that
shows its parameter settings and allows for changing
them. Whereas the middle-right view shows metrics
that measure the effects of any change.

5.3 Selecting Process-specific Metrics
The operators provide different metrics, useful to tune
and monitor the process. The Scatterplot operator
produces the quality metric Error that estimates the
percentage of incorrect data that is present in the
final result due to computing the top 5% of similar
crashes on each chunk individually and not on the
whole dataset. The inspection of this metric, allows
for evaluating the representativeness of the processed

Fig. 5. Incremental visualization pipeline for exploring
the FARS dataset through similarity search.

data as compared to all data, looking for a tradeoff
between speed and correctness of the displayed data.

The Density Map operator computes the quality
metrics Qx (with x ∈ {a, b, c}) of the different den-
sity maps based on the amount of processed data:
Qx = Cx ∗

√
data, where Cx is a quality coefficient

of mapping x. Moreover, with the goal of optimizing
our visualization for a certain degree of completeness
in the visual output of the Density Map, we define the
∆vis(k, k + 1) metric that compares two consecutive
visualizations k and k + 1 at pixel level:

∆vis(k, k + 1) = Σ∀n∈N
|color(dk+1,n)−color(dk,n)|

|N |

where N is the set of pixels and color(dk,n) is the
color associated with pixel n ∈ N in visualization k.
∆vis can be used as a convergence indicator: When
it is below a given threshold, it is possible to skip the
rendering of this density plot and wait for one that
differs more from the previous one. We might even
decide to stop the overall process, assuming that the
actual visualization is representative of the final one,
as no more significant changes occurred.

In the screenshot in Figure 6, the three quality met-
rics of the Density Map operator are clearly visible
in the detail view by their triangles pointing away
from the operator block. The metric Qa is currently
selected, which triggers it to be plotted over the course
of the running visualization process in the middle-
right view. The “hold” checkboxes allow for freezing
the selected metrics across different runs to compare
their behavior for different parameter values.

5.4 Parametrizing for a Quality/Quantity Tradeoff
It is the user’s goal to produce ≥ 5 FPS while
at the same time achieving a visual quality and a
data quantity that remain representative of the whole
dataset. To do so, the user starts the system with
data chunks composed of 1,000 tuples, in order to
have a responsive system that allows for quickly
inspecting different design choices. He or she starts
inspecting the quality metrics Qx (with x ∈ {a, b, c})
of the subdivided Density Map operator, to com-
pare monochromatic, linear, and nonlinear density
mappings. According to this strategy, the user starts
tuning the process, optimizing the speed/quality-ratio
by increasing the Quality parameter, initially set to 1
(see Figure 6). This allows the Density Map operator
to fully process each chunk. Hence, both a and c are
computed on all chunks and the highest quality is
achieved by output c. Yet at some point, the amount
of data that contributes to mapping a is greater than

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2015 12

Fig. 6. Screenshot of our incremental visualization system. At the top, it shows the sliders with which to perform
the similarity search, as well as buttons for controlling the process (start, stop, pause, step-by-step, restart).
The four rearrangeable and resizable views show the visualization pipeline (top-right), the details of the selected
Density Map operator (bottom-right), the actual output visualization of the first intermediate, monochromatic
density map (left), and its quality metric Qa plotted over time (middle-right). The Quality parameter is associated
with a slider to provide a better understanding of its effect on the pipeline (a = 1, c =∞).

the data required for mapping c and after 1.5 seconds
mapping c outperforms mapping a (see Figure 7).

As 1.5 seconds is still too high for insuring in-
teractivity, the user explores lower values for the
Quality parameter. It appears that mapping b, in
order to produce an outcome that is comparable with
the monochromatic mapping a, requires a time that
does not allow for interactive exploration, so the user
selects the monochromatic mapping a. Having fixed
the operator subdivision, the user starts to increase
the chunk size and finds that a size of 25,000 tuples
produces close to 5 FPS. The error for this chunk size
is 0.011, meaning that the results will contain 98.9%
of correct data, which is acceptable for the purposes
of the user. Changing the sliders confirms that these
parameters are adequate for the task at hand: sim-
ilarity searches can be fluently refined, as the first
intermediate result is shown almost immediately.

Fig. 7. Values of Qa and Qc metrics for two different
values of the Quality parameter.

5.5 Discussion
The above optimization of the incremental visualiza-
tion parameters to fulfill all constraints happens in the
space of different subdivisions of the Density Map
operator and different chunk sizes of the data. The
space of possible combinations of the two is depicted
in Figure 8. By (re-)parametrizing the pipeline, the
user navigates this space to find a solution that fits the
criteria of quantity, quality, and interactivity. Looking
at this space of possible visualization solutions, it is
clear that data chunks with more than 29,000 tuples
(i ≤ 13 data chunks) will not produce a target frame
rate of ≥ 5 FPS. Hence, useful solutions are above
the line i = 13. Yet, too many small chunks produce
higher errors and an overhead in the total computa-
tion time. In our system, chunks of 50 tuples produce
a frame rate of about 3,000 FPS, but increase the pro-
cessing time to 5.6 seconds. Moreover, slower density
map algorithms produce better outcomes but process
less data in the critical time frame of 0.2 seconds and
might be visually less effective than simpler but faster
algorithms. This is reflected by the user’s choice of
i = 15 data chunks and j = 3 processing steps.

It is noteworthy that changing parameters, like Mem
or Quality, allows getting a better understanding of
the consequences and interplay of subdivision and
chunking. They make explicit some usually hidden
implementation choices, which would normally be
very hard to tailor to one’s own use case without

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2015 13

Processing	 	
steps	

Data	 chunks	

nonlinear	
mapping	

linear	 and	 	
nonlinear	
mapping	

monochroma5c,	
linear	 and	 	
nonlinear	
mapping	

MPT>0.2	
Error<1.0%	

MPT>0.2	
Error<1.0%	

MPT>0.2	
Error<1.0%	

19	

13	

0.16<=MPT<=0.2	
1.0%<=Error<1.3%	
TUP(0.2)>21000	

0.145<=MPT<=0.2	
1.0%<=Error<1.3%	
TUP(0.2)>25000	

0.140<=MPT<=0.2	
1.0%<=Error<1.3%	
TUP(0.2)>27000	

MPT<0.16	
Error>=1.3%	

MPT<0.145	
Error>=1.3%	

MPT<0.140	
Error>=1.3%	

1	 2	 3	

Fig. 8. Different combinations of chunking the FARS
data and subdividing the Density map operator.
Measured metrics are the Minimum Processing Time
MPT (i.e., time needed to process a single chunk), the
Error (i.e., expected percentage of incorrect data in the
visualization), and the average number of plotted data
tuples within 0.2 seconds (1 frame) TUP(0.2).

source code access. In cases where these parameters
are not available, buffers and sequencers can help to
use incremental visualization in a minimally invasive
way that does not require re-implementing operators.
For example, if the Scatterplot operator was not
able to accumulate its results (Mem = ∞), we could
also have used a buffer in between Scatterplot and
Density Map to achieve the same.

6 CONCLUSION

As the example from the last section shows, with our
generalized model it becomes possible to model, real-
ize, and configure a desired balance between different
visualization strategies. This allows us to compromise
between existing solutions and even to deviate from
them—tailoring the incremental visualization process
and its behavior to the data’s characteristics at design
time (input-driven) and to the user’s intended goal
at runtime (output-driven). The model provides for
a high-level representation of the incremental visu-
alization process and presents a suitable means to
interact with the visualization pipeline. The interven-
tion points for this interaction are clearly embedded
in the model and allow for steering the process in a
transparent and immediate manner.

Using our approach internally to model incremental
visualization processes in our software prototype has
been a very beneficial experience that allowed us to
find good default parameter settings by simply trying
them out interactively during runtime. On top of that,
the graphical notation helped us to clearly communi-
cate with colleagues about incremental visualization
processes, as it strictly separates the process archi-
tecture, consisting of chunked data and subdivided
operators, from the process behavior, as it is defined
by the parameters, such as Mem and Quality.

While our generalized model gives us the necessary
terminology for specification and communication of
incremental visualization processes, it does not give
us any guidance on how to use it to produce well-
formed and maybe even elegant incremental visual-
izations. One can see from the discussion in Section
5.5 that the space of possible data chunkings and oper-
ator subdivisions can be inherently complex—maybe
even too complex for a solely interactive exploration.
Output-oriented control heuristics and automated pa-
rameter optimization, as explored recently by Frey
et al. [19], can help to find a suitable compromise
within that space and to adapt it to changing de-
mands. While we acknowledge these open research
questions, it has to be noted that our generalized
model with its parametrizable incremental operators
and data sequencers opened up this space of possible
subdivisions to systematic exploration in the first
place. So, we see our model as a first stepping stone
for future work in this direction by us and others.

ACKNOWLEDGMENTS
We thank Dieter Schmalstieg for fruitful discussions
on the architectural aspects of incremental visualiza-
tion, as well as the reviewers for their feedback. Partial
funding by the state of Mecklenburg-Vorpommern
and EFRE within the project “Basic and Applied
Research in Interactive Document Engineering and
Maritime Graphics” is gratefully acknowledged.

REFERENCES
[1] M. Angelini and G. Santucci, “Modeling incremental visual-

izations,” in Proc. of EuroVA’13. Eurographics, 2013, pp. 13–17.
[2] E. H. Chi and J. T. Riedl, “An operator interaction framework

for visualization systems,” in Proc. of IEEE InfoVis’98. IEEE,
1998, pp. 63–70.

[3] R. B. Haber and D. A. McNabb, “Visualization idioms: A
conceptual model for scientific visualization systems,” in Vi-
sualization in Scientific Computing, G. M. Nielson, B. D. Shriver,
and L. J. Rosenblum, Eds. IEEE, 1990, pp. 74–93.

[4] S. K. Card, J. Mackinlay, and B. Shneiderman, Readings in Infor-
mation Visualization: Using Vision to Think. Morgan Kaufmann,
1999.

[5] Advanced Visual Systems, “The Application Visualization
System (AVS).” [Online]. Available: http://www.avs.com

[6] Kitware, “The Visualization ToolKit (VTK).” [Online].
Available: http://www.kitware.com

[7] M. Angelini, G. Santucci, H. Schumann, and H.-J. Schulz, “To-
wards a visualization process model for online visualization,”
in Interactive Poster Session IEEE VIS’14, 2014.

[8] N. Elmqvist, A. Vande Moere, H.-C. Jetter, D. Cernea, H. Reit-
erer, and T. J. Jankun-Kelly, “Fluid interaction for information
visualization,” Information Visualization, vol. 10, no. 4, pp. 327–
340, 2011.

[9] E. H. Chi, “A taxonomy of visualization techniques using the
data state reference model,” in Proc. of IEEE InfoVis’00. IEEE,
2000, pp. 69–75.

[10] ——, “Expressiveness of the data flow and data state models
in visualization systems,” in Proc. of AVI’02. ACM, 2002, pp.
375–378.

[11] S. dos Santos and K. Brodlie, “Gaining understanding of mul-
tivariate and multidimensional data through visualization,”
Computers and Graphics, vol. 28, no. 3, pp. 311–325, 2004.

[12] A. Pang and N. Alper, “Mix&match: A construction kit for
visualization,” in Proc. of IEEE Vis’94. IEEE, 1994, pp. 302–
309.

http://www.avs.com
http://www.kitware.com

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2015 14

[13] K. Moreland, “A survey of visualization pipelines,” IEEE
TVCG, vol. 19, no. 3, pp. 367–378, 2013.

[14] J. A. Cottam, A. Lumsdaine, and P. Wang, “Abstract rendering:
Out-of-core rendering for information visualization,” in Proc.
of VDA’14. SPIE, 2014, p. 90170K.

[15] K. I. Joy, “Massive data visualization: A survey,” in Mathe-
matical Foundations of Scientific Visualization, Computer Graphics,
and Massive Data Exploration, T. Möller, B. Hamann, and R. D.
Russel, Eds. Springer, 2009, pp. 285–302.

[16] D. Song and E. Golin, “Fine-grain visualization algorithms in
dataflow environments,” in Proc. of IEEE Vis’93. IEEE, 1993,
pp. 126–133.

[17] R. Rosenbaum and H. Schumann, “Progressive refinement:
More than a means to overcome limited bandwidth,” in Proc.
of VDA’09. SPIE, 2009, p. 72430I.

[18] M. Glueck, A. Khan, and D. Wigdor, “Dive in! Enabling
progressive loading for real-time navigation of data visual-
izations,” in Proc. of CHI’14. ACM, 2014, pp. 561–570.

[19] S. Frey, F. Sadlo, K.-L. Ma, and T. Ertl, “Interactive progres-
sive visualization with space-time error control,” IEEE TVCG,
vol. 20, no. 12, pp. 2397–2406, 2014.

[20] C. D. Stolper, A. Perer, and D. Gotz, “Progressive visual ana-
lytics: User-driven visual exploration of in-progress analytics,”
IEEE TVCG, vol. 20, no. 12, pp. 1653–1662, 2014.

[21] J. Ahrens, K. Brislawn, K. Martin, B. Geveci, C. C. Law, and
M. Papka, “Large-scale data visualization using parallel data
streaming,” IEEE Computer Graphics and Applications, vol. 21,
no. 4, pp. 34–41, 2001.

[22] J. P. Ahrens, N. Desai, P. S. McCormick, K. Martin, and
J. Woodring, “A modular extensible visualization system ar-
chitecture for culled prioritized data streaming,” in Proc. of
VDA’07. SPIE, 2007, p. 64950I.

[23] H. T. Vo, J. L. D. Comba, B. Geveci, and C. T. Silva, “Streaming-
enabled parallel data flow framework in the Visualization
ToolKit,” IEEE Computing in Science and Engineering, vol. 13,
no. 5, pp. 72–83, 2011.

[24] W. Benger, G. Ritter, M. Ritter, and W. Schoor, “Beyond the
visualization pipeline: The visualization cascade,” in Proc. of
High-End Visualization Workshop. Lehmanns Media GmbH,
2009, pp. 35–49.

[25] C. P. Botha and F. H. Post, “Hybrid scheduling in the DeVIDE
dataflow visualisation environment,” in Proc. of SimVis’08.
SCS Publishing House, 2008, pp. 309–322.

[26] J. D. Mulder, J. J. van Wijk, and R. van Liere, “A survey
of computational steering environments,” Future Generation
Computer Systems, vol. 15, no. 1, pp. 119–129, 1999.

[27] P. C. Wong, H. Foote, D. Adams, W. Cowley, L. R. Leung,
and J. Thomas, “Visualizing data streams,” in Visual and Spa-
tial Analysis: Advances in Data Mining, Reasoning, and Problem
Solving, B. Kovalerchuk and J. Schwing, Eds. Springer, 2004,
pp. 265–291.

[28] J. A. Cottam, “Design and implementation of a stream-based
visualization language,” Ph.D. dissertation, Indiana Univer-
sity, November 2011.

[29] H. Piringer, C. Tominski, P. Muigg, and W. Berger, “A multi-
threading architecture to support interactive visual explo-
ration,” IEEE TVCG, vol. 15, no. 6, pp. 1113–1120, 2009.

[30] S. Diehl and C. Görg, “Graphs, they are changing – Dynamic
graph drawing for a sequence of graphs,” in Proc. of GD’02.
Springer, 2002, pp. 23–31.

[31] Y. Frishman and A. Tal, “Online dynamic graph drawing,”
IEEE TVCG, vol. 14, no. 4, pp. 727–740, 2008.

[32] J. Choo, C. Lee, and H. Park, “PIVE: A per-iteration visu-
alization environment for supporting real-time interactions
with computational methods,” Georgia Institute of Technol-
ogy, Tech. Rep. GT-CSE-13-06, 2013.

[33] D. Fisher, I. Popov, S. M. Drucker, and mc schraefel, “Trust
me, I’m partially right: Incremental visualization lets analysts
explore large datasets faster,” in Proc. of CHI’12. ACM, 2012,
pp. 1673–1682.

[34] A. Nandi and H. V. Jagadish, “Guided interaction: Rethinking
the query-result paradigm,” in Proc. of VLDB’11. VLDB
Endowment, 2011, pp. 1466–1469.

[35] D. Fisher, S. M. Drucker, and A. C. König, “Exploratory visu-
alization involving incremental, approximate database queries
and uncertainty,” IEEE Computer Graphics and Applications,
vol. 32, no. 4, pp. 55–62, 2012.

[36] F. Olken and D. Rotem, “Random sampling from database
files: A survey,” in Proc. of SSDBM’90. Springer, 1990, pp.
92–111.

[37] A. Dix and G. Ellis, “By chance – Enhancing interaction with
large data sets through statistical sampling,” in Proc. of AVI’02.
ACM, 2002, pp. 167–176.

[38] M. Lux, “Level of data – A concept for knowledge discovery
in information spaces,” in Proc. of IV’98. IEEE, 1998, pp. 131–
136.

[39] J. M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston,
V. Raman, T. Roth, and P. J. Haas, “Interactive data analysis:
The Control project,” IEEE Computer, vol. 32, no. 8, pp. 51–59,
1999.

[40] T. Mühlbacher, H. Piringer, S. Gratzl, M. Sedlmair, and
M. Streit, “Opening the black box: Strategies for increased user
involvement in existing algorithm implementations,” IEEE
TVCG, vol. 20, no. 12, pp. 1643–1652, 2014.

[41] A. Dasgupta and R. Kosara, “The importance of tracing
data through the visualization pipeline,” in Proc. of BELIV’12.
ACM, 2012.

[42] National Highway Traffic Safety Administration (NHTSA),
“Fatality Analysis Reporting System (FARS),” 2013. [Online].
Available: http://www.nhtsa.gov/FARS

Hans-Jörg Schulz received a master degree
in computer science in 2004 and his PhD
in 2010 from the University of Rostock. He
is currently working as a senior researcher
at the Fraunhofer IGD Rostock on indus-
trial and academic projects in the domain
of Big Data Analytics. His research inter-
ests include graph visualization, visualiza-
tion design spaces, and Visual Analytics for
biomedical and systems biological applica-
tions. More about his research can be found

at http://www.informatik.uni-rostock.de/˜hs162/.

Marco Angelini is a PhD student at
the Department of Computer Science of
Sapienza Universitá di Roma, where he
received his MSc. in Computer Science
in 2011. His main research activities
concern data analysis, Information
Visualization and Visual Analytics,
focusing on predictive analysis. He
applies his research in Information
Retrieval and Cyber-Security domains.
More about his research can be found at

http://www.dis.uniroma1.it/˜dottoratoii/students/marco-angelini.

Giuseppe Santucci is associate professor
at the Department of Computer Science
of Sapienza Universitá di Roma, where he
teaches courses on Python, Software Engi-
neering, and Infovis (in English). His main
research activities concern human computer
interaction and Visual Analytics, focusing on
evaluation and quality aspects. On such top-
ics he has published more than 100 papers
on international Journals and conferences.
More about his research can be found at

http://www.dis.uniroma1.it/˜santucci/.

Heidrun Schumann is heading the Com-
puter Graphics Research Group at the Uni-
versity of Rostock since 1992. Her re-
search covers Information Visualization, Vi-
sual Analytics, and Rendering. Her cur-
rent projects, supported by funding agencies
and industry, include scalable frameworks
for information visualization and adaptive vi-
sual interfaces. More about her research
can be found at http://www.informatik.uni-
rostock.de/˜schumann/.

http://www.nhtsa.gov/FARS
http://www.informatik.uni-rostock.de/~hs162/
http://www.dis.uniroma1.it/~dottoratoii/students/marco-angelini
http://www.dis.uniroma1.it/~santucci/
http://www.informatik.uni-rostock.de/~schumann/
http://www.informatik.uni-rostock.de/~schumann/

	Introduction
	Incremental Visualization
	Background and Definitions
	Related Work
	Fundamental Visualization Architectures
	Specific Visualization Solutions
	Putting Incremental Visualization in Context

	Incremental Visualization Challenges

	An Incremental Visualization Process Model
	Extending the Data State Reference Model for Incremental Visualization
	Chunking Data
	Subdivided Operators
	Combining Chunked Data and Subdivided Operators

	Considerations for Applying the Extended Model
	Authoring Incremental Visualizations
	Using Incremental Visualization

	Use Case
	Data Description and Requirements
	Modeling the Incremental Visualization Pipeline
	Selecting Process-specific Metrics
	Parametrizing for a Quality/Quantity Tradeoff
	Discussion

	Conclusion
	References
	Biographies
	Hans-Jörg Schulz
	Marco Angelini
	Giuseppe Santucci
	Heidrun Schumann

