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ON PERTURBATION OF BINARY LINEAR CODES

PANKAJ K. DAS and LALIT K. VASHISHT

Abstract. We present new codes by perturbation of rows of the generating matrix

of a given linear code. Some properties of the perturbed linear codes are given.

1. Introduction and preliminaries

In coding theory, many methods from elementary to more complicated ones are
used to construct new codes from one or more given codes. Some examples of
such new codes are product code [3], punctured code [6], shortened code [4], and
extended code [4]. The new codes are developed in order to obtain a better code
in some sense or other. Akavia and Venkatesan [1] presented a new class of pertur-
bation codes that are obtained from old codes using perturbation operator. They
analyze the rate and distance of perturbation codes.

In this paper, we discuss a type of perturbation in which the rows vi of a gen-
erator matrix G of an (n, k) linear code C are perturbed by a non-zero vector,
i.e.,

G+r u ≡


v1 + u
v2 + u

...
vk + u

 ,
where u is a non-zero vector which may or may not be in C. In general, G +r u
does not form a generator matrix of the given linear code. It would be inter-
esting to know whether, the perturbed system G +r u forms a generator matrix
of a linear subcode or under which conditions it generates the original code. In
this direction we give necessary and sufficient conditions for the perturbation of
linear codes for generating new (or original) linear codes. A decomposition theo-
rem and MacWilliams type identity for the perturbed linear code are given. An
error detection and error correction relation between a given linear code and the
corresponding perturbed code have been discussed.

Now we give some basic definitions which will be used throughout this paper.
The set V n denotes the space of all n-tuples over a finite field GF (q) (q is a power
of some prime number) with the usual inner product 〈., .〉. Two vectors x and y in
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V n are said to be orthogonal if 〈x, y〉 = 0. Any proper subspace C of V n is called
a linear code and the elements of C are called code words (or code vectors). A
subspace of V n with every element being orthogonal to every element of C is also
a linear code and known as the dual code of C denoted by C⊥. If the dimension of
C is k, then C is called an (n, k) linear code. A k×n matrix whose rows span C is
called a generator matrix. Any generator matrix H of C⊥ is called a parity check
matrix of C. An (n, k) linear code C over a finite field GF (q) is called a cyclic
code if, for every code word v = (v1, v2, . . . , vn) of C, the word (vn, v1, . . . , vn−1)
obtained by a cyclic shift of components is again a code word.

The Hamming weight of a vector is the number of its non-zero components. The
Hamming distance between two vectors is the number of components in which they
differ. The minimum distance for a linear code equals the minimum weight of its
non-zero vectors. The distance of a linear code is the minimum distance of the
code.

Recall that, for sets U and W , U ⊕W denote the subspace consisting of all
linear combinations ax+ by where x ∈ U, y ∈W and a, b are scalars. For a set E,
|E| denotes the number of elements in E.

2. Perturbation of linear codes

In this section, we perturb a generator matrix of a linear code by a non-zero vector.
First we take a non-zero element from the code and call this operation on linear
codes an inner perturbation of linear codes. The following proposition gives the
necessary condition for an inner perturbation of linear codes.

Proposition 2.1. Let C be a binary (n, k) linear code generated by a matrix

G =


v1
v2
...
vk

 .
If each row vi of G is perturbed by the linear sum of the form u =

∑k
i=1 vi, then

the perturbed matrix

G0 =


v1 + u
v2 + u

...
vk + u

 (2.1)

gives rise to the same linear code C provided that k is even.

Proof. It is sufficient to show that the rows in matrix G0 are linearly indepen-
dent. Assume that

α1(v1 + u) + α2(v2 + u) + α3(v3 + u) + · · ·+ αk(vk + u) = 0 (2.2)

for some scalars αi ∈ GF (2) (1 ≤ i ≤ k). Now

α1(v1 + u) + α2(v2 + u) + α3(v3 + u) + · · ·+ αk(vk + u)

= (α2 + α3 + · · ·+ αk)v1 + (α1 + α3 + · · ·+ αk)v2 + . . .
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+ (α1 + α2 + · · ·+ αk−1)vk.

Since vi’s are linearly independent, by (2.2), we have

α2 + α3 + · · ·+ αk = 0,

α1 + α3 + · · ·+ αk = 0,

. . .

. . .

α1 + α2 + · · ·+ αk−1 = 0.

This yields α1 = αi (2 ≤ i ≤ k). Thus, (k − 1)αi = 0 (1 ≤ i ≤ k). If k even, then
αi = 0. The proposition is proved. �

Remark 2.2. The result given in Proposition 2.1 is not true for odd values of
k. Indeed, let C be a (6, 3) linear code with generator matrix

G =

1 1 0 1 0 0
0 1 1 0 1 0
0 0 1 1 0 1

 .
Choose u = (100011)

(
=
∑3

i=1 vi

)
. Then, the perturbed matrix (in the sense of

(2.1)) is given by

G0 =

v1 + u
v2 + u
v3 + u

 =

0 1 0 1 1 1
1 1 1 0 0 1
1 0 1 1 1 0

 .
One may observe that the sum of the first two rows in G0 is equal to the third row
in G0. Hence, the perturbed matrix G0 cannot be a generator matrix of the given
code C. More precisely, the idea given in the above example can be generalized to
any (n, k) linear code where n is arbitrary and k is odd.

The following proposition provides a subcode with distance increased by an
inner perturbation.

Proposition 2.3. Assume that d is the distance of an (n, k) binary cyclic linear
code C generated by the matrix

G =


v1
v2
...
vk

 where vj is cyclic shift of vj−1 for all j with 2 ≤ j ≤ k.

If the weight of v1 = d and d is odd, then the perturbed matrix

G0 =



v1 + u
v2 + u
. . .

vi−1 + u
vi+1 + u
. . .

vk + u


where u = vi for some i with 1 ≤ i ≤ k, (2.3)
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generates an (n, k− 1) binary linear subcode of a distance greater than or equal to
d+ 1.

Proof. First we note that the rows of matrix G0 (see (2.3)) are linearly inde-
pendent, so G0 generates an (n, k − 1) linear subcode C1 of C. Since all the row
code vectors in G are of odd weight, therefore, all the row code vectors in G0 are of
an even weight. Also, the linear sum of vectors of even weight will produce vector
of an even weight. Hence, all code vectors of C1 are of even weights. Since the
minimum weight of C is d which is odd and C1 is a subcode of C, the minimum
distance of C1 ≥ d+ 1. �

The next result provides a necessary condition for a perturbation of a given
linear code in terms of an eigenvalue of a certain matrix.

Theorem 2.4. Assume that C is a binary (n, k) linear code generated by a ma-
trix

G =


v1
v2
...
vk

 .
Let z1, z2, . . . , zm be linearly independent vector in C and let, for each j (1 ≤ j ≤
m), xj be vectors (not necessarily code vectors) with binary components and let

α
(i)
j be scalars given by α

(i)
j = 〈vi, xj〉 for all i with 1 ≤ i ≤ k. If the perturbed

matrix

Gp =


v1 +

∑m
j=1 α

(1)
j zj

v2 +
∑m

j=1 α
(2)
j zj

...

vk +
∑m

j=1 α
(k)
j zj


is a generator of C, then λ = ±1 is not an eigenvalue of the matrix

L =


〈z1, x1〉 〈z1, x2〉 . . . 〈z1, xm〉
〈z2, x1〉 〈z2, x2〉 . . . 〈z2, xm〉

...
...

. . .
...

〈zm, x1〉 〈zm, x2〉 . . . 〈zm, xm〉

 .
Proof. We prove the theorem for the case m = 2 and λ = 1. The other cases

can be proved similarly. Assume that 1 is an eigenvalue of the matrix

J2 =

[
〈z1, x1〉 〈z1, x2〉
〈z2, x1〉 〈z2, x2〉

]
.

Then ∣∣∣∣〈z1, x1〉 − 1 〈z1, x2〉
〈z2, x1〉 〈z2, x2〉 − 1

∣∣∣∣ = 0.

Therefore, we can find scalars α and β not both zero (α, β ∈ GF (2)) such that

α〈z1, x1〉+ β〈z1, x2〉 = α
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and

α〈z2, x1〉+ β〈z2, x2〉 = β.

Put z = αx1 + βx2. Then, z is a non-zero vector.
By using

〈vi, z〉 = 〈vi, αx1 + βx2〉 = αα
(i)
1 + βα

(i)
2 for all i (1 ≤ i ≤ k),

we compute

〈vi +

2∑
j=1

α
(i)
j zj , z〉 = 〈vi, z〉+ α

(i)
1 〈z1, z〉+ α

(i)
2 〈z2, z〉

= (αα
(i)
1 + βα

(i)
2 ) + α

(i)
1 α+ α

(i)
2 β

= 0, (1 ≤ i ≤ k). (2.4)

By the hypothesis, Gp is the generator matrix of the given code C. Therefore, the
zero vector is only code vector which is orthogonal to all rows that appear in Gp.
Hence, by using (2.4), we conclude that z = 0, a contradiction. Therefore, 1 is not
an eigenvalue of matrix J2. �

Application of Theorem 2.4: Consider the generator matrix G of a linear
(7, 3) code C:

G =

1 0 1 0 1 0 0
0 1 0 1 0 1 0
0 0 1 0 1 0 1

 =

v1v2
v3

 .
Choose z1 = x1 = v1; z2 = x2 = v2. Then,

〈z1, x1〉 = 1, 〈z1, x2〉 = 0; 〈z2, x1〉 = 0, 〈z2, x2〉 = 1.

Therefore, −1 is an eigenvalue of the matrix

J2 =

[
〈z1, x1〉 〈z1, x2〉
〈z2, x1〉 〈z2, x2〉

]
.

Hence, by Theorem 2.4 the matrix

Gp =

v1 +
∑2

k=1 α
(1)
k zk

v2 +
∑2

k=1 α
(2)
k zk

v3 +
∑2

k=1 α
(3)
k zk


is not a generator of the given code C.

The case of outer perturbation: Now we discuss the case G +r u where
u /∈ C. First, we give a result which gives a link between the cardinality of a given
linear code and the corresponding outer perturbed code.

Proposition 2.5. Let C be a binary (n, k) linear code generated by a matrix

G =


v1
v2
...
vk

 .
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Let u be a non-zero vector which is not in C and let C ′ be the binary linear code
generated by the perturbed matrix

Gu =


v1 + u
v2 + u

...
vk + u

 .
Then, |C

⋂
C ′| = 1

2 |C| =
1
2 |C
′|.

Proof. By definition of Gu, one may observe that∑
even number of terms

(vj + u) =
∑

even number of terms

vj ∈ C (2.5)

and ∑
odd number of terms

(vj + u) =

( ∑
odd number of terms

vj

)
+ u /∈ C. (2.6)

Note that the number of ways in which the linear sums in (2.5) can be chosen is(
k
0

)
+

(
k
2

)
+

(
k
4

)
+ · · ·+

(
k
l

)
, (2.7)

where l = k (or k − 1) according to whether k is even or odd.
Similarly, the linear sums in (2.6) can be chosen in(

k
1

)
+

(
k
3

)
+ · · ·+

(
k
t

)
(2.8)

ways where t = k (or k − 1) according to whether k is odd or even.
Since (

k
0

)
+

(
k
1

)
+

(
k
2

)
+

(
k
3

)
+ · · ·+

(
k
k

)
= 2k

and (
k
0

)
+

(
k
2

)
+

(
k
4

)
+ · · ·+

(
k
l

)
=

(
k
1

)
+

(
k
3

)
+

(
k
5

)
+ · · ·+

(
k
t

)
,

where l and t are as above. Therefore, by using (2.7) and (2.8), we have(
k
0

)
+

(
k
2

)
+

(
k
4

)
+ · · ·+

(
k
l

)
= 2k−1.

Therefore, the number of elements which are common to both C and C ′ is equal
to 2k−1. Hence |C

⋂
C ′| = 1

2 |C| =
1
2 |C
′|. �

Remark 2.6. One may observe that the doping vector u in Proposition 2.5 is
not a code vector of C ′.

Remark 2.7. One can verify the symmetric relation:

(C ′ + u)
⋃
C ′ = (C + u)

⋃
C.
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Remark 2.8. The dimension of (C⊕C ′) is k+1. Note that dim(C
⋂
C ′) = k−1

and dimC + dimC ′ = 2k. By using the relation

dim(C
⋂
C ′) + dim(C ⊕ C ′) = dimC + dimC ′,

we have dim(C ⊕ C ′) = k + 1.

The following theorem provides a decomposition of an outer perturbed code in
terms of a linear subcode and a nonlinear code.

Theorem 2.9. (Decomposition Theorem) Let C ′ be the binary (n, k) linear
code given in Proposition 2.5. Then C ′ can be decomposed as an (n, k − 1) linear
code A and a nonlinear code B.

Proof. Choose

A =
∑

even number of terms

(vj + u) =
∑

even number of terms

vj ,

and

B =
∑

odd number of terms

(vj + u).

Then, C ′ = A
⋃
B and A

⋂
B = ∅.

To show that A is an (n, k − 1) linear code, it is sufficient to show that the
matrix G0 generates A where

G0 =


v1 + v2
v2 + v3

...
vk−1 + vk

 .
Let α1(v1 + v2) + α2(v1 + v2) + · · · + αk−1(vk−1 + vk) = 0, where αi ∈ GF (2).
Then, α1v1 + (α1 + α2)v2 + · · ·+ (αk−2 + αk−1)vk−1 + αk−1vk = 0. By using the
linear independence of vi, we have αj = 0, for all j = 1, 2, . . . , k− 1. Furthermore,
by the nature of the construction of A, we observe that G0 spans A. Hence, G0 is
a generator matrix of A. Thus, A is an (n, k − 1) linear code. One may observe
that B is a nonlinear code. The theorem is proved. �

The following proposition gives a relation of the weight distribution between the

subspace A of C ′ and the null spaces C⊥( or C ′
⊥

). We use certain ideas developed
in [2].

Proposition 2.10. Assume that A
⋃
B is the decomposition of C ′ given in

Theorem 2.9. Let Ai and Bi be the number of vectors of weight i in A and the

null space C⊥( or C ′
⊥

), respectively. Then

n∑
i=0

Ai

(
n− i
m

)
≥ 2k−1−m

n∑
j=0

Bj

(
n− j
n−m

)
, m = 1, 2, . . . n.
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Proof. Consider the (n, k − 1) linear code A. Applying MacWilliams identity
(see Theorem 3.14 in [5]) to the code A, the weight enumerator of A is given by

n∑
i=0

Ai

(
n− i
m

)
= 2k−1−m

n∑
j=0

Dj

(
n− j
n−m

)
, m = 1, 2, . . . n, (2.9)

where Di is the total number of vectors of weight i in A⊥.

Now A ⊂ C(or C ′), i.e., C⊥ (or C ′
⊥

) ⊂ A⊥. Thus, Bi ≤ Di. Therefore, by
using (2.9), we have

n∑
i=0

Ai

(
n− i
m

)
≥ 2k−1−m

n∑
j=0

Bj

(
n− j
n−m

)
.

�

Correction and detection of errors: Now we discuss the error detection
and error correction relation between a given linear code and the corresponding
outer perturbed code.

Proposition 2.11. If C is a binary (n, k) cyclic linear code, then A (where A
is given in the proof of Theorem 2.9) can detect any burst of length n − k + 1 or
less.

Proof. First we show that A is an (n, k − 1) cyclic linear code. Let C be
generated by the generator polynomial g(x). By Theorem 2.9, the generator matrix
G0 of A is given by

G0 =


g(x) + xg(x)
xg(x) + x2g(x)

...
xk−1g(x) + xkg(x)



=


(1 + x)g(x)
x(1 + x)g(x)

...
xk−2(1 + x)g(x)

 .
This shows that A is generated by (1 + x)g(x) and, hence, A is a binary (n, k− 1)
cyclic code.

Since an (n, k) cyclic code detects all burst of length n− k or less, see Theorem
8.5 in [5, p. 229], A detects all burst of length n− k + 1 or less. �

To conclude the paper, we will prove a result regarding the perturbation in the
correction of an error vector.

Proposition 2.12. Let C be a binary (n, k) linear code which can correct error
sets E and E + u (= {t + u : t ∈ E}). Then, C ′ also corrects error sets E and
E + u.
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Proof. Let e1, e2 be any two error vectors in E or of the form t+ u (t ∈ E). To
prove that C ′ corrects error sets E and E + u, it is sufficient to show that e1 and
e2 are members of two different cosets of C ′. Let, if possible, e1, e2 be members
of the same coset of C ′. Then, e1 − e2 must be a code vector of C ′. Therefore,
e1 − e2 ∈ A or B.

If e1 − e2 ∈ A, then A+ e1 = A+ e2. This means that (C + e1)
⋂

(C + e2) 6= φ,
i.e., C + e1 = C + e2. By using the fact that e1 ∈ C + e1 and e2 ∈ C + e2 and
that C corrects e1 and e2, we have C + e1 6= C + e2. This is a contradiction. If
e1− e2 ∈ B, then e1− e2 +u ∈ C. That is, C + e1 = C + e2 +u. As C corrects e1
and e2+u and that e1 ∈ C+e1 and e2+u ∈ C+e2+u, then C+e1 = C+e2+u is
not possible. Hence, e1 and e2 must be members of two different cosets of C ′. �
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