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Localization and Propagation of 
Instabilities in Long Shallow 
Panels Under External Pressure 
This paper discusses the response of long, shallow, elastic panels to uniform pressure 
loading. Under quasi-static conditions, the deformation of such panels is initially 
uniform along their length, and their response has the nonlinearity and instabilities 
characteristic of shallow arches. Shallower panels deform symmetrically about the 
midspan and exhibit a limit load instability. For less shallow panels, the response 
bifurcates into an unsymmetric mode before the limit load is achieved. A formulation 
and a solution procedure are developed and used to analyze the response of such 
panels beyond first instability. It is demonstrated in both cases that following the 
first instability the deformation ceases to be axially uniform and locqlizes to a region 
a few arch spans in length. A drop in pressure accompanies this localized collapse 
and causes unloading in the remainder of the panel. Subsequent deformation is 
confined to this region until membrane tension arrests the local collapse. Further 
deformation can occur at a constant pressure and takes the form of spreading of 
the collapsed region along the length of the panel. The lowest pressure at which this 
can take place (propagation pressure) can be significantly lower than the pressure 
associated with first instability. 

Introduction 
This paper is concerned with the response and inherent in­

stabilities in long, shallow, cylindrical panels under uniform 
pressure loading. Under quasi-static loading, the initial re­
sponse of such panels has the nonlinearity and instabilities 
characteristic of shallow arches. Membrane deformations in­
duced by the pressure cause a progressive softening of the 
response of the structure which for shallower panels results in 
a limit load instability (point b in the pressure-volume change 
response in Fig. 1(a)). For less shallow panels, this nonlinear 
response, which is symmetric about the midspan, is interrupted 
by a bifurcation-type instability. Consequently, the structure 
buckles into an unsymmetric mode before reaching the limit 
load (point b in Fig. 1(b)). In both types of panels the defor­
mation remains axially uniform until the onset of the first 
instability. Our objective here is to explore the behavior of 
such panels beyond their first instability. 

The response of arches (narrow strip rather than a long 
panel) beyond first instability is well understood (see Timosh-
enko, 1935;Biezeno, 1938;Marguerre, 1938; Fung and Kaplan, 
1952; Hoff and Bruce, 1954; Gjelsvik and Bodner, 1962; 
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Fig. 1 (a) Pressure-volume change response for arch which buckles 
symmetrically; (b) pressure-volume change response for arch which 
bifurcates into an unsymmetric mode for part of the response 
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Fig. 2 Maxwell construction for a long shallow panel under uniform 
pressure 

Schreyer and Masur, 1966 and others). Beyond the limit load 
and under "displacement-controlled" loading, the deforma­
tion of the arch in Fig. 1(a) grows at a decreasing load, and 
in the process, the curvature of part of the structure reverses 
sign. Eventually, further increase in deformation requires 
membrane stretching. This has a stiffening effect and leads to 
an upturn in the required load as shown in the figure. If, 
however, the pressure is prescribed, the structure, upon reach­
ing the limit pressure (PL), "snaps" from equilibrium point 
b to d. Unloading from point d to pressure P,„ takes place 
along dc. Upon reaching Pm, the structure "snaps" to point 
a on the initial ascending branch. (This snapping back and 
forth is known as the oil-can effect.) 

In the case of the less shallow arch shown in Fig. 1(6), the 
unsymmetric mode of deformation is preferred from point b 
to point c on the response. At the bifurcation pressure (Pb), 
the structure buckles into an unsymmetric mode. In fact, under 
displacement-controlled loading, the response follows the 
straight line joining the bifurcation points b and c (see Schreyer 
and Masur, 1966). Under pressure-controlled loading, the arch 
will snap from b to e. In the process, the unsymmetric defor­
mation yields to a symmetric one, represented by equilibrium 
point e. Again, if the structure is unloaded from e to pressure 
P„„ path ed is followed. At d, the arch snaps back to point a 
on the prebuckling equilibrium branch. Thus, for prescribed 
pressure loading, the main difference between the prebuckling 
response of the two types of arches shown in Fig. 1 is that the 
maximum pressure reached is Pb rather than PL. 

The preferred mode of behavior is governed by the arch 
shallowness parameter 

X = « 2 f (1) 

where 2a is the circular arch span angle, R its radius and t its 
wall thickness. 

The pressure-volume response of both of these types of 
arches after the first instability has a negative slope. Thus, in 
the case of a long panel with this same arch as its cross-section, 
alternate post-buckling branches become available due to the 
effect of length. Due to the decreasing pressure, localized modes 
of deformation become energetically preferable to axially uni­
form collapse. That is, following the onset of the first insta­
bility, the deformation ceases to be uniform along the length 
of the panel. If the pressure is allowed to drop after first 
buckling (as would occur in volume-controlled pressurization), 
the buckle can be expected to remain local. 

Kyriakides (1993) used a simple experimental apparatus to 
demonstrate the development of a localized instability in a 
long, shallow, cylindrical panel loaded by uniform pressure. 
He also demonstrated that once formed, the local buckle can 
spread (propagate) at a pressure which is much lower than that 
required to initiate the instability in a geometrically intact 
structure. This demonstration experiment will be reviewed be­
low. This work (see also Kyriakides and Arseculeratne, 1993) 
also showed that the lowest pressure at which such instabilities 
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Fig. 3 (a) Experimental apparatus used to demonstrate the initiation 
and propagation of buckles in long panels; (b) cross-section of exper­
imental apparatus 

will propagate (propagation pressure) can be calculated exactly 
through an energy balance which utilizes the two-dimensional 
(axially uniform) response of such panels. This results in the 
so-called Maxwell construction (see Ericksen, 1975; Chater and 
Hutchinson, 1984; Kyriakides, 1993) shown schematically in 
Fig. 2. If the two-dimensional response is evaluated using the 
lowest-order admissible nonlinear kinematics (shallow shell 
kinematics, see Schreyer and Masur, 1966) the Maxwell con­
struction results in the following closed-form expression for 
the propagation pressure: 

In the present work, we use specialized analyses to establish 
the onset of localized instabilities in long panels and to examine 
their growth and transformation into propagating buckles. All 
aspects of the problem are studied in the quasi-static setting. 
The results are also used to confirm the validity of the prop­
agation pressure yielded by the Maxwell construction. 

Experiment 
The simple test apparatus used by Kyriakides (1993) to dem-

onstrate'the initiation and steady-state propagation of buckles 
in long panels is shown schematically in Fig. 3. A long shallow 
panel was formed by bending a strip of thin mylar sheet into 
the cross-section shown in Fig. 3(b). The edges of the mylar 
strip were positioned and bonded into oblique slits cut into 
two long metal end support beams. The two end beams were 
mounted onto a U-shaped aluminum support structure which 
was made by removing the top of a 4-in. diameter aluminum 
tube. The arrangement is such that the mylar has a circular 
arch shape with R/t = 228 and an arch parameter X = 44.7. 
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The tubelike structure, whose ends are closed with flanges, has
a length of 10 ft (3 m). External pressure loading was applied
by evacuating the air inside the closed tube with a vacuum
pump. The pressure was monitored with an electrical pressure
transducer and was recorded on a strip-chart recorder.

A typical pressure-time history and some of the major fea­
tures observed during such an experiment are shown sche­
matically in Fig. 4. Pressurization starts at time to' Initially,
the structure deformed uniformly along its length with a rel­
atively stiff response. For the parameters of this panel, the
first instability was unsynimetric buckling (as in Fig. l(b».
Figure Sea) shows the onset of unsymmetric buckling in the
panel (we note that this was influenced significantly by geo-

Fig. 4 Schematic representation of the history of an experiment in
which a buckle is initiated and propagated in a long panel

metric imperfections as well as residual stresses present in the
demonstration structures used). Soon after the onset of un­
symmetric deformation, the structure collapsed dynamically
(tl) and developed a local buckle which was symmetric about
the midspan and extended over a length of approximately 7­
8 times the arch span (see Fig. S(b». Under the loading con­
ditions used, the snap-through buckling produced a significant
pressure transient. Once formed, the geometry of the local
buckle could b~ frozen by interrupting the evacuation of air
from the closed tube (i.e., after t2). Once the local buckle was
fully developed, further propagation of the buckle occurred
at a well-defined pressure which was significantly lower than
the pressure recorded at the initiation of local collapse. The
buckle propagated in both directions until it reached one of
the ends. Propagation continued on the other side until the
whole panel was collapsed. The rate of propagation of the
buckle was controlled by controlling the rate at which the closed
system was evacuated. Figure S(c) shows the transition between
the buckled and unbuckled sections during such an experiment.
Once the buckle reached both ends of the panel (t4), further
deformation required a significant increase in the pressure and
was uniform along the length of the structure. The initial
maximum pressure recorded is known as initiation pressure
(PJ) and the pressure at which the collapse propagated is the
propagation pressure (Pp ) of the structure.

Analysis
We consider a circular cylindrical panel of radius R, span

angle 2a, thickness t ( «R), and overall length 2L subjected
to uniform pressure loading (P) over its entire surface as shown
in Fig. 6. The panel material is taken to be linearly elastic with
Young's modulus E and Poisson's ratio v. Without loss of
generality, the plane Xl = 0 is assumed to be a plane of sym­
metry. We will consider panels with low values of A for which
deformations remain symmetric about the midspan and panels
with higher values of Awhich exhibit unsymmetric bifurcation
buckling. For symmetric deformations, the plane X2 = 0 is
another plane of symmetry and only the darkly shaded portion
(0 ~ x ~ L, 0 ~ () ~ a) of the panel in Fig. 6 is analyzed.
For unsymmetric deformations, the problem domain is 0 ~ x
~ L, -a ~ () ~ a.

Fig. S(s) Fig. S(b) Fig. S(c)

Fig. 5 Photographs of deformed panel. Fig. 5(a) unsymmetrlc buckle;
Fig. 5(b) local symmetric buckle; Fig. S(c) transition region between
collapsed and uncollapsed portions.
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Fig. 6 Geometry of analyzed panel 

(a) Kinematics. Sanders (1963) nonlinear shell kinematics 
with the assumption of small membrane strains are adopted. 
The particular form of the strain-displacement equations used 
(specialized for circular cylindrical geometry) was utilized by 
Dyau and Kyriakides (1993) in their studies of localization of 
collapse in long metal tubes. Points on the undeformed mid-
surface are identified by (x, Rd), and axial, circumferential, 
and radial displacements are denoted by u, v, and w, respec­
tively. The strain at any point in the panel is approximated by 

Nx= v_x ' „ - wx — ^ - wnX, 
R R 

Ne=w x-i~-ux — — , 
' R ' R R 

w+vg w+v e u 
N7=l + u.x + —zr-^ + u r —zr^—v. R 

eae = (Eae + zKap)/(AaAli) (3) 
R R 

(5) 

where Ea$ and Kap are the membrane strains and curvatures, 
respectively, and z is the coordinate normal to the midsurface 
(see inset in Fig. 6). Here, Ai = 1 and^l2 ~ (1 + z/R). The 
strains are related to the displacements through 

Hxx— UX + 2 lutc+rtc+w2*), 

E°°= R +2 [R) +2 { R ) +2 

Exe = - „+vx+ux '+vx „ +wx R ,x •* R 'x R 

Kxx = - [utXXNx + viXXNe + w,xxNJ, 

Kee= -
R2 R2 

(wj-v 
\ R 

Wfl - V 

R 

r 
i 

(b) Principle of Virtual Work. Equilibrium of the struc­
ture was enforced through the principle of virtual work (PVW) 
which for uniform, lateral pressure loading may be expressed 
as follows: 

[N^EaP + MaebKaf)]Rdedx= - PdAv* (6) 
0 ''0,(-(«) 

where /V„0 and M„p are the force and moment intensities, 
related to Eap and Kaji through the usual isotropic linearly 
elastic relationships, and Ay is the change in volume underneath 
the panel, given by 

S L n (t 

0 J 0 , ( - K ) 

w,ee-2vtB-w-R 1 
+ ¥ N'+R 

W + - ( W K , - W^U) 

+ — (W +WVfi-WflV+V ) RdOdx (7) 

(see Pearson, 1956 and Scwcll, 1965). 

Kxg — 
R x R " R z (4) (c) Solution Procedure. The structure was discretized us­

ing the following expansions for the displacements: 

where TV) are the components of the normal to the deformed 
panel mid-surface given by 'The limits of integration in parentheses are used in the unsymmetric case. 
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u = R 2 sin m-KX 

2J 

D " (m-\)*x (^ 
V=R 2 J C O S — i — 2A<« 

m=l ^ U = l 

In - 1 itd 

2 a 

n=\ 

. «7r0 

sin 
H7T0 

s in • 
a 

• s * - — cos I /x„ - I + — tx„ cos /i„ 
/*„ \ a / 2a 

- a ( — + — (cos jt„ 

= * L c o s Z ^"'""2 
m=l ^ U = l Z 

( - l ) " + 1 + cos ; «7T0 

2j J'" sin I /i„ - I - - n„ cos fi„ 
a/ a 

(8) 

where p,n are the positive roots of tan /*„ = /x„. These functions 
satisfy fixed conditions along the boundaries 6 = ± a and 
exhibit symmetry in x. In addition, wiJt vanishes at the bound­
aries x = ± L . The first summation in each displacement 
component models deformation symmetric in d, whereas the 
second summation models deformation antisymmetric in 0. 
Thus, for the symmetric case,/,„„, gmn, and h,„„ are set to zero. 
The number of axial half waves (M) used was typically 2-3 
times the L/S ratio for a given geometry, and the number of 
circumferential half waves (both Ns and Na) was taken to be 
6. These values were determined adequate by convergence stud­
ies. Integration was performed by Gaussian quadrature. The 
panel was loaded incrementally by prescribing either the dis­
placement w(0, 0) or the change in volume underneath the 
panel, Ay, depending on the current nature of the response. 
The nonlinear equations resulting from Eqs. (3)-(8) were solved 
using the Newton-Raphson method. 

Results and Discussion 
Due to the obvious differences in the ways instabilities are 

initiated and localize for panels with different values of X, we 
will discuss separately the behavior of panels with low enough 
values of X to deform symmetrically about the midspan and 
that of panels which deform unsymmetrically. The panels ana­
lyzed have R/t = 480; various values of X are achieved by 
varying the angle a. 

(a) Symmetric Initiation and Propagation of Collapse. 
The features of the response of panels which buckle and col­
lapse symmetrically about the midspan will be discussed by 
way of an example with X = 5.6. For this case, the primary 
response (axially uniform and symmetric) exhibits bifurcations 
into unsymmetric modes on the descending portion following 
the limit load. The events that we will discuss precede these 
instabilities and thus their effect is irrelevant to our discussion. 
The calculated primary pressure-volume change response of 
such a panel with a length of 20 spans is shown in Fig. 7 where 
the following normalizations are adopted: 

P = -

12(1 2\ 

-v) 

1 Av 
and Av=-—-^r. (9) 

This response is stable up to the limit pressure (identified by 
"A"). Due to the negative slope of the primary response be­
yond the limit load, it is easy to visualize that localized modes 
of collapse may be preferable to axially uniform collapse. The 
unstable nature of this part of the response can indeed be easily 
verified by conducting a linearized bifurcation check. This was 

1.5-

10-

0.5-

o-

X=5.6 

f,0 

. / 1.600 

1.575-

;==—"~ 

14.0 

f Uniform Collapse ' 

^-—Actual Response 

j 

Expanded View 

15.0 

>-Au (%) 

Fig. 7 Calculated pressure-volume change response for X = 5.6 
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Fig. 8 Expanded view of critical region of pressure-volume change 
response for X = 5.6; (a) 2L = 30S; (b) 2L = 10S 

done as summarized in the Appendix and involved the follow­
ing buckling modes which are symmetric about the midlength 
of the panel: 

_ . irnrx ^ n (in - 1 ird\ , „ „ 
u = sin —r- 2 J B,I COS 1 — ] , m = 1, 2, 3 . . 

y = c o s • 

vv = cos • 

L 

m-wx 

mirx 

«=i 
N 

2c"s i 
sin 

n-wd 

N 

2> ( - l ) " + 1 + cos 
nwd 

(10) 

The first bifurcation point identified corresponds torn = 1 
and occurs at Av = 0.1430, very soon after the limit pressure 
at Ay = 0.1426. Subsequent bifurcation points, with pro­
gressively higher values of m, occur at increasingly higher 
values of Ay. The first four bifurcation points are identified 
with Roman numerals in the inset of Fig. 7. 

The onset of instability is affected by the length of the panel. 
This is demonstrated in Fig. 8 which shows expanded views 
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of the response in the region of the limit load for two additional
panels with lengths of 2L = 30Sand lOS. Comparing the
positions of the bifurcation points of the three cases, we ob­
serve that decreasing the length of the panel has the effect of
delaying the onset of the first bifurcation point and increases
the distance between subsequent bifurcation points. Con­
versely, for a very long panel, the limit load is an accumulation

________ !J.'iT(%)

Fig. 9(a) Pressure·volume change response

is

t 15

10 20 30 40

point. Thus, the limit load can be viewed as the critical point
of the primary response.

This type of behavior has been observed before in other
problems characterized by natural limit load instabilities such
as necking of bars under uniaxial tension (Hutchinson and
Miles, 1974) and bulging of internally pressurized tubes (Kyr­
iakides and Chang, 1991).

The actual response of the structure following the first in­
stability is also inclu!led in Fig. 7. It can be seen that the
response beyond the bifurcation point reverses direction, that
is, both the volume change and the pressure decrease, forming
a cusp-like shape. A more complete view of the actual post­
buckling response is shown in Fig. 9 which includes a sequence
of deformed configurations of the line e = O. The configu­
rations are identified on the P - flu response bh.-numbered
points. On the ascending part of the response (\Q)-@) the
panel deforms uniformly along the length. The line e = 0 is
seen in Fig. 9(b) to remain straight as it deflects downward.
At point ® the volume under the arch has been reduced
significantly. Beyond point @, a localized mode of defor­
mation appears. In the case shown, the region of the panel
around midlength is seen to experience local collapse while the
overall pressure required for equilibrium decreases. Config­
urations @ to ® clearly show the growth of local collapse.
Full views of some of the deformed configurations identified
in Fig. 9 are presented in Fig. 10 (rendered from the solution

----- x/L
-w(x,O)

TOl-_L~~~~~~~~~~~
0.4

0.8

12

16

1.00.5
20+-----,----,----,,------,----,-----r---~--~---_-__1

o
---x/L

Fig. 9(b) Deformed configurations of generator 0 = 0

Fig. 9 Panel analysis: A = 5.6, 2L = 205

® ® ® @ @

Fig. 10 Sequence of calculated configurations for panel of Fig. 9 show·
Ing symmetric Inillation and propagation 01 collapse
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Fig. 11 Calculated pressure-volume change responses for X = 5.6 and 
various panel lengths 
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Fig. 12 Calculated pressure-volume change response for X = 12 

using the Sun Vision image processing system). It is interesting 
to observe that away from the collapsing region the panel 
deforms uniformly, unloading (as a result of the decreasing 
pressure) along a path ((5)-(0)) that corresponds to the one 
followed during loading. Thus, away from the localized col­
lapse, the line 6 = 0 is seen to move upward, indicating an 
increase in the volume under this region of the panel. 

This dichotomy in behavior between the collapsing section 
and the remainder of the structure is responsible for the cusp­
like nature of the overall response shown in Figs. 7 and 9. For 
longer panels, like the case analyzed, the increase in volume 
under the section which is unloading is much larger than the 
decrease in volume under the collapsing section. This results 
in the net volume change shown in the figures. 

The localization process is eventually arrested by membrane 
tension in the most collapsed region. With this region stabi­
lized, further collapse will occur in adjacent less deformed 
sections until they become stabilized in turn. Thus, beyond 
(9), the localization of collapse gives way to propagation of 
collapse along the panel. By configuration @), this propa­
gation reaches a steady state in which a well-defined transition 
region, or front (actually one on either side of the collapsed 
region) has formed, joining the collapsed and uncollapsed parts 
of the structure. Thus, further decrease of the volume under 
the panel results in propagation ( ® - @ ) of the front which 
progressively engulfs uncollapsed sections and leaves collapsed 
sections in its wake. The value of pressure which accommodates 
this steady-state propagation corresponds exactly to that pre­
dicted by the Maxwell construction discussed in the introduc­
tion and given approximately by (2). 

The propagation of the front will continue until the whole 
length of the panel is collapsed as discussed in the experimental 

section. In the case shown in the figure, the calculation was 
interrupted at configuration (jjS). 

As in other structures exhibiting localization, the overall 
length of the panel affects the initial part of the calculated 
response (see Kyriakides and Chang, 1991). Figure 11 shows 
a comparison of the P - Av responses of panels with the same 
cross-section for lengths of 10, 20, 30, and 200 spans. The size 
of the cusp which follows the limit load is seen to grow with 
the length of the panel. In fact, for a very long panel, the cusp 
portion of the response follows (in reverse) almost the same 
path as that followed in the initial uniform part of the response. 
The reason for this is that for such a long panel the volume 
decrease in the locally collapsing section is small compared to 
the volume change in the rest of the panel which is experiencing 
unloading. Quite clearly, in volume-controlled pressurization 
of such panels, the cusp-like parts of the calculated response 
would not be realized. Instead, upon reaching the limit load, 
the response would experience a dynamic drop from the limit 
pressure to the propagation pressure. 

(b) Unsymmetric Initiation and Symmetric Propagation of 
Collapse. The characteristics of the response of panels which 
bifurcate from the primary symmetric response into an un­
symmetric mode before the natural limit load is achieved will 
be discussed through an example with X = 12 and a length of 
20 spans. The calculated response for this geometry, in the 
neighborhood of the first instability, is shown in Fig. 12. Ini­
tially, (path ob) the panel deformation is uniform along the 
length and symmetric about the midspan. The bifurcation into 
unsymmetric deformation occurs at b and corresponds to (P, 
At>) = (1.970,0.0244). The bifurcation mode is axially uniform 
and is given by 

w = A s i n i / t - j - ix — | cos n (ID 

where fi is the lowest positive root of tan n = /* (see Schreyer 
and Masur, 1966). If the unsymmetric postbifurcation defor­
mation were constrained to be axially uniform, the calculated 
response would follow path be in the figure. This path has a 
negative slope and rejoins the primary response as shown sche­
matically in Fig. 1(b). Due to this negative slope, we can again 
expect localized modes to be preferable to continued axially 
uniform collapse. Indeed, bed represents the response calcu­
lated when the unsymmetric deformation is allowed to localize. 
Due to the finite length of the panel analyzed, significant 
departure from path be is delayed until point c. Again, localized 
deformation is accompanied by a rather abrupt drop in pres­
sure, but for this length, AD remains monotonically increasing. 

In the interest of making the problem more realistic, we 
consider the same panel geometry but introduce a small initial 
imperfection corresponding to the unsymmetric buckling mode 
(11). The calculated P - Av response is shown in Fig. 13 
together with sets of cross-section configurations for locations 
A and B which are identified in the inset. Full views of the 
deformed configurations corresponding to points (T) to (6) 
on the response are shown in Fig. 14. The panel initially de­
forms in a primary symmetric fashion (©-(J ) ) - In t n e neigh­
borhood of the unsymmetric bifurcation of the perfect problem, 
the imperfection activates axially uniform, unsymmetric de­
formations clearly shown in configurations (2) in Fig. 13 (note 
also the off-center position of the shade boundary in Fig. 14). 

The response develops a limit load at @ beyond which the 
deformation starts to localize. In the process, the deformation 
of a section of the panel at midlength experiences continued 
growth at a dropping overall pressure, while the remainder of 
the panel unloads. This difference is clearly illustrated in Fig. 
13 by comparing the cross-section configurations of locations 
A and B corresponding to (3) (see also Fig. 14). As localization 
continues, the shape of the most deformed cross-section is seen 
to become progressively more symmetric. Local deformation 
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is eventually arrested by membrane tension, and the collapse,
which by this time has become symmetric, starts to propagate
along the panel. For long panels, the propagation of the col­
lapse can occur in a steady-state fashion and has essentially

the same features as those of the symmetric case discussed in
Section (a). The propagation pressure again corresponds to
that predicted by the Maxwell construction (pp 0;= 1.0046).

Summary and Conclusions
It has been demonstrated that, in addition to the classical

limit load and bifurcation buckling instabilities, long panels
can also develop propagating buckles. Once initiated, such
buckles will propagate as long as the pressure is higher than
the propagation pressure. In general, the propagation pressure
is significantly lower than the classical critical pressures as­
sociated with the perfect structure.

The objective of the present work was to demonstrate that
in such structures the classical instabilities trigger localization
of collapse and the initiation of propagating buckles. In the
case of panels with lower values of the arch parameter A, the
critical instability of geometrically perfect panels is the limit
pressure of the primary symmetric response. In has been shown
that following the load maximum the symmetric deformation
localizes to a section a few panel spans long, while the re­
mainder of the panel unloads uniformly. The pressure-volume
change response follows a cusp-like shape until the localized
collapse is arrested by membrane tension. Following this, and
under prescribed volume loading, the collapse can propagate
along the length at the propagation pressure.

In the case of panels with higher values of A, the primary
symmetric response is interrupted by a bifurcation into an
axially uniform, unsymmetric mode before the limit pressure
is reached. It has been shown that soon after its onset, this
mode of deformation also localizes to a section a few panel
spans long. As the deformation progresses, the unsymmetric
local deformation gradually yields to a symmetric one. Local
deformation is eventually arrested by membrane tension and
the collapse can then propagate down the panel.

The propagation pressure of elastic panels exhibiting either
type of behavior can be calculated exactly by the Maxwell
construction and is given approximately by Eq. (2).

The main requirements for the existence of the type of be­
havior described are that the structure have a local up-down­
up load-deformation response, as those shown in Fig. 1, and
that it be long (see Kyriakides, 1993). Thus, long panels with
other arch geometries, boundary conditions and load distri­
butions can be expected to exhibit similar localized and prop­
agating instabilities.
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Fig. 13 Panel analysis: A = 12, 2L = 20S, with uniform unsymmetric
initial imperfection
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A P P E N D I X 
Bifurcation Into Axially Nonuniform Shape 

At any calculated equilibrium state on the primary response, 
(symmetric, axially uniform) the second variation (b2V) of the 

potential energy associated with the bifurcation modes (10) 
may be evaluated. Vanishing of b2V indicates loss of stability 
of the uniform configuration. We define q as 

Q= Hi> A2, . . . , AN, Bu B2, . . . , BN, C\, C2, . • •, CN] 
(Al) 

where Ah B, and C, are the mode coefficients in (10). The 
second variation of the potential energy of the panel may then 
be expressed a? 

52V-- *Eapj + MaRiiKal3j 

+ M°xx($i,r$i,j + $Aj) +N°ee(<i>2,r$2,j+$,,4j) 

+ P ( U,xiWj - UjW^j) + — ( VJVJ + VfiiWj 
K 

• VJWJJ+ WJWJ) [Rdddxqiqj (Al) 

where ( )° corresponds to the values in the primary equilibrium 
state, and derivatives with respect to qt are denoted by ( )i(. 
Implicit in the derivation of Eq. (A2) are Sanders' (1963) non­
linear strain-displacement relations for moderate rotations. 
These relationships, when linearized, yield 

Eee = -^(v,B + w)+ </% + <j>°$, 

Erf> = - v,x + ̂ ufi) +4>i4>2 + 4>2<t>i 

Kxx = <l>\,x, 

Kee - „ 02,9> 

Kyi 

where 

!>i = - w,x, 

1 . 
^ </,l,9 + < 

1 

1 -
2,x + R (A3) 

<fe = ̂  (v-wt9) and 4> = - ( y x - - « , 

Equation (A2) then reduces to the quadratic form 82V = qrHq. 
Thus, loss of stability of the primary response is indicated by 
the vanishing of the determinant of H. 
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