
F, W. Call 
Department of Mecfianical 

and Industrial Engineering, 
Marquette University, 

P.O. Box 1881, 
Milwaukee, Wl 53201-1881 

e-mail: callf@VMS.CDS.MU.EDU 

Dispersion—An Entropy 
Generator of Diffusion 
In multicomponent gaseous flows with chemical reactions, diffusion is usually consid­
ered to he a single-source entropy generator. Introducing the concept of dispersion, 
where the atom balance is dominant rather than the molecular, shows in an ideal 
setting that, even when there is diffusion, the dispersion part of entropy generation 
can be reduced to zero by proper choice of species flow velocities. Fuel cells and 
methane reformers are employed as examples to illustrate these concepts. 

Introduction 

Is it possible to have diffusion without having entropy genera­
tion in a multicomponent flow, with chemical reactions? In 
mechanics, examples used to illustrate reversible movement of 
a mass on a frictionless plane, show that that energy may be 
borrowed from an outside source to accelerate the mass. Then 
the energy is returned to the source to decelerate the mass; all 
the while no entropy generation occurs. In chemical equilib­
rium, a reaction may occur in one direction, while nearby, the 
reverse reaction is occurring resulting in no entropy generation. 
Can these principles be apphed to complex multicomponent 
flow processes? 

Real world (macroscopic) processes are always irreversible, 
but it is useful to examine theoretical cases with the objective 
of determining the minimum entropy generation for a process 
as a benchmark for the practical case. In this paper, the focus 
is on diffusion and how it contributes to entropy generation. It 
is shown that a (theoretical) fuel cell can be operated, by proper 
manipulation of the flow rates of the chemical species in the 
direction of the fuel stream bulk flow, so as to produce vanish-
ingly small entropy generation. A new concept in the study 
of diffusion under chemical equilibrium is proposed in which 
kinetics has been removed. Its entropy generation can be re­
duced to zero. 

In a real fuel cell, set conditions for operation yield a unique 
thermodynamic path for the cell, and this is a large entropy-
generating path. What that path is, is not of interest in this 
paper. Here, with the aforementioned minimization objective in 
mind, several sources of irreversibility other than diffusion are 
removed from consideration. The theoretical fuel cell (high-
temperature methane/air solid oxide, SOFC) is assumed to op­
erate isothermally {T = 1000°C, 1832°F), at atmospheric pres­
sure with no (total) pressure drop throughout the cell, and with 
no interaction with the cell walls (frictionless). The fluids are 
treated as ideal gases. The cell is considered one-dimensional 
in the direction of the bulk flow of the gases, and no electro­
chemical losses (polarization losses) such as electrical resis­
tance or activation losses in the electrolyte is allowed. No ki­
netic energy or gravitational effects will be included in the 
energy balance. The only entropy-generating mechanism con­
sidered is diffusion in the direction of the bulk flow. 

The concept of dispersion is introduced, a special form of 
diffusion that produces irreversibility. Suppose methane is par­
tially combusted, brought to chemical and thermal equilibrium 
at high temperature, and then fed to a pipe at a uniform rate. 
In the steady-state setting, the amount of carbon per second 
passing is the same at every point along the length of the pipe, 

even if diffusion occurs. A combustion product, say CO, may 
be allowed to "slow down" compared to the bulk flow, but 
other carbon-containing species such as CH4 or CO2 must com­
pensate. It is important to understand that the process flow can 
remain in chemical equilibrium, with constant partial pressures 
Pi, while the molar flow rates of the species are being manipu­
lated. Since the chemical composition remains constant in the 
pipe, the atom ratios C:H:0 remain constant, i.e., there is no 
"dispersion of the atoms," but there can be diffusion. It will 
be shown that it is dispersion at the atom level that causes 
entropy generation, and not just relative flow rates of the species 
at the molecular level. In the pipe, one chemical species stream 
can borrow energy from another without entropy generation due 
to dispersion. These concepts will be extended and verified later 
in the fuel cell case where the chemical composition is forced 
to vary. 

Finally, the case of a methane reformer, which must generate 
entropy, is considered, and it is compared to the fuel cell case. 

The Isothermal Fuel Cell Case 

In this section, the equations for entropy generation are devel­
oped for the isothermal, constant pressure SOFC. Implicitly in 
Gaggioli and Dunbar (1993) and explicitly in Call (1996), the 
assumption is made that the volumetric flow rates of the chemi­
cal species in the fuel stream are equal. This is not assumed 
here, but their methods are adapted. Figure 1 shows a sketch 
of a single cell, while Fig. 2 gives the control volume (CV) 
parameters: T = 1273 K (1832°F), P = 101.325 kPa (14.7 
psi). The fuel is syngas, consisting of 1 mol/s CH4 (7.92 Ibmol/ 
h) and 1 mol/s H2O previously reformed and brought to chemi­
cal equilibrium at T and P (heat needed to do this is not part 
of the CV). The air (stochiometric) is modeled as 2 mol/s (O2 
-I- 3.76N2) at T and P (again heat needed is not part of the 
control volume). The parameters; (not a linear distance) from 
0 to 1 represents the fraction of oxygen in the air that is con­
sumed, POW is the (electrical) power generated by the cell 
(positive) and Q is the heat into the cell needed to keep the 
cell at a constant temperature (negative when heat flows out). 
It is assumed that only six products, labeled 1 - 6 , are formed 
on the fuel side and these are in the order: CH4, CO, CO2, H2, 
H2O, O2. Also, assume that only O2 and N2 exist in the air 
stream, labeled 7 and 8, respectively. 

Enthalpy balance for the CV: 

X njhj -h Q = POW + S njl (1) 

Entropy balance for the CV: 
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S njsj + - + 5ge„ = Z n'iS; 

Eliminate Q to obtain 

(2) 
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Fig. 1 Westinghouse solid oxide cell located at http://www.metc.doe 
.gov/projfact/power/fc/west_so.litmi 
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Fig. 2 Inputs and outputs to the control volume in the fuel cell case at 
an arbitrary value of the fuel utilization x 

= - A G ' 

There is a reversible isothermal thermodynamic path between 
the input and output states. In that case, POW is the total power, 
and since S'gc„ = 0, it follows that the total power that can be 
extracted from the cell is - A G ' . 

The task now is to find explicit expressions in terms of the 
n'l's and the P,'s for POW and TS'g^„. The n,"s and the P,'s are 
in turn functions of the parameter A:, i.e., depend on the particu­
lar thermodynamic path chosen. The general entropy generation 
equations for multicomponent fluid systems are given in Teng 
et al. (1996), but those are in terms of a Eulerian frame of 
reference. The needed form will be derived here independently, 
using the material and pressure constraints. 

The two pressure constraints are 

6 

1 

Material balance is given by the matrix equation 

(3) Equations (5g) and (5h) say that ny and rig are already unique 
functions of x since there are no chemical reactions in the air 
stream (except for diffusion of O "̂  ions across the solid electro­
lyte to the fuel side, done reversibly), only depletion of O2. 
Since there are three atom constraints (carbon, hydrogen, and 
oxygen) on the fuel side, and there are six chemical species, 
the six molar flow rates can be written in terms of three parame­
ters (the e's) and of course x. A standard parameterization for 
the first seven rows of the four columns of the large matrix 
is determined by the stochiometric coefficients of the four 
reactions ZOj,.;, -> 202,a,„,; CH4 -I- HjO « CO -f SHj; CO -I-
H2O « CO2 + H2; O.5O2 -I- H2 « H2O. The last three are in 
equilibrium while the first is put into equilibrium by a counter 
voltage. The e's are functions of j ; and depend on the thermody­
namic path chosen. 

Next, compute the differential of Eqs. (3) , (4), (5) , and 
(4a, b) substitute the differentials njclgi = -n[s,dT + (nUpi)dPi = 

V'idPi 
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dPOW + TdS',,n -X n'idgi - 'Zgidn'i 
I 1 

6 

= -I(v,' - v[)dp, - ( v ; - v^)dp, 
2 

+ s^j^dx + s^xdci + j^2d£2 + 'i^?,de3 (6) 

where the activities are .s/^ = - (2^6 - '^gi), J^i = -(g2 + 
3g4 - gi - gs), •^2 = - ( f t + ft - g2 - ft), ^ 3 = - ( f t -
go, — 0.5 ge)- With the previous assumption that irreversibilities 
associated with chemical reactions are negligible (j</| = si2 = 

(5a-/!) d-i = 0) 

N o m e n c l a t u r e 

j / = activity, J/mol 
g = molar Gibbs free energy h — Ts, 

J/mol 
G' = total molar Gibbs free energy 

flowSrt.'g,, W 
hi = molar enthalpy, J/mol 
n'i ~ molar flow, mol/s 
P = total pressure. Pa 

Pi = partial pressure. Pa 
POW = power, W 

Q = heat flow, W 

R = ideal gas constant, J/mol-K 
i = molar entropy, J/mol-K 

Sgcn = entropy generation, W/K 
T = temperature, K 

V,' = volumetric flow rate of j'th compo­
nent, m'/s 

X = parameter, fraction of oxygen con­
sumed 

e, = parameter, i = 1, . . . , 3 
pi = molar density, mol/m"* 
T = Pi + P2 + P,, Pa 

Subscripts 

1-8 = CH4, CO, CO2, H2, H2O, O2 ft,el 
02,ain N2 

eq = at chemical equilibrium 
(• = chemical species at exit of CV 

j = chemical species at entrance 

Superscripts 
Act = actual 

* = classical case 
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Fig. 3 Molar flow rates (fuel side) versus fuel utilization for ttie Ideal 
isothermal fuel cell with no diffusion 

dPOW = J!^,dx (la) 

TdS'^.. = - E (V; - V[)dPi - {V!, - V's)dPj (lb) 
2 

The Classical Case of a Reversible Fuel Cell. In the clas­
sic reversible case it is assumed not only that the fuel side is 
in chemical equilibrium at each value of ;c, but also that there 
is no relative diffusion on either the fuel or the air side, i.e.. 

( 8 a - 0 

This yields dS'^en = 0 from Eq. (lb). Since there are 19 
unknown functions of x (8 Pi's and 8 nj's, 3 €,'s) and 19 
equations (Eqs. (4) , (5) , and (8)) , the system can be solved. 
Figures 3 and 4 show the results of the n,''s and the P,'s as 
functions of x. These solutions will be denoted by n'*, Pf, 
e,*. This is the same case as in Call (1996). 

The Case of "Reversible" Diffusion. 
way, at least mathematically, in which dS'^en • 

There is another 
, can be made zero 

for all values of A; . Again, constant pressure ( Eqs. (4)) , material 
balance (Eqs. (5a~h)), chemical equilibrium (Eqs. ( 8a -c ) ) , 
and Eq. (8i) are assumed. 

Now take differentials of Eqs. ( 8a - c ) , and with dgi = (RTI 
Pi)dPi and P.V; = nlRT, eliminate rfPj, dP^, and dP^ as 
well as the n,''s from Eq. (Ib)lo obtain (the e,'s will cancel!) 

1 do gen 
RT 
2^ | ( 2 P , + 6P2 + 6P3 2P,-.2P,) 

dP, 

+ (4xPi + (4x - 3)^2 + (4JC - 4)P3 

+ P4- 2P,) 
dP,} 

Pe} 
(9) 

where T = Pi + P2 + P3. 
The coefficients of dP^ and dP^ in Eq. (9) can be related to 

physical phenomena. The ratio (0:C)'^" of oxygen atoms to 
carbon atoms in the fuel side, at any x, is determined by the 
partial pressures of the oxygen and carbon containing species. 
On the other hand, the classical case ratio (0 :C)* is determined 
by the input molar flow rates (1 mol/s CH4, 1 mol/s H2O, and 
2x mol/s O2); the composition can be computed from these 

numbers as there is no diffusion; similarly, for the actual hydro­
gen/carbon ratio (H:C)^°' and the classical ratio (H:C)*. The 
formulas for the four ratios where T = Pi + P2 + P^ are 

(0 :C)^" = (P2 + 2P, + Ps + 2P,)/T 

(0 :C)* = (Ax + 1)/1 

(H:C)^" = (4P, + 2P4 + 2P5)/r 

(H:C)* = 6/1 (lOa-d) 

Substitution of Eqs. (lOa-d) into Eq. (9) yields 

Too gen — 
dP 

((H-.C)"" - (H:C)*) -^-^ + ([(0:C) 
P5 

0.5(H:C)]' [(0:C) - 0.5(H:C)]*) 
dPe 

(11) 

Define no dispersion (of atoms) to mean (0:C)'^'" = (0 :C)* 
and (H:C)'^" = (H:C)*, and dispersion if these two equations 
do not hold. It is clear that dSg^^ = 0 exactly when there is no 
dispersion, i.e., when the following two equations hold: 

3(P, + P2 + P3) = 2P, + P4 + P5 

4x(Pi + P2 + P3) = - P , + P3 + P5 + 2P6 (12a, b) 

Note that there are enough equations in the case of no disper­
sion to determine the P,'s for i = 1, . . . , 6 as functions of x, 
using Eqs. (4a), (8a -c ) , and (12a, b). For / = 7, 8, the 
n'i's are given by Eqs. (5g, h) and the P,'s can be determined 
by Eqs. (4b), (Si), and P,V; = njRT, and these values are 
the same in the classical, case, viz., «/*, Pf. Even though in 
this nondispersive case there is a unique solution for the P,'s, 
there is not a unique solution for the remaining «,''s, / = 1, 
. . . , 6 (in fact there are three degrees of freedom). In contrast, 
there is a unique solution for the n,''s in the classical case. The 
next section shows the connection between the two cases. 

Comparison of the Classical and the Nondispersive Cases. 
The difference between the two cases is in solving for the 
n'i's, i = 1 , . . . , 6. In the no dispersion case, the five constraints 
(%d-h) are removed and the two constraints (12a, b) are 
added, a net loss of three equations. The precise connection that 
shows what these three equations are is given by the following 
algebraic result. 

[F^] 
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Fig. 4 Partial pressures (fuel side) versus fuel utilization for the Ideal 
isothermal fuel cell with no diffusion 
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Table 1 Fuel side ratios of component molar flows njlnr (= Vi/Vi*) 
comparing a fuel cell with no dispersion to the classic fuel cell case of 
no diffusion, for values of fuel utilization x 

X 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

CH4 
1.0001 
1.0001 
1.0001 
1.0001 
1.0001 
1.0001 
1.0001 
1.0001 
1.0001 
1.0001 

CO 
0.9970 
0.9971 
0.9973 
0.9974 
0.9975 
0.9976 
0.9977 
0.9979 
0.9980 
0.9981 

CO2 
2.1854 
1.0381 
1.0161 
1.0089 
1,0055 
1.0035 
1.0022 
1.0013 
1.0007 
1.0003 

Hj 
1.001 
1.001 
1.001 
1.001 
1.001 
1.001 
1.001 
1.001 
1.001 
1.001 

H20 
0.7602 
0.9919 
0.9964 
0.9979 
0.9987 
0.9991 
0.9994 
0,9996 
0.9998 
0.9999 

0? 
0.99 
0.99 
0.99 
0,99 
0,99 
0,99 
0,99 
0,99 
0.99 
0.99 

entropy generation (temperature gradient, friction, kinetic ener­
gies, etc.) have been removed from consideration. 

The resulting equations are obtained from the fuel cell case 
by setting POW = 0 and limiting the summations to the first 6 
terms in Eqs, (1), (2), and (3). The entropy generation 5ge„ 
depends only on the input (fixed) and output states and not on 
the thermodynamic path inside the reformer. Equations {4-b) 
and (5.g, h) are dropped. The differentials in Eq. (6) are then 
thought of as changes in the thermodynamic properties along 
(differentiable) paths from one possible output to another possi­
ble output. Thus, the physical position of the outputs (the exit 
of the reformer) is not changing. 

The modified Eq. (lb) becomes 

ra5;„ = -I(v, ' - v[)dP> (15) 

Lemma. The following three sets of equations are equiva­
lent, under the assumptions P,V,' = nlRT ior i = 1, . . . , 6, 
and Eqs. ( 5 a - / ) 

n\{P, + P2 + P3) = P, ( = 1 , . . . , 6 (13fl-/) 

3(Pi + P2 + P3) = 2P, - ^ ^ 4 + ^ 5 

Ax{P, + P2 + P,) = - P , + P, + Ps + 2Pe 

e,(Pl + P 2 + P 3 ) = P 2 + P3 

tl{P^ + P2 + P3) = P3 

e3(P, -H P2 -H P3) = P5 -F P3 - Pi (14a-e) 

Note that Eqs. (14a, b) are the same as the nondispersion 
Eqs. {\2a,b). Thus, the unique solution for the P,'s for r = 1, 
, . . , 6 in the nondispersion case is just the P f s of the classical 
case. It is clear that the classical case is just a special case of 
the nondispersion case, in which the three constraints (14c -e ) 
have been added. In the nondispersion case which is more gen­
eral, the three e,'s can be chosen arbitrarily and, since the coef­
ficients of the rfe.'s in deriving Eq. {lb) were zero, there will 
be no entropy generation due to diffusion or chemical reaction. 

An example is shown in Table 1 where three of the «"s 
(nI, n'i, and n'f,) have been chosen to be a httle different from 
the n/*'s . 

Remarks. (() One of Eqs.(13) is redundant. (ii) The physi­
cal significance of the form of Eqs. (14c -e) by themselves is 
not known. {Hi) It appears that the concept of dispersion is very 
general, that Eq. ( I I ) is independent of the number of species 
and reactions that are assumed to represent the dynamics of the 
flow, (/v) It is not the case that any three of the n/'s can be 
chosen arbitrarily, only the e,'s, ! = 1, . . . , 3. For example, 
n'u n'2, and «3 cannot be changed arbitrarily since their sum 
equals 1. 

Suppose now that the output is the unique (classical) case 
of not only chemical equilibrium, Eqs. (8fl-c), but also no 
diffusion, Eqs. {8d-h). Then the numerical values for the 
n'i's and Pi's, i = 1, . . . . 6 can be computed (in fact, they are 
just w'*(0) and P,'''(0) of the classical fuel cell case), and 
thus 5ge„ = - A G ' / r as well. Now, move along a path of 
output states starting from this equilibrium, always remaining 
in chemical equiUbrium, allowing diffusion, but no dispersion, 
Eqs. (12a, b) with x - Q. Then the chemical composition of 
these outputs are unchanging (Lemma with .x = 0) as is Sge„, 
but the n'i's can vary with three degrees of freedom as in the 
no-dispersion fuel cell case. 

The Kinetic Part of Diffusion 

If the reader is alarmed that the second law of thermodynam­
ics appears to be violated, keep in mind that the terms in Eq. 
(1) due to kinetic energy were dropped. If included, Eq. (3) 
would have a positive term - A(KineticPower) on the RHS, 
and this would be allocated to TS'^en • This term, insignificant to 
begin with, can be made arbitrarily small (on a basis per mole 
of reactants) compared to any disperse effects by taking the 
cross sectional area arbitrarily large. 

For those who prefer the static environment, the reformer 
case, for example, can be redone in the following way. Imagine 
a fixed amount of inputs in a controlled space containing six 
receptacles (balloons?). Each receptacle is allowed to contain 
only one chemical specie, to vary in volume, and to carry out 
chemical reactions with the other five. The sum of the six pres­
sures is assumed to be P. 

Future Considerations 

The unusual methodology used here of adding an independent 
variable x simplifies the analysis, but is one-dimensional in 
its nature. A three-dimensional analysis should be made using 
standard (Eulerian) methods to see if a "no-dispersion" con­
cept holds more generally, even in the nonequilibrium thermo­
dynamics setting. This could include nonideal gas properties 
with nonideal flow. Experimental work could be done to see to 
what extent the C:H:0 ratios vary in the flow of real SOFCs, 
and whether these numbers can be manipulated by controlled 
diffusion of additional fuel. 

The Isothermal Methane Reformer Case 

The setup and equations for a methane reformer is similar to 
the fuel cell. The fuel input flows are as before, but no reforming 
has started. There are six reaction products as before, 1-6. 
There is no air and no power POW, electrical or otherwise. 
There is no x, but the output state is assumed variable in which 
the final flow rates n ' ' s and partial pressures P,'s for (' = 1, 
. . . , 6 can be manipulated. As before, all other sources of 
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Thermodynamic properties and graphs are from the Elec­
tronic Equation Solver (EES), while the sketches are from 
CorelDRAW! 
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