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Abstract—Prior work has shown that Visual SLAM (VSLAM) 

algorithms can successfully be used for realtime processing on 

local robots. As the data processing requirements increase, due to 

image size or robot velocity constraints, local processing may no 

longer be practical. Offloading the VSLAM processing to systems 

running in a cloud deployment of Robot Operating System (ROS) 

is proposed as a method for managing increasing processing 

constraints. The traditional bottleneck with VSLAM performing 

feature identification and matching across a large database. In this 

paper, we present a system and algorithms to reduce 

computational time and storage requirements for feature 

identification and matching components of VSLAM by offloading 

the processing to a cloud comprised of a cluster of compute nodes. 

We compare this new approach to our prior approach where only 

the local resources of the robot were used, and examine the 

increase in throughput made possible with this new processing 

architecture.  
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I. INTRODUCTION 

There are many approaches to robot navigation. Global 
Positioning System (GPS) is most often the approach of choice 
when the robot is operating in a theatre where a GPS signal is 
present. Often times, however, using GPS for robot navigation 
and localization is not possible due to lack of signal. This occurs 
when the robot is operating inside a structure, or building, that 
blocks the reception of the GPS signals. In these situations, 
algorithms such as video based Simultaneous Localization And 
Mapping (VSLAM) can allow robots to track and keep local 
maps of their relative positions within their environment. 
VSLAM works by using a camera mounted on the robot to 
periodically take pictures of their immediate surroundings and 
extracting key features from the images. The robot can 
determine where it is in the local environment by comparing 
features to a database of images taken of the environment during 
prior passes by the robot.  

There are many algorithms such as Scale Invariant Feature 
Tracker (SIFT) [1], Speeded-Up Robust Features (SURF) [2], 
Features from Accelerated Segment Test (FAST) [3], and 
Oriented FAST and Rotated BRIEF (ORB) [4] that are typically 
used for feature keypoints detection. Each of these algorithms 
are capable of detecting multiple robust features for use in 
VSLAM. Typically, VSLAM using these feature detection 
algorithms require storage of hundreds, or possibly thousands, 
of images to be able to properly ascertain the location of a robot 

in a local environment. This creates processing difficulties for 
the robot because the key features must be extracted then 
compared with the images in the database in a realtime 
operation.  

The rest of this paper is organized as follows. Section II 
presents our survey of existing approaches. Section III covers 
the proposed algorithm and computing model. Section IV 
presents comparative results for our algorithm versus existing 
well-known algorithms. Conclusions are presented in Section V. 

II. BACKGROUND 

The processing speed was examined in prior work by the 
authors of this research [5] and a mechanism for adequately 
processing by limiting the image size at runtime was developed. 
The effect of the processing algorithms proposed was 
experimentally tested and shown to allow for proper image 
recognition within realtime operation constraints. 

Fuentes-Pacheco et al. [6] discussed the problem of dynamic 
environments in SLAM. The authors mentioned the importance 
of having reliable algorithms with appreciable performance 
under conditions like variable light, occlusions, featureless 
regions and other unforeseen situation. Intensity variations are 
problematic indoors as there are many sources of light that can 
project uneven light intensities on the captured scene. If a feature 
detector cannot work well under varying lighting conditions 
then mismatches will occur and the resulting pose error will be 
high. 
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Fig. 1. Indoor cooperative robots to utilize realtime VSLAM 

Variation in camera pose is an issue in indoor robotics as 
images can be taken from about any direction while navigating 
in small enclosed spaces. The problem is magnified when taking 
images from a heterogeneous mix of cameras with different 
fields of views and calibrations. This is especially the case as 
shown below in Fig. 1 with two camera sources. An example 
indoor system for deploying VSLAM is depicted in Fig. 1, from 
[7], where an Unmanned Aerial Vehicle (UAV) is cooperating 
with an Unmanned Ground Vehicle (UGV). With image 
information coming from multiple poses within the environment 
from both camera sources, as in Fig. 1, lighting and pose 
variation are problematic. Differences in intrinsic properties of 
cameras will provide some additional variation in captured 
image quality, thus affecting the resulting feature matching. To 
achieve sufficient processing of environmental data for a limited 
range of working conditions, tradeoffs and sacrifices are often 
made. For example, processing speed must be made a high 
priority or  the resolution of processed sensory data will suffer. 
Often times, data compression or dimensionality reduction 
methods are employed to increase processing speed.  

One of the primary algorithms within VSLAM is feature 
matching. Once the key features have been extracted, they can 
be compared to a known database to determine matches. New 
topologies of computer architectures can implement the 
database search with one or more nodes distributed either locally 
or connected via a network. Parallelization of the database 
search is therefore possible and can either occur at the processor 
or the network level. Clipp et al. in [8] presented a multi-process 
CPU and GPU-based system for performing SLAM. Their 
system exploited the computing power within the video card to 
perform operations on images.  

In [9], Hunziker et al. presented a real-time cloud-based 
implementation of SLAM running in the cloud. Much emphasis 
in their work, however, was not to show the performance of 
SLAM but the topology of their configuration that enabled the 
parallelization. 

The contribution made in this paper is the implementation of 
a ROS-based VSLAM algorithm hosted in a multi-node cloud. 
We show that the sacrifices made in our prior work to achieve 
the desired performance metrics are no longer necessary and that 
an optimal result is obtained when the processing is actually 
distributed across both the local robot resources as well as the 
scalable resources available in the cloud. A discussion of the 
parallelization potential of the VSLAM algorithm is also 
presented to quantify the benefits of employing a cloud-based 
distributed processing approach. 

III. THEORY 

A. Proposed Algorithm 

Assuming that well-defined database of landmark images is 
obtainable, search in the neighborhood of the previous location 
of the robot can get us its current location. Our algorithm relies 
on ORB features and brute force matching to find the best 
landmark match for current image input.  

Fig. 2 depicts the flow chart of the search algorithm. Features 
of current image input are extracted and then compared with 

features of landmark images to get the current location of the 
robot. In our algorithm we propose to use parallel neighborhood 
search to expedite the search process. The neighborhood of the 
present location is divided into 9 different parts and search in 
each part is carried out by a cloud node. In the case of failure to 
find the proper match, the neighborhood is extended and now 
this extended neighborhood is again divided into 9 parts to carry 
out the search operation. Ideally this process can carried out until 
the best landmark is found. But due to practical constraints after 
2 or 3 successive failures complete database search is carried out 
to the get the present location. The process continues for each 
data point processed. 

 

Fig. 2.  Flow chart for proposed method 

B. Network Setup 

A wireless switch configuration is made using a D-LINK 
DIR-655 wireless router. In the configuration, the router has a 
reserved IP on the building network LAN (10.x.x.x address 
space), its DHCP disabled, and a building network LAN cable 
connected to one of its switched connections. This configuration 
allows wireless clients to connect to the network with IP 
addresses on the building network LAN (10.x.x.x address 
space), allowing them to be directly addressable by the local 
campus cloud. Fig. 3 depicts the network configuration of the 
system. 

 

Fig. 3. Cloud Robot Network Configuration 



C. Message Passing Configuration (ROS) 

Throughout our system we use the Robot Operating System 
(ROS) middleware. ROS provides tools for managing global 
access to parameters via a parameter server, data via topics using 
a publisher/subscriber model, across a network of connected 
processes called nodes. Input is obtained, in an event driven 
manner, when subscribed topics have new data to be processed. 
Data packets are sent by the publisher(s) of topics when ready 
to be used. 

A similar configuration to the popular Message Passing 
Interface (MPI) was developed on our local cloud using ROS. 
ROS topics, socket-based message passing that use the name of 
the topic as the key to connection management, and inherit 
distributed behavior of ROS nodes provided the basis for the 
system. A single ROS network, or collection of ROS nodes, can 
be distributed across multiple computers. To manage 
connectivity in the system, ROS utilizes a master and worker 
hierarchy. A master in the system contains the core ROS 
process, roscore, which facilitates communication between all 
nodes. To enable networked ROS functionality, both the master 
and worker need parameters to be set in order to specify the 
network configuration. On the master, the personal network 
information is reflected as being that of the ROS master 
computer. The master simply needs to indicate its own network 
information. Workers need to identify the IP address of the 
master and their own IP address. Both the worker and master 
must be directly addressable by one another. 

Flow of data in the system is as described below. An image 
topic from the robot provides the input to the cloud computer 
system. The master processes the image for its features and 
publishes features to the workers. Workers publish the highest 
ranked matches in the database to the master. The master ranks 
the matches and determines the robot’s position. Fig. 4 shows 
the configuration of ROS nodes in the system to achieve a MPI-
like configuration.  

D. Simulation Setup 

A ROS node, running on a computer acting as a mobile robot 
with video input, is used to play back the contents of a dataset. 
Playback is performed approximately at the real-time rates the 
frames were taken from the camera. The purpose of the real-time 
playback mode is to explore the feasibility of the approach in 
real-time and determine what alterations are necessary to make 
the algorithm feasible. For validation purposes, we selected a set 
of freely available benchmark datasets which contain RGB-D 
images and an accurate ground truth trajectory taken by a 
VICON camera system [10].  

E. Distribute Cloud Architecture Span ROS and Private 

Cloud Nodes 

1) OpenStack Cloud Architecture  
OpenStack is an open-source cloud management software, 

which consists of several loosely coupled services, designed to 
deliver a massively scalable cloud operating system for building 
public or private clouds. To achieve this, all of the constituent 
services are designed to work together to provide a complete 
Infrastructure as a Service (IaaS). All the services collaborate to 
offer flexible and scalable cloud solution using API . 

 

Fig. 4. Detailed ROS Node Configuration 

Rackspace and NASA announced the OpenStack project in 
July of 2010. The OpenStack software consists of several 
loosely coupled services with well-defined APIs. While these 
APIs allow each of the services to use any of the other services, 
it also allows an implementer to switch out any service as long 
as they maintain the API. 

The implementation described in this paper is based on the 
Havana release of the OpenStack distribution. The OpenStack 
services set up in our experiments: 

• OpenStack Identity Management (“Keystone”) 
manages a directory of users, a catalog of OpenStack 
services, and a central authentication mechanism across 
all OpenStack components.  

• OpenStack Compute (“Nova”) provides virtual servers 
upon demand. Nova controls the cloud computing 
fabric, the core component of an infrastructure service. 



• OpenStack Network (“Neutron”) provides a pluggable, 
scalable, and API-driven system for managing networks 
and IP addresses.  

• OpenStack Block Storage (“Cinder”) provides 
persistent block storage that compute instances use.  

• OpenStack Image Service (“Glance”) provides a catalog 
and repository for virtual disk images used in 
OpenStack Compute.  

To support a distributed processing infrastructure for robotic 
research, we implemented a backend robotic cloud 
infrastructure as shown in Fig. 5. The structure enables 
distributed processing and scheduling among ROS and backend 
robotic cloud with respect to ROS and backend robotic compute 
node’s compute capacity. 

2) Experiment Setup 
To evaluate network properties and performance of the 

proposed cloud, we set up a robotic cloud cell under the UTSA 
Open Cloud Laboratory. The robotic cloud cell for the 
evaluation comprises of 64 high-throughput AMD’s SeaMicro 
SM15000 nodes. The nodes are linked via a high-performance 
fabric, called Freedom™ Fabric. All servers run Ubuntu with Linux 
kernel 2.6 and KVM hypervisor kvm-kmod-3.2. We use the 
Havana version of OpenStack, whereby 8 servers are configured 
as OpenStack compute servers as shown in Fig. 4. 

 

 
Fig. 5. Cloud Distributed Processing using OpenStack and ROS 

IV. RESULTS 

The execution of the algorithm has been divided into two 
phases. The first phase is to create a landmark database. The 
second phase is to use the landmark database to determine the 
location of the robot. Initially a landmark database has been 
created for 2nd floor hall way of UTSA Bio Sciences and 
Engineering building, and this database has been used later to 
determine the position of the robot. For this experiment we have 
used Pioneer 2 mobile robot with a camera mounted on it. The 
database has been created on the laptop attached to the robot. 

Fig. 6 below depicts the 2nd floor hall way of UTSA Bio 
Sciences and Engineering building. 

 

Fig. 6. Overview of robots path for Landmark image database creation 

Initially a landmark database has been created for 2nd floor 
hall way of UTSA Bio Sciences and Engineering building, and 
this database has been used later to determine the position of the 
robot. For this experiment we have used Pioneer 2 mobile robot 
with a camera mounted on it. The database has been created on 
the laptop attached to the robot.  

The images have been navigation information stamped and 
stored at a rate of 2 Hz. Fig. 6 depicts the route travelled by robot 
in 2nd floor hall way of UTSA Bio Sciences and Engineering 
building.  

 For the second phase we have taken the camera input and 
searched for the best match in the landmark database. The 
navigation information is then obtained from best match and the 
process is continued again. Fig. 7 shows the path obtained by the 
algorithm.  

 
Fig. 7. Overview of robots path for Landmark image database creation 

V. CONCLUSIONS AND FUTURE RESEARCH 

In this paper we proposed a method to offload the VSLAM 
process as an effort to enhance robot performance and 
capabilities. With parallel computation via cloud computing 



nodes, we can utilize computationally expensive algorithms 
without directly impacting robot on-board compute 
functionality. To expand the cloud paradigm to facilitate 
heterogeneous multi-robot VSLAM, we identified that the 
intrinsic and extrinsic parameters of the cameras need to be 
calibrated and taken into consideration into algorithm design. 
Future research will address network considerations such as 
determining network system capacity limits and the amounts of 
necessary overlap for image feature maps. 

REFERENCES 

[1] D. G. Lowe, "Distinctive image features from scale-invariant keypoints," 

International journal of computer vision, vol. 60, pp. 91-110, 2004. 

[2] H. Bay, T. Tuytelaars, and L. Van Gool, "Surf: Speeded up robust 

features," in Computer Vision–ECCV 2006, ed: Springer, 2006, pp. 404-

417. 

[3] E. Rosten and T. Drummond, "Machine learning for high-speed corner 

detection," in Computer Vision–ECCV 2006, ed: Springer, 2006, pp. 430-

443. 

[4] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, "ORB: An efficient 

alternative to SIFT or SURF," in Computer Vision (ICCV), 2011 IEEE 

International Conference on, 2011, pp. 2564-2571. 

[5] P. Benavidez, M. Muppidi, and M. Jamshidi, "Improving Visual SLAM 

Algorithms for use in Realtime Robotic Applications," presented at the 

2014 World Automation Congress, Waikoloa Village, HI, 2014. 

[6] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendón-Mancha, "Visual 

simultaneous localization and mapping: a survey," Artificial Intelligence 

Review, pp. 1-27, 2012. 

[7] P. Benavidez, J. Lambert, A. Jaimes, and M. Jamshidi, "Landing of a 

Quadcopter on a Mobile Base Using Fuzzy Logic," in Advance Trends in 

Soft Computing. vol. 312, M. Jamshidi, V. Kreinovich, and J. Kacprzyk, 

Eds., ed: Springer International Publishing, 2014, pp. 429-437. 

[8] B. Clipp, L. Jongwoo, J. M. Frahm, and M. Pollefeys, "Parallel, real-time 

visual SLAM," in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ 

International Conference on, 2010, pp. 3961-3968. 

[9] D. Hunziker, M. Gajamohan, M. Waibel, and R. D’Andrea. (2014, 2014). 

Rapyuta: The RoboEarth Cloud Engine - RCE2013.pdf. Available: 

http://roboearth.org/uploads/RCE2013.pdf 

[10] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, "A 

benchmark for the evaluation of RGB-D SLAM systems," in Intelligent 

Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, 

2012, pp. 573-580. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


