
Cloud-Based Realtime Robotic Visual SLAM

Patrick Benavidez, Mohan Muppidi, Paul Rad, John J. Prevost, Ph.D., and Mo Jamshidi, Ph.D.Lutcher Brown

Endowed Chair Professor

Autonomous Control Engineering Lab

Department of Electrical and Computer Engineering

University of Texas at San Antonio

San Antonio

USA

patrick.benavidez@gmail.com, [mohan.muppidi, paul.rad, jeff.prevost]@utsa.edu, moj@wacong.org

Abstract—Prior work has shown that Visual SLAM (VSLAM)

algorithms can successfully be used for realtime processing on

local robots. As the data processing requirements increase, due to

image size or robot velocity constraints, local processing may no

longer be practical. Offloading the VSLAM processing to systems

running in a cloud deployment of Robot Operating System (ROS)

is proposed as a method for managing increasing processing

constraints. The traditional bottleneck with VSLAM performing

feature identification and matching across a large database. In this

paper, we present a system and algorithms to reduce

computational time and storage requirements for feature

identification and matching components of VSLAM by offloading

the processing to a cloud comprised of a cluster of compute nodes.

We compare this new approach to our prior approach where only

the local resources of the robot were used, and examine the

increase in throughput made possible with this new processing

architecture.

Keywords—cloud, cooperative VSLAM, indoor robot, VSLAM

I. INTRODUCTION

There are many approaches to robot navigation. Global
Positioning System (GPS) is most often the approach of choice
when the robot is operating in a theatre where a GPS signal is
present. Often times, however, using GPS for robot navigation
and localization is not possible due to lack of signal. This occurs
when the robot is operating inside a structure, or building, that
blocks the reception of the GPS signals. In these situations,
algorithms such as video based Simultaneous Localization And
Mapping (VSLAM) can allow robots to track and keep local
maps of their relative positions within their environment.
VSLAM works by using a camera mounted on the robot to
periodically take pictures of their immediate surroundings and
extracting key features from the images. The robot can
determine where it is in the local environment by comparing
features to a database of images taken of the environment during
prior passes by the robot.

There are many algorithms such as Scale Invariant Feature
Tracker (SIFT) [1], Speeded-Up Robust Features (SURF) [2],
Features from Accelerated Segment Test (FAST) [3], and
Oriented FAST and Rotated BRIEF (ORB) [4] that are typically
used for feature keypoints detection. Each of these algorithms
are capable of detecting multiple robust features for use in
VSLAM. Typically, VSLAM using these feature detection
algorithms require storage of hundreds, or possibly thousands,
of images to be able to properly ascertain the location of a robot

in a local environment. This creates processing difficulties for
the robot because the key features must be extracted then
compared with the images in the database in a realtime
operation.

The rest of this paper is organized as follows. Section II
presents our survey of existing approaches. Section III covers
the proposed algorithm and computing model. Section IV
presents comparative results for our algorithm versus existing
well-known algorithms. Conclusions are presented in Section V.

II. BACKGROUND

The processing speed was examined in prior work by the
authors of this research [5] and a mechanism for adequately
processing by limiting the image size at runtime was developed.
The effect of the processing algorithms proposed was
experimentally tested and shown to allow for proper image
recognition within realtime operation constraints.

Fuentes-Pacheco et al. [6] discussed the problem of dynamic
environments in SLAM. The authors mentioned the importance
of having reliable algorithms with appreciable performance
under conditions like variable light, occlusions, featureless
regions and other unforeseen situation. Intensity variations are
problematic indoors as there are many sources of light that can
project uneven light intensities on the captured scene. If a feature
detector cannot work well under varying lighting conditions
then mismatches will occur and the resulting pose error will be
high.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357525873?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1. Indoor cooperative robots to utilize realtime VSLAM

Variation in camera pose is an issue in indoor robotics as
images can be taken from about any direction while navigating
in small enclosed spaces. The problem is magnified when taking
images from a heterogeneous mix of cameras with different
fields of views and calibrations. This is especially the case as
shown below in Fig. 1 with two camera sources. An example
indoor system for deploying VSLAM is depicted in Fig. 1, from
[7], where an Unmanned Aerial Vehicle (UAV) is cooperating
with an Unmanned Ground Vehicle (UGV). With image
information coming from multiple poses within the environment
from both camera sources, as in Fig. 1, lighting and pose
variation are problematic. Differences in intrinsic properties of
cameras will provide some additional variation in captured
image quality, thus affecting the resulting feature matching. To
achieve sufficient processing of environmental data for a limited
range of working conditions, tradeoffs and sacrifices are often
made. For example, processing speed must be made a high
priority or the resolution of processed sensory data will suffer.
Often times, data compression or dimensionality reduction
methods are employed to increase processing speed.

One of the primary algorithms within VSLAM is feature
matching. Once the key features have been extracted, they can
be compared to a known database to determine matches. New
topologies of computer architectures can implement the
database search with one or more nodes distributed either locally
or connected via a network. Parallelization of the database
search is therefore possible and can either occur at the processor
or the network level. Clipp et al. in [8] presented a multi-process
CPU and GPU-based system for performing SLAM. Their
system exploited the computing power within the video card to
perform operations on images.

In [9], Hunziker et al. presented a real-time cloud-based
implementation of SLAM running in the cloud. Much emphasis
in their work, however, was not to show the performance of
SLAM but the topology of their configuration that enabled the
parallelization.

The contribution made in this paper is the implementation of
a ROS-based VSLAM algorithm hosted in a multi-node cloud.
We show that the sacrifices made in our prior work to achieve
the desired performance metrics are no longer necessary and that
an optimal result is obtained when the processing is actually
distributed across both the local robot resources as well as the
scalable resources available in the cloud. A discussion of the
parallelization potential of the VSLAM algorithm is also
presented to quantify the benefits of employing a cloud-based
distributed processing approach.

III. THEORY

A. Proposed Algorithm

Assuming that well-defined database of landmark images is
obtainable, search in the neighborhood of the previous location
of the robot can get us its current location. Our algorithm relies
on ORB features and brute force matching to find the best
landmark match for current image input.

Fig. 2 depicts the flow chart of the search algorithm. Features
of current image input are extracted and then compared with

features of landmark images to get the current location of the
robot. In our algorithm we propose to use parallel neighborhood
search to expedite the search process. The neighborhood of the
present location is divided into 9 different parts and search in
each part is carried out by a cloud node. In the case of failure to
find the proper match, the neighborhood is extended and now
this extended neighborhood is again divided into 9 parts to carry
out the search operation. Ideally this process can carried out until
the best landmark is found. But due to practical constraints after
2 or 3 successive failures complete database search is carried out
to the get the present location. The process continues for each
data point processed.

Fig. 2. Flow chart for proposed method

B. Network Setup

A wireless switch configuration is made using a D-LINK
DIR-655 wireless router. In the configuration, the router has a
reserved IP on the building network LAN (10.x.x.x address
space), its DHCP disabled, and a building network LAN cable
connected to one of its switched connections. This configuration
allows wireless clients to connect to the network with IP
addresses on the building network LAN (10.x.x.x address
space), allowing them to be directly addressable by the local
campus cloud. Fig. 3 depicts the network configuration of the
system.

Fig. 3. Cloud Robot Network Configuration

C. Message Passing Configuration (ROS)

Throughout our system we use the Robot Operating System
(ROS) middleware. ROS provides tools for managing global
access to parameters via a parameter server, data via topics using
a publisher/subscriber model, across a network of connected
processes called nodes. Input is obtained, in an event driven
manner, when subscribed topics have new data to be processed.
Data packets are sent by the publisher(s) of topics when ready
to be used.

A similar configuration to the popular Message Passing
Interface (MPI) was developed on our local cloud using ROS.
ROS topics, socket-based message passing that use the name of
the topic as the key to connection management, and inherit
distributed behavior of ROS nodes provided the basis for the
system. A single ROS network, or collection of ROS nodes, can
be distributed across multiple computers. To manage
connectivity in the system, ROS utilizes a master and worker
hierarchy. A master in the system contains the core ROS
process, roscore, which facilitates communication between all
nodes. To enable networked ROS functionality, both the master
and worker need parameters to be set in order to specify the
network configuration. On the master, the personal network
information is reflected as being that of the ROS master
computer. The master simply needs to indicate its own network
information. Workers need to identify the IP address of the
master and their own IP address. Both the worker and master
must be directly addressable by one another.

Flow of data in the system is as described below. An image
topic from the robot provides the input to the cloud computer
system. The master processes the image for its features and
publishes features to the workers. Workers publish the highest
ranked matches in the database to the master. The master ranks
the matches and determines the robot’s position. Fig. 4 shows
the configuration of ROS nodes in the system to achieve a MPI-
like configuration.

D. Simulation Setup

A ROS node, running on a computer acting as a mobile robot
with video input, is used to play back the contents of a dataset.
Playback is performed approximately at the real-time rates the
frames were taken from the camera. The purpose of the real-time
playback mode is to explore the feasibility of the approach in
real-time and determine what alterations are necessary to make
the algorithm feasible. For validation purposes, we selected a set
of freely available benchmark datasets which contain RGB-D
images and an accurate ground truth trajectory taken by a
VICON camera system [10].

E. Distribute Cloud Architecture Span ROS and Private

Cloud Nodes

1) OpenStack Cloud Architecture
OpenStack is an open-source cloud management software,

which consists of several loosely coupled services, designed to
deliver a massively scalable cloud operating system for building
public or private clouds. To achieve this, all of the constituent
services are designed to work together to provide a complete
Infrastructure as a Service (IaaS). All the services collaborate to
offer flexible and scalable cloud solution using API .

Fig. 4. Detailed ROS Node Configuration

Rackspace and NASA announced the OpenStack project in
July of 2010. The OpenStack software consists of several
loosely coupled services with well-defined APIs. While these
APIs allow each of the services to use any of the other services,
it also allows an implementer to switch out any service as long
as they maintain the API.

The implementation described in this paper is based on the
Havana release of the OpenStack distribution. The OpenStack
services set up in our experiments:

• OpenStack Identity Management (“Keystone”)
manages a directory of users, a catalog of OpenStack
services, and a central authentication mechanism across
all OpenStack components.

• OpenStack Compute (“Nova”) provides virtual servers
upon demand. Nova controls the cloud computing
fabric, the core component of an infrastructure service.

• OpenStack Network (“Neutron”) provides a pluggable,
scalable, and API-driven system for managing networks
and IP addresses.

• OpenStack Block Storage (“Cinder”) provides
persistent block storage that compute instances use.

• OpenStack Image Service (“Glance”) provides a catalog
and repository for virtual disk images used in
OpenStack Compute.

To support a distributed processing infrastructure for robotic
research, we implemented a backend robotic cloud
infrastructure as shown in Fig. 5. The structure enables
distributed processing and scheduling among ROS and backend
robotic cloud with respect to ROS and backend robotic compute
node’s compute capacity.

2) Experiment Setup
To evaluate network properties and performance of the

proposed cloud, we set up a robotic cloud cell under the UTSA
Open Cloud Laboratory. The robotic cloud cell for the
evaluation comprises of 64 high-throughput AMD’s SeaMicro
SM15000 nodes. The nodes are linked via a high-performance
fabric, called Freedom™ Fabric. All servers run Ubuntu with Linux
kernel 2.6 and KVM hypervisor kvm-kmod-3.2. We use the
Havana version of OpenStack, whereby 8 servers are configured
as OpenStack compute servers as shown in Fig. 4.

Fig. 5. Cloud Distributed Processing using OpenStack and ROS

IV. RESULTS

The execution of the algorithm has been divided into two
phases. The first phase is to create a landmark database. The
second phase is to use the landmark database to determine the
location of the robot. Initially a landmark database has been
created for 2nd floor hall way of UTSA Bio Sciences and
Engineering building, and this database has been used later to
determine the position of the robot. For this experiment we have
used Pioneer 2 mobile robot with a camera mounted on it. The
database has been created on the laptop attached to the robot.

Fig. 6 below depicts the 2nd floor hall way of UTSA Bio
Sciences and Engineering building.

Fig. 6. Overview of robots path for Landmark image database creation

Initially a landmark database has been created for 2nd floor
hall way of UTSA Bio Sciences and Engineering building, and
this database has been used later to determine the position of the
robot. For this experiment we have used Pioneer 2 mobile robot
with a camera mounted on it. The database has been created on
the laptop attached to the robot.

The images have been navigation information stamped and
stored at a rate of 2 Hz. Fig. 6 depicts the route travelled by robot
in 2nd floor hall way of UTSA Bio Sciences and Engineering
building.

 For the second phase we have taken the camera input and
searched for the best match in the landmark database. The
navigation information is then obtained from best match and the
process is continued again. Fig. 7 shows the path obtained by the
algorithm.

Fig. 7. Overview of robots path for Landmark image database creation

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper we proposed a method to offload the VSLAM
process as an effort to enhance robot performance and
capabilities. With parallel computation via cloud computing

nodes, we can utilize computationally expensive algorithms
without directly impacting robot on-board compute
functionality. To expand the cloud paradigm to facilitate
heterogeneous multi-robot VSLAM, we identified that the
intrinsic and extrinsic parameters of the cameras need to be
calibrated and taken into consideration into algorithm design.
Future research will address network considerations such as
determining network system capacity limits and the amounts of
necessary overlap for image feature maps.

REFERENCES

[1] D. G. Lowe, "Distinctive image features from scale-invariant keypoints,"

International journal of computer vision, vol. 60, pp. 91-110, 2004.

[2] H. Bay, T. Tuytelaars, and L. Van Gool, "Surf: Speeded up robust

features," in Computer Vision–ECCV 2006, ed: Springer, 2006, pp. 404-

417.

[3] E. Rosten and T. Drummond, "Machine learning for high-speed corner

detection," in Computer Vision–ECCV 2006, ed: Springer, 2006, pp. 430-

443.

[4] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, "ORB: An efficient

alternative to SIFT or SURF," in Computer Vision (ICCV), 2011 IEEE

International Conference on, 2011, pp. 2564-2571.

[5] P. Benavidez, M. Muppidi, and M. Jamshidi, "Improving Visual SLAM

Algorithms for use in Realtime Robotic Applications," presented at the

2014 World Automation Congress, Waikoloa Village, HI, 2014.

[6] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendón-Mancha, "Visual

simultaneous localization and mapping: a survey," Artificial Intelligence

Review, pp. 1-27, 2012.

[7] P. Benavidez, J. Lambert, A. Jaimes, and M. Jamshidi, "Landing of a

Quadcopter on a Mobile Base Using Fuzzy Logic," in Advance Trends in

Soft Computing. vol. 312, M. Jamshidi, V. Kreinovich, and J. Kacprzyk,

Eds., ed: Springer International Publishing, 2014, pp. 429-437.

[8] B. Clipp, L. Jongwoo, J. M. Frahm, and M. Pollefeys, "Parallel, real-time

visual SLAM," in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ

International Conference on, 2010, pp. 3961-3968.

[9] D. Hunziker, M. Gajamohan, M. Waibel, and R. D’Andrea. (2014, 2014).

Rapyuta: The RoboEarth Cloud Engine - RCE2013.pdf. Available:

http://roboearth.org/uploads/RCE2013.pdf

[10] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, "A

benchmark for the evaluation of RGB-D SLAM systems," in Intelligent

Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on,

2012, pp. 573-580.

