
Enhancing Throughput of Hadoop Distributed File
System for Interaction-Intensive Tasks

Xiayu Hua, Hao Wu and Shangping Ren
Department of Computer Science

Illinois Institute of Technology
Chicago, Illinois 60616

Email: {xhua, hwu28, ren}@hawk.iit.edu

Abstract—The performance of the Hadoop Distributed File
System (HDFS)decreases dramatically when handling interaction-
intensive files, i.e., files that have relatively small size but are
accessed frequently. The paper analyzes the cause of throughput
degradation issue when accessing interaction-intensive files and
presents an enhanced HDFS architecture along with an associated
storage allocation algorithm that overcomes the performance
degradation problem. Experiments have shown that with the
proposed architecture together with the associated storage allo-
cation algorithm, the HDFS throughput for interaction-intensive
files increase 300% in average with only a negligible performance
decrease for large data set tasks.

Index Terms—HDFS, Cache, Hierarchical structure, PSO,
Storage Allocation Algorithm

I. INTRODUCTION

Hadoop Distributed File System (HDFS) is designed as a
massive data storage framework and serves as the storage
component for the Apache Hadoop platform. The HDFS
provides a highly reliable and globally accessible storage with
high throughput for large data sets [1].

However, the advantage of high throughput that the HDF-
S provides diminishes quickly when handling interaction-
intensive files, the files that are of small sizes but are accessed
frequently. The reason is that before an I/O transmission starts,
there are some necessary initialization steps that need to be
completed, such as data location retrieving and storage space
allocation. When transferring large data, this initialization
overhead becomes relatively small and can be negligible
comparing with the data transmission itself. However, when
transferring small size data, it becomes significant. In addition
to the initialization overhead, files with high I/O data access
frequencies can also quickly overburden the regulating com-
ponent in the HDFS, i.e., the single namenode that supervises
and manages every access to datanodes [2]. If the number of
datanodes is large, the single namenode can quickly become
a bottleneck when there is high frequency of I/O requests.

To overcome the issue for interaction-intensive tasks, efforts
are often made from three directions: (a) improve metadata
structure or use cache to provide faster I/O with less over-
head [3], [4], (b) extend the namenode with a hierarchical
structure [5], [6] to avoid single namenode overload, and (c)
design a better storage allocation algorithm to improve data
accessibility [7], [8].

In this paper, we present an integrated approach to address-
ing the HDFS performance degradation issue for interaction-
intensive tasks. In particular, we extend the HDFS architecture
by adding cache support and transforming the single namenode
to an extended hierarchical namenode architecture. Based
on the extended architecture, we develop a Particle Swarm
Optimization (PSO) based storage allocation algorithm to
improve the HDFS throughput for interaction-intensive tasks.

II. EXTENDED HDFS NAMENODE STRUCTURE

To overcome the bottleneck issue existed in the original
HDFS architecture for interaction-intensive tasks, we extend
the single namenode structure to a two-layer namenode struc-
ture. Fig. 1 depicts the new architecture.

Fig. 1. Hierarchical Namenode Structure
As shown in Fig. 1, the first layer contains the Master Name

Node (MNN) which is equivalent to the namenode in the
original HDFS structure. The second layer consists of a set of
Secondary Name Nodes (SNNs), which are applied to every
rack of datanodes. Caches are deployed to every SNN. The
functionality of the SNN is to relay communications between
namenode and datanode and store interaction-intensive file
blocks in its cache to allow fast access. To the MNN, each
SNN is its datanode; to each datanode, the SNN in its rack
is the namenode. Hence, the new structure fully preserves the
original HDFS relations between MNN and SNN, and SNN
and datanode structures. Therefore all the original functions
and mechanisms of the HDFS are intact and the modifications
needed for the structural extension is minimal.

III. STORAGE ALLOCATION ALGORITHM

With this new structure, the throughput degradation caused
by the interaction-intensive tasks can be further reduced by

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357525858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


applying an optimized storage allocation strategie. The devel-
opment of this strategies is done in two steps: (1) determine
file block’s interaction-intensity value (I) and (2) based on its
I value, decide the file block’s storage location.

A. Interaction-Intensity

The interaction-intensity value (I) of a file is a measurement
of how frequent this file is accessed (read or write) by one or
multiple applications. All the blocks of a file shares the same
I value of this file. Since the I value of a file varies from time
to time, it is represented as a function of time.

More precisely, for a given file (f), its interaction-intensity
value I at time instance t is defined as: I(f,Q, t) = |R| where
Q is a given length of a time quantum during which the I value
is calculated. It is a constant. The set R denotes the number
of requests to file f with given time interval Q. Formally,
R = {(fi, ti)|fi = f ∧ max{0, t − Q} ≤ ti ≤ t} where
(fi, ti) denotes a access request with file name fi and request
arriving time ti. The intuitive meaning of I(f,Q, t) is that for
the file f at the time instant t, the total number of requests of
this file submitted to HDFS in the last time quantum.

B. Brief Introduction To Particle Swarm Optimization

The concept of the Particle Swarm Optimization (PSO)
was first introduced in [9]. As an evolutionary algorithm,
the PSO algorithm depends on the explorations of a group
of independent agents (the particles) during their search for
the optimum solution within a given solution domain (the
search space). Each particle makes its own decision of the next
movement in the search space using both its own experience
and the knowledge across the whole swarm. Eventually the
swarm as a whole is likely to converge to an optimum solution.

To apply the PSO to the storage allocation problem we
need to: (1) define a particle structure and a search space;
(2) define the optimize objective functions for both MNN
and SNN layers and; (3) use PSO to explore the solution
domain and eventually derive a near optimal solution vector.
This solution vector is the allocation plan that maximizes the
overall throughput of an incoming batch of file blocks.

C. Storage Allocation at the MNN Layer

In the MNN layer, the MNN only allocates blocks to either
racks or caches. The solution vector (

−→
VM ) at the MNN layer

is used as an allocation plan to indicate the storage place for
each incoming file block.

To specify the structure of
−→
VM , we use FM to denote the

set of file block IDs that are available and with I value larger
than zero. A queue QF is defined to contain the IDs of all the
files whose blocks are in FM . As the HDFS uses the FIFO
policy to schedule their tasks, the queue QF is ordered by the
block’s arrival time. The subset FMI ⊆ FM contains blocks
in FM with their I values larger than the interaction intensity
threshold Ilow. In other words, FMI contains all the incoming
interaction-intensive blocks.

If there are n racks at the SNN layer, to the MNN, there are
2n datanodes: the first n datanodes represent the datanode pool

in each rack and the other n represent the caches in each rack.
For example, assume that MNN decides a block be allocated
to the kth datanote, if k ≤ n, then this block is assigned to
the datanode pool of rack k; otherwise, if k > n, that means
this block is allocated to the cache on the (k − n)th rack.

The solution vector at the MNN layer is denoted as
−→
VM . Its

size is |FM |.
−→
VM [i] represents the location where block QF [i]

is allocated to. The value domain of entry i in vector
−→
VM is

defined as follows:
−→
VM [i] ∈

{
[1, 2n], if QF [i] ∈ FMI

[1, n], if QF [i] ∈ FM − FMI
(1)

As given in Eq. (1), for blocks in FMI, the value domain of
their corresponding entries in

−→
VM is [1, 2n] which indicates

that the blocks in FMI may be stored in cache. For the rest
of the blocks, as their domain is in [1, n], they can only be
allocated to datanodes in a rack.

To compare the interaction-intensity of incoming files with
those which are already in the cache, indicator Γ is introduced
for each incoming file to represent the ratio of the file’s current
I value versus the average I value of all cached files: Γf =

If
(
∑N

i=1 Ii)/N
, where N is the total number of file blocks cached

in the SNN layer. Given the indicator Γ, assume the incoming
files are allocated to rack r, and there are A[r] blocks on rack
r, the cost function Cost for the solution vector

−→
VM in the

MNN layer is defined as:

Cost = k1 ·
2n∑
r=n

Ψ(r − n) ·

∑
−→
VM [i]=r

Γ−1i

A[r]
+

k2 ·
n∑

r=1

Ω(r) ·

∑
−→
VM [i]=r

Γi

A[r]

(2)

where the value Cost is determined by two factors: the
estimated cost of placing blocks into caches (Ψ), and the
estimated cost of placing blocks into datanodes (Ω). k1 and
k2 are the weight factors of these two components.

Allocating blocks with high (low) Γ value into a storage
place that has low (high) I/O workload, such as an idle
cache, reduces the Cost value; while putting blocks with
low (high) Γ value to a low (high) workload storage place,
increases the Cost value. As smaller cost of I/O tasks can
bring larger throughput to the system, Eq. (2) becomes the
objective function for the PSO-based algorithm. In Eq. (2),
Ψ(r) is defined as follows and we leave the definition of Ω(r)
to the next subsection:

Ψ(r) = P
B∗A[r]
R[r] · (k3 ·

W act[r] · B ·A[r]

W avg[r]

+ k4 ·
(Ract[r] + 1) · B ·A[r]

Ravg[r]
) (3)

where array R records the size of remaining cache space
available in each rack, arrays Ract (W act) and Ravg (W avg)
record the number of active reading (writing) channels con-
nected to the cache and average reading (writing) throughput
of the cache in each rack, respectively; they are obtained from
the HDFS. B denotes the block size defined by the system.



Constants k3 and k4 are the weight factors used to measure
the ratio of read/write frequencies of the corresponding task.

P is a coefficient used to introduce penalty into the cost
function for using caches. As the total space of caches is scarce
compared to the storage volume provided by datanodes, the
penalty P

B∗A[r]
R[r] increases exponentially to the ratio of required

cache space versus remaining cache space. As a result, when
the cache is nearly full, the PSO is more likely to allocate
the interaction-intensive blocks to the datanodes with lighter
work load rather than to the cache. Furthermore, if the size
of blocks assigned to the cache of rack r is larger than its
available space, i.e., B ∗ A[r] > R[r], the value of Ψ(r) will
be greatly scaled up and this allocation plan is unlikely to be
chosen by the PSO.

D. Storage Allocation at the SNN Layer

For each allocation solution generated by the MNN during
the PSO searching procedure, the SNNs calculate their own
feedback factor Ω. In fact, the factor Ω itself is a quality
evaluation criterion for allocation plans generated at the SNN
layer. In other words, this is the objective function for the PSO
applied in this layer.

For the SNN in rack r, its solution vector is denoted as
−→
V r
S .

Use Sr to define the set of blocks assigned from the MNN to
rack r, then the cardinality of

−→
V r
S is |Sr|. Similar as the

−→
VM to

the MNN, each entry in
−→
V r
S indicates the storage destination

allocated to each block assigned from the MNN to this rack.
Use Dr to denote the number of datanodes in rack r, the value
domain for each entry in

−→
V r
S is [1, Dr], i.e., each block in the

set Sr can be placed into any datanode in this rack.
For the SNN in rack r, its cost function Ωr is defined as:

Ω(r) =
∑Dr

i=1 (k3 ∗ |Yi|
ER(i) + k4 ∗ |Yi|

EW (i) ) where EW (i) and
ER(i) are the predicted writing and reading speeds on node
i which are given by the auto-regressive integrated moving
average prediction model presented in [10]. k3 and k4 are the
weight coefficients for reading and writing time costs. Yi is
used to record the number of blocks allocated to datanode i.

E. Apply PSO to the Storage Allocation Problem

In the case of the storage allocation problem, a particle
in the PSO is a candidate allocation plan. The structure
of particles in the MNN and SNN layers are

−→
VM and

−→
VS ,

respectively.
The particle moves within the search space from one point

to another. The edge of the search space is defined by the
value domain of the solution vector. Each point in the search
space represents an allocation combination. Since the incom-
ing file blocks have different interaction-intensities and the
storage places in the HDFS have different I/O performances,
different combinations can provide different I/O throughput
for incoming blocks. When one combination is selected (one
particle moves to the point in the search space corresponding
to this combination), the estimated cost of this combination
(the quality of the corresponding point) can be evaluated by
the object function. In our scenario, minimum cost indicates
maximum throughput. Furthermore, the terminating condition

of the PSO applied in this scenario is reaching a given value
of the iteration time.

Let array p[x] represents the coordinates of a particle’s
current location, array b[x] represent the coordinates of the best
known position within the history of this particle, and array
g[x] denote the coordinates of the best known position within
the history of the entire swarm. According to the PSO pro-
cedure, the movement of a particle between two iterations is
determined by the velocity vector denoted as array V [x] which
has the same cardinality as the particle. In this array, V [i]
represents the ith component velocity, which is determined
as: V [i] = ω ·V [i]+C1 ·rp · (b[i]−p[i])+C2 ·rg ∗ (g[i]−p[i])
where coefficient ω is the inertia weight. C1 and C2 are two
acceleration parameters which control the weight of learning
from the particle’s own best position and the weight of learning
from the global best position, respectively. rp and rg are
two random numbers between zero and one. Since the PSO
applied to the storage allocation algorithm has limited iteration
time, the speed of particle convergence is critical. Hence,
the Evolutionary State Estimation (ESE) technique [11] is
introduced to improve the convergence speed and quality.

The PSO-based algorithm with ESE is illustrate in Algo-
rithm 1.
Algorithm 1: Algorithm of PSO with ESE

1 Generate an initial population of particles within search
spaces;

2 Each particle evaluate its current location by the Optimal
Object Function;

3 while iteration time limit not met do
4 update current global best location g[x];
5 configure ω, C1 and C2;
6 for each particle do
7 for each dimension do
8 Determine the velocity component;

9 Move to new location by updating array p[x];
10 Update particle’s best location array b[x];
11 Evaluate its current location by the Optimal

Object Function;

12 return g[x];

IV. EXPERIMENT SPECIFICATIONS AND RESULT ANALYSIS

In this section, we are to empirically show that modifi-
cations made to the original HDFS is able to (1) delay the
time when the namenode becomes overloaded; and (2) the
system throughput is increased for interaction-intensive tasks.
The testbed consists of 130 workstations and servers. The
test applications of the experiments is a pure I/O programs
combined with the Montage program that is dedicated to
processing space photo image blocks in parallel [12].

Fig. 2(a) and Fig. 2(b) show the comparison of the I/O de-
lays caused by processing read and write requests, respectively.
The results clearly indicates that the I/O delays increase much
sooner and faster for a system with only a single MNN than a



(a) Read Delay (b) Write Delay

Fig. 2. I/O Delays under Different Number of SNNs

system with multiple SNNs; the more SNNs the system has,
the later and slower the I/O delays.

The second experiment compares the solution qualities and
calculation times of PSOs with and without ESE, respectively.
We calculate the Cost values using Linear Programming (LP)
approach which gives the optimal solution, and using PSOs
with and without ESE approaches. The results are illustrated
in Fig. 3(a) and Fig. 3(b), respectively.

(a) Solution Quality (b) Allocation Time

Fig. 3. PSO with and without ESE Comparison

As shown in Fig. 3(a), the solution quality (Cost) for the
pure PSO algorithm without ESE decreases at a faster rate than
it is with ESE. Even with 110 incoming blocks, the PSO with
ESE can still provide solutions with quality that is no less
than 80% of the optimal solution. Fig. 3(b) illustrates their
time costs. From Fig. IV, it is clear that the PSO with ESE
significantly improves the quality of the solution with only a
slight increase on the calculation time.

(a) Read Performance (b) Write Performance

Fig. 4. Performance Comparison for Different Types of Applications

The third experiment evaluates the I/O throughput of han-
dling interaction-intensive tasks using the original HDFS struc-
ture, HDFS with SNN (H+S) and HDFS with SNN and cache
support(H+S+C). Storage allocation algorithm are deployed on
both of extended structures with cache size zero for the H+S
structure. We consider three test cases: (1) pure I/O tasks with
large data volumes; (2) standard Montage program with a large
number of small files and has frequent I/O requests on these
files; and (3) a modified Montage program that increases 40%
or more its frequency for I/O requests. The results are depicted
in Fig. 4(a) and Fig. 4(b).

As shown in the figures, when dealing with pure I/O tasks,
the original design of the HDFS has the best performance.
This is because the hierarchical structure and the algorithm

do introduce some overhead. However, the influence of the
additional overhead on the performance is small. When the
test case is changed from the pure I/O task to the standard
Montage program and then the modified one, the performance
of the original HDFS decreases significantly. As a contrast,
the performance of the H+S+C structure becomes significantly
better than both the original HDFS and H+S structures.

V. CONCLUSION

This paper has presented an enhanced HDFS in which
the performance of handling interaction-intensive tasks is
significantly improved. The modifications to the HDFS are:
(1) changing the single namenode structure into an extended
namenode structure; (2) deploying caches on each rack to
improve I/O performance of accessing interactive-intensive
files; and (3) using PSO-based algorithms to find a near
optimal storage allocation plan for incoming files.

Structurally, only small changes were made to the HDFS,
i.e. extending single namenode to a hierarchical structure
of namenodes. However, the experimental results show that
such a small modification can significantly improved the
HDFS throughput (up to 300% in average)when dealing with
interaction-intensive tasks and only cause slight performance
degradation for handling large size data accesses.

REFERENCES

[1] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on. Ieee, 2010, pp. 1–10.

[2] D. Borthakur, “The hadoop distributed file system: Architecture and
design,” Hadoop Project Website, 2007.

[3] S. Chandrasekar, R. Dakshinamurthy, P. Seshakumar, B. Prabavathy, and
C. Babu, “A novel indexing scheme for efficient handling of small files
in hadoop distributed file system,” in Computer Communication and
Informatics (ICCCI), 2013 International Conference on. IEEE, 2013,
pp. 1–8.

[4] X. Liu, J. Han, Y. Zhong, C. Han, and X. He, “Implementing webgis
on hadoop: A case study of improving small file i/o performance on
hdfs,” in Cluster Computing and Workshops, 2009. CLUSTER’09. IEEE
International Conference on. IEEE, 2009, pp. 1–8.

[5] H. Liao, J. Han, and J. Fang, “Multi-dimensional index on hadoop
distributed file system,” in Networking, Architecture and Storage (NAS),
2010 IEEE Fifth International Conference on. IEEE, 2010, pp. 240–
249.

[6] D. Borthakur, “Hdfs architecture guide,” HADOOP APACHE PROJECT
http://hadoop. apache. org/common/docs/current/hdfs design. pdf, 2008.

[7] H. Hsiao, H. Chung, H. Shen, and Y. Chao, “Load rebalancing for
distributed file systems in clouds,” 2013.

[8] A. Indrayanto and H. Y. Chan, “Application of game theory and fictitious
play in data placement,” in Distributed Framework and Applications,
2008. DFmA 2008. First International Conference on. IEEE, 2008, pp.
79–83.

[9] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Neural
Networks, 1995. Proceedings., IEEE International Conference on, vol. 4.
IEEE, 1995, pp. 1942–1948.

[10] S. Vazhkudai, J. M. Schopf, and I. Foster, “Predicting the performance
of wide area data transfers,” in Parallel and Distributed Processing
Symposium., Proceedings International, IPDPS 2002, Abstracts and CD-
ROM. IEEE, 2002, pp. 34–43.

[11] Z.-H. Zhan, J. Zhang, Y. Li, and H.-H. Chung, “Adaptive particle swarm
optimization,” Systems, Man, and Cybernetics, Part B: Cybernetics,
IEEE Transactions on, vol. 39, no. 6, pp. 1362–1381, 2009.

[12] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, “The cost
of doing science on the cloud: the montage example,” in Proceedings
of the 2008 ACM/IEEE conference on Supercomputing. IEEE Press,
2008, p. 50.


