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ABSTRACT 
A quantitative comparison is made between the Finite 

Element Method and four variants of the Transfer Matrix 
Method, as applied to free vibration analysis of  rotor systems. 
The results are as follows: The Finite Element Method is the 
most robust method and can identify the largest number of 
natural frequencies. The finite-element-based Transfer Matrix 
Method is the most accurate method and uses the least amount 
of memory. The Polynomial Transfer Matrix Method is the 
fastest. The Riccati Transfer Matrix Method performed well but 
did not live up to its superior reputation. The Lund Transfer 
Matrix Method also performed well except on processing speed 
where it fell far short of the other methods. 

INTRODUCTION 
The Transfer Matrix Method (TMM) for transverse 

vibrations of beams and shafts was developed by Myklestad [ 1 ] 
and Prohl [2]. The Finite Element Method (FEM) for transverse 
shaft vibrations was developed by Ruhl and Booker [3]. Both 
methods are widely used in rotordynamic analysis. 

Several variants of  the TMM have been developed to 
improve its performance. Lund's [4] method is the standard 
against which the newer methods are usually measured. For 
harmonic vibration analysis, three noteworthy variants since 
Lund have been the Riccati TMM, first applied to rotor systems 
by Homer and Pilkey [5], the polynomial TMM developed by 
Murphy and Vance [6], and the finite-element-based TMM, 
first documented by Firoozian and Zhu [7]. These are the 
methods compared in this paper. 

The traditional view of the FEM and the TMM is roughly 
as follows: The main advantage of the FEM over the TMM is 
numerical stability, allowing analysis of more complex systems 
and calculation of more natural frequencies. The main 
m: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Us
advantage of the TMM over the FEM is high processing speed 
and low memory requirements. When several TMM variants 
are considered, this traditional view becomes too simplistic. A 
more accurate and comprehensive picture is presented in this 
paper based on quantitative comparisons in terms of accuracy, 
numerical stability, processing speed, and memory 
requirements for a free vibration analysis of  a simple shaft 
system. 

NOMENCLATURE 
e = size of largest polynomial coefficient discarded 
E = Young's modulus for shaft material 
I = second moment of area for shaft cross section 
k = shaft support stiffness 

= length of shaft element 
L = total length of shaft 
M = bending moment at shaft station 
n = number of shaft elements 
V = shear force at shaft station 
y = transverse shaft displacement 

= shaft mass per unit length 
0 = angular shaft displacement 
0% = calculated natural frequency of shaft 

% = 'exact' natural frequency of shaft 

'bar' notation: nondimensional quantity 

SYSTEM MODEL 
The FEM/TMM comparisons in this paper are made for 

the plane motion of a simple uniform shaft with identical spring 
supports k at both ends, see Figure 1. Also shown in Fig. 1 is 
the discretization procedure used throughout the paper, i.e., the 
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shaft is divided into elements of  equal length l. In all the 
TMMs, masses of size ,/l are lumped at the element 
intersections and masses of size yl/2 are lumped at the two 
spring support locations. 

The support stiffnesses are set at k = 48EI/L 3 throughout 
the paper. This is the midspan stiffness of the shaft on simple 
supports. It ensures that both the shaft and the support 
stiffnesses affect the locations of  at least the lowest (and 
normally most important) natural frequencies. 

'EXACT' NATURAL FREQUENCIES 
The 'exact' non-dimensional natural frequencies No for the 

uniform shaft in Fig. 1 are the solutions to the transcendental 
equation 

- 1 + cos ~(cosh L - 2~ sinh ~) + 2~ sin ~(cosh ~ - ~ sinh ~) = 0 

(1) 

where ~ = 4 8 k / ~  3, k = k L 3 / ( 4 8 E I ) = l  for k = 4 8 E I / L  3, 

~2 = ~e ,  and ~2 =,/L4m~/(EI). Equation (1) was derived 

based on Weaver et al. [8]. 
The 16 lowest natural frequencies were calculated to 

double-precision accuracy (15 significant digits) from Eq. (1) 
by means of a simple combined bisection/Newton-Raphson 
method, e.g. Press et al. [9]. The 16 frequencies are shown in 

Table 1 for k = 1. The accuracy of the FEM and the TMM 
calculations below are measured against these 'exact' 
frequencies. 

Table 1 'Exact' Nondimensional Natural Frequencies 
~ for k = 1 

1. 7.132841352626294D+00 
2. 1.602380148582338D+01 
3. 3.022661392040124D+01 
4. 6.487998220079662D+01 
5. 1.225218471687941D+02 
6. 2.008306058643486D+02 
7. 2.992028781512469D+02 
8. 4.174531875872199D+02 
9. 5.555120906416892D+02 
10. 7.133487247622190D+02 
11. 8.909476744254407D+02 
12. 1.088300535985667D+03 
13. 1.305402408763302D+03 
14. 1.542250277281780D+03 
15. 1.798842203014556D+03 
16. 2.075176893524679D+03 
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FINITE ELEMENT METHOD (FEM) 
One shaft finite element is shown in Figure 2. The 

corresponding element mass and stiffness matrices are 
available, for example, in Craig [10]. Assuming harmonic 
motion, the element mass and stiffness properties, considered 
separately, give rise to the following relations, written here in 
nondimensional form: 

i156 242 54 t 113 6 -3/jo,  L 
- 2 2 1 | Y ~ |  = V~ 

LSym. 4 JLO J 
(2) 

and 

12+  6 12 Sym 4 6 6 426]t  t 02 01 (3) 

y=y/g, M=Mg/(EI), V=Ve2/(EI), ~.=N~2/(420n4), 
and N2 = ./L4o)~/(EI) where mc are the calculated natural 

frequencies. For the current shaft, 1~ = 0 for all elements except 

the first and the last for which f< = 48k/n 3 at matrix locations 

(1,1) and (3,3) respectively in Eq. (3) to account for the spring 
supports. 

The system mass and stiffness matrices are assembled as 
usual from the element matrices of Eqs. (2) and (3) by the 
direct stiffness method, e.g. Craig [10]. For the current 
problem, this leads to the generalized eigenproblem 
[K]{x}= )v[M]{x} with symmetric band-matrices [K] and [M]. 

The eigenvalues ~. were found by reduction to standard form, 
[A]{x}= ~.{x}, then reduction to tridiagonal form followed by 

combined QL/QR iteration. Double-precision arithmetic was 
used throughout. 

The 16 lowest natural frequencies N¢ were calculated for 

a range of shaft elements from n = 20 = 1 through 2 ~ , 22 , etc. 

up to 212 =4096. The number of significant digits 

N = log,01N e/(Ne - mc ~ are plotted versus the number of shaft 

elements n in Figure 3. Due to space limitations in Fig. 3, not 
all the frequencies are labelled but they occur in consecutive 
order as implied. 

Fig. 3 shows, as expected, that the accuracy of all the 
natural frequencies initially improves as the number of shaft 
elements increases. Also as expected, the lower the natural 
frequency, the larger the number of significant digits for a 
given number of shaft elements below about 100. Above 100 
shaft elements, the number of  significant digits starts to 
decrease. The frequencies deteriorate in consecutive order such 
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that each reaches a maximum of about 7 to 8 significant digits. 
A practical implication is that, with the FEM, too many shaft 
elements can adversely affect the accuracy of the natural 
frequency calculations. Note also from Fig. 3 that the 16 lowest 
frequencies can be calculated with a maximum of only 5 
significant digits in a single run and then only within a 
relatively narrow range of 130 to 250 shaft elements. In 
practice, both the accuracy and the optimum number of 
elements is unknown. However, reasonable estimates can be 
made through trial runs with increasing number of elements 
while watching the digits of the frequency values settle down 
and become constant. 

LUND TRANSFER MATRIX METHOD (LTMM) 
The shaft is divided into a series of lumped masses and 

massless beam elements of equal length as shown in Figure 4, 
e.g. Steidel [11]. For the current two-dimensional analysis, the 
transfer matrix equations for the mass and beam elements 
between stations i and i+lcan be written in the following 
nondimensional form, e.g. Steidel [11]: 

t t[  01100,0 01i l 
LVJi a41 0 0 ~ l l ~ J i  

(4) 

t ] V i+l 

[~0 11/201 111/21/611~ I * l  ~ . .  

o o 1 HVt~ 

(5) 

where 

=~L/(2n4)-4Sk/n  3 for i = l  and i = n + l  (6) 

aal [ ~,/n 4 for i = 2 to n 

~,M, andV are as given for Eqs. (2) and (3) and ~ --2 (1)¢ . 

The natural frequencies ~c can be found by multiplying 
together the transfer matrices of Eqs. (4) and (5) for 
consecutive elements along the entire shaft to obtain the 
following relation between the state variables at each end of the 
shaft : 

{ {X }'~ __ ~[AI] [ a  2 ]~f{x}~ 

{F}J °+,- L[A,1 [A4lJ] {F}J] (7) 

where {x}={~,0} T and {F}={-M,V} T. Boundary conditions 

{F}l = {F}n < = 0 dictate that the determinant IA3[ must equal 

zero to ensure nontrivial solutions, thus, ~. = ~2 can be found 
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as the roots of the corresponding polynomial ]A 3 (£/= 0. Since 

only [A3] is needed, the number of arithmetic operations can 

be halved by determining only [[A 1 ~[A 3 ]]v. This is done by 

two multiplication sweeps through the shaft for given £ with 
initial conditions {y,0,M,V}l ~ equal to {1,0,0,0} T and 

{0,1,0,0} v respectively. The result may be written 

d4~_] 
(8) 

Lurid [4] chose Newton's method, e.g. Press et al. [9], to solve 
for ;~. The procedure is as follows: Values for both IA31 and 

dlA3l/d~ are required. [A,I is found as above, d[A,l/d~ is 
found by differentiation of Eqs. (4) and (5) with respect to 
followed by multiplication sweeps for given ~, with initial 
conditions {y, 0, M, V, dy/dL, d0/d)~, dM/d),., dV/d~} T = 

{1,0,0,0,0,0,0,0} v and {0,1,0,0,0,0,0,0ff respectively. The result 

may be written 

[A;]:I d;1 d;2] 
Ld;, d;2 

(9) 

from which, in accordance with Sokolnikoff and Redheffer 
[12], 

d]A31/d;v__ d;,, d42d32 + d4ld3' d;2, 
fd4, d421 

(10) 

Newton's method can now be applied. 
In the current implementation, the more efficient and 

robust Laguerre method, e.g. Press et al. [9], is used. This 
prevents the original choice of Newton's method from unfairly 
reducing the efficiency of the LTMM in comparison with the 
methods discussed later. 

Laguerre's method requires dZlA31/d£ 2 also and the 

following expression can be derived from Eq. (10): 

" d32 32 + d31 d32 d2[A31/d~L 2 = d31 d42 '[- 2dr31 d t d41 ¢~ 
Id;, 1d'41 d'42] d421 

(11) 

The elements of 

~-Ld4, d~2 J 
(12) 
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are needed for substitution into Eq. (11). They are found 
analogously to the elements of [A' 3 ] above. 

The 16 lowest natural frequencies b--~ were calculated for 

a range of shaft elements from n = 22 = 4 through 23, 24 , etc. 

up to 215 =32768.  Numerical breakdown occurred at 

216 =65536 elements. The number of significant digits 

N = log,01~/(~ ~ - ~ c  ] are plotted versus the number of shaft 

elements n in Figure 5. Due to space limitations in Fig. 5, not 
all the frequencies are labelled but they occur in consecutive 
order as implied. 

Fig. 5 confirms the expected steady increase in accuracy 
for increasing number of  shaft elements and also the expected 
lower accuracy of the higher natural frequencies for a given 
number of elements. As the number of shaft elements grows, 
the accuracy levels off and becomes somewhat erratic, starting 
with the higher frequencies. However, the levelled-off 
accuracies appear to remain within about one significant digit 
of their former maximum values. Thus, in contrast to the FEM 
(Fig. 3), the overall accuracy provided by the LTMM does not 
deteriorate catastrophically for large numbers of shaft elements. 
Figs. 3 and 5 also show that the LTMM requires between 1 and 
2 orders of magnitude more elements than the FEM to achieve 
the same accuracy. This, of course, reflects the LTMM's 
lumped mass discretization versus the FEM's more accurate 
distributed mass model. Figs. 3 and 5 also show that the FEM 
can identify all 16 frequencies, whereas, the LTMM only finds 
the 12 lowest, and the 12th only with about 3 significant digits. 
On the other hand, the LTMM finds the lower frequencies with 
better accuracy than the FEM. 

POLYNOMIAL TRANSFER MATRIX METHOD (PTMM) 
The PTMM uses the same transfer matrix model and the 

same transfer matrix equations as the LTMM, see Fig. 4 and 
Eqs (4) and (5). However, the PTMM determines the 
polynomial coefficients of the determinant IA3 ()~/' 

corresponding to Eq. (8), explicitly once and for all for a 
particular rotor system, e.g. Vance [13]. The polynomial roots 

)~ = N~ are then extracted using one of the many available 

polynomial root solvers, e.g. Press et al. [9]. Thus, the PTMM 
requires only a single set of transfer matrix sweeps of the shaft. 
For comparison, the LTMM works directly with the 

determinant value IA31 and its derivatives and requires one set 

of sweeps for each iteration step for each natural frequency. 
The PTMM has the potential for providing significant gains in 
efficiency at the cost of some loss of robustness, e.g., (1) the 
polynomial coefficients become so large that scaling is required 
to prevent overflow, and (2) the polynomial order becomes so 
large that truncation of the higher order terms is needed before 
root extraction to maximize efficiency. This calls for some 
cognizance on the part of the user. 
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The current PTMM implementation is relatively simple, 
using only a single scaling operation before the polynomial 
coefficient evaluation and a single truncation operation at the 
end of the polynomial coefficient evaluation. This was 
considered sufficient for comparison with the subsequent 
TMMs which have similar implementations. Both Laguerre's 
method and Bairstow's method were tried as root extractors, 
e.g. Press et al. [9]. There was little difference between them in 
terms of  efficiency so the slightly simpler Bairstow's method 
was chosen; also because of its traditional connection with the 
PTMM. (This choice is not available for the LTMM since 
Bairstow's method requires access to explicit values for the 
polynomial coefficients). 

The 16 lowest natural frequencies Nc were calculated for 

a range of shaft elements from n=22 =4 through 23 , 24, etc. 

up to 215 =32768.  Numerical breakdown occurred at 

216 =65536 elements. The number of significant digits 

N = lOgl01~ e/(Oe -- ~ / are plotted versus the number of shaft 

elements n in Figure 6. Polynomial coefficients with absolute 
e 10 -I25 values smaller than e = 10 -125 have been discarded. = 

was found to be roughly the maximum coefficient value which 
could be discarded without losing significant digits. The results 
are almost identical to the LTMM results in Fig. 5, with a slight 
advantage to the PTMM. Thus, the previous discussion of Fig. 
5 applies to Fig. 6 also. The two methods appear to have almost 
identical accuracy and stability characteristics. 

RICCATI TRANSFER MATRIX METHOD (RTMM) 
The RTMM uses the same transfer matrix model and the 

same transfer matrix equations as the LTMM and the PTMM, 
see Fig. 4 and Eqs (4) and (5). Eqs. (4) and (5) are rewritten in 
terms of sub-matrices as follows: 

{x}]" ~[I] [O]~f{x}~ andf{X}~ I[ ][B,]]]{x}~* (13) 
{F}I i =~[Ki] []]JLIF}li L{F}Ji+I ~ ~d] [Lil~/F}J i 

where {x}= {if,0} T and {F}= {M,V} T. The recursive formulas 

JR i ] = [gi-1 lie ~1 ] + [gi-i ][Pi-1 ] 
[Pi ] = [Ki ][Ri ] [Li_, ][Pi-1 ] 

(14) 

can be derived from Eqs (13) with [R,]= [I1 and [P,I=[K,] 

and the natural frequencies Nc can be found by equating the 

determinant [Pn+l (~/ to zero, e.g. Songuyan [14]. 

The matrix order of  Eqs. (14) is reduced by half compared 
to Eqs. (13). The objective is to improve the numerical stability 
and reduce the computational time and storage requirements, as 
discussed by for example Homer and Pilkey [5] and Songuyan 
[14]. The RTMM was implemented here using a PTMM-type 
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algorithm to determine the polynomial coefficients once and for 
all, then solving for the polynomial roots L using Bairstow's 
method. 

The 16 lowest natural frequencies Ec were calculated for 

a range of shaft elements from n=22  =4  through 23 , 24, etc. 

up to 2 ~5 =32768.  Numerical breakdown occurred at 

216 =65536 elements. The number of  significant digits 

N = logl01~/(~ e - ~ c  ~ are plotted versus the number of shaft 

elements n in Figure 7. Polynomial coefficients with absolute 

values smaller than e = 10 -~25 have been discarded, e ~ 10 -125 
was found to be roughly the maximum coefficient value which 
could be discarded without losing significant digits. The results 
are virtually identical to the PTMM results in Fig. 6. Thus, no 
improvement in accuracy or stability of  the RTMM over the 
PTMM was detected in the current study. 

FINITE-ELEMENT-BASED TRANSFER MATRIX 
METHOD (FETMM) 

The FETMM is based on the finite element model of  Eqs. 
(2) and (3). The idea is to rearrange Eqs. (2) and (3) to obtain 

state-variables of  the type {y,0,M,V}~ , thus, turning the 

finite element formulation into a transfer matrix formulation 
with superior accuracy due to the distributed mass modeling, 
see Firoozian and Zhu [7]. 

Eqs. (2) and (3) can be added and re-arranged into 

llbl2:b22 a6 a 3 / ~ 0 ~  
~M = d ~ C l l  c12 b22 b12]/M/ 
V i+1 Lc21 Cll b21 b l l J ~ V J i  

(15) 

where b 11 = ala3 - a4as, b12 = a2a3 - a~a4, b21 = a~a6 - a3as, 

b22 = a2a 6 - a~a3, c~1 = a3d - alb H + a2b2~, 

cl2 = a4d - a~b~2 + a2b22, c2~ = a6d - asbll + a~b2~, 

a] = 6 -22 ;~ ,a  2 = 4 - 4 ~ , , a  3 = 6 + 1 3 k ,  a 4 = 2+3L,  

a 5 = 12 - 156~,, a 6 = 12 + 54L, and d = 12 + 12~, + 7~ 2. 
- -  - -  T 

~, and {y, 0, M, V / are defined as for the FEM above. The sign 

conventions of  Fig. 4 apply. Support stiffnesses 1~ are 

accounted for by replacing state-variable V by V - 1~ at the 

support stations. 
The FETMM was implemented using a PTMM-type 

algorithm to determine the polynomial coefficients once and for 
all, then solving for the polynomial roots L using Bairstow's 
method. The polynomial order is roughly twice that of the 
PTMM because of the heavier dependence on ~ of the matrix 
elements of  Eq. (15). The common factor 1/d in Eq. (15) can be 
ignored in the current free vibration analysis. 
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The 16 lowest natural frequencies o~--~ were calculated for 

a range of shaft elements from n = 21 , 22, 2 3 , etc.  up to 

n = 28 = 256. Numerical breakdown occurred at n = 2 9 = 512 
elements. The number of  significant digits 

N = log l0 ]~ / (~  e - ~c ~ are plotted versus the number of  shaft 

elements n in Figure 8, Polynomial coefficients with absolute 

values smaller than e = 10 -12s have been discarded, e = 10 -125 
was again found to be roughly the maximum coefficient value 
which could be discarded without sacrificing significant digits. 

Fig. 8 shows that the FETMM has the same steep rise in 
accuracy with increasing number of  shaft elements as the FEM 
(compare Fig. 3). However, the FETMM maintains the steep 
rise in accuracy for much longer than the FEM. It is able to 
deliver the 1st natural frequency with 11 significant digits 
compared to 8 for the FEM and about 9½ for the PTMM, see 
Figs. 3 and 6. However, the superior accuracy, relative to the 
PTMM, fades slowly for higher frequencies and vanishes at the 
7th natural frequency. Higher frequencies are then delivered 
with similar but somewhat erratic accuracy by both methods. 
Overall, the FETMM is therefore considered to be the most 
accurate of  the methods investigated. 

COMPARISON OF EFFICIENCY 
The FEM and the TMMs have been compared so far in 

terms of accuracy and stability. In summary, the FEM is able to 
deliver the most natural frequencies while the FETMM is able 
to provide the highest accuracy for the natural frequencies it 
can deliver. All the TMMs can deliver about the same number 
of  frequencies. 

The question remaining is: which method is the fastest for 
providing a given number of frequencies to a given number of 
significant digits? 

Figure 9 is required to answer this question. It shows the 
processing time needed by each method to calculate the 16 
lowest natural frequencies as functions of  the number of  shaft 
elements. (The PTMM graph for e = 0 is included to show 
how strongly the efficiency of the PTMM depends on proper 
polynomial truncation). The processing time was found to be 
almost independent of  the number of  natural frequencies 
calculated for all the methods except the LTMM. For the FEM, 
this is because all the frequencies are calculated irrespective of  
how many are requested. For the TMMs, it is because the 
derivation of the polynomial coefficients is far more time 
consuming than the subsequent extraction of the 16 polynomial 
roots. For the LTMM, on the other hand, the processing time is 
directly related to the number of  natural frequencies requested, 
e.g., calculating 8 frequencies takes about half the time shown 
in Fig. 9. 

The results were generated on a relatively slow 80486 33 
MHz processor providing the advantage of  good resolution in 
the processing time measurements.The FEM implementation 
took full advantage of  the symmetry and 'bandedness' of  the 
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system matrices. The LTMM, PTMM, and RTMM 
implementations took full advantage of the sparseness of the 
transfer matrices of Eqs. (4) and (5). No such advantage is 
availabe for the dense FETMM matrix of Eq. (15). 

In terms of the question posed at the start of this section, 
the PTMM outperforms the LTMM and the RTMM because (1) 
all three methods have virtually identical accuracy and stability, 
compare Figs. 5, 6, and 7, and (2) the PTMM is faster than the 
RTMM and the LTMM regardless of the number of shaft 
elements, see Fig. 9. Therefore, only the PTMM, the FETMM 
and the FEM remain contenders. 

Fig. 9 shows that the FEM and the FETMM have almost 
the same processing speed regardless of the number of shaft 
elements. Their overall relative merits therefore remain as 
outlined earlier, i.e., the FEM has superior stability and the 
FETMM has superior accuracy. The PTMM is unable to 
compete on any of these counts, compare Figs. 3, 6, and 8. The 
final consideration is therefore whether the PTMM can 
outperform the FEM and the FETMM on processing speed. 
This was determined by replotting Figs. 3, 6, 8, and 9 to show 
number of significant digits versus processing time. These 
figures have been omitted due to space limitations. They show 
that the FEM and the FETMM can provide the 1st natural 
frequency about 3 times faster than the PTMM regardless of
the number of significant digits. However, this speed advantage 
diminishes as additional frequencies are requested and starts to 
reverse at about 3 frequencies. For 8 frequencies, the PTMM is 
about twice as fast as the FEM and the FETMM regardless of 
the number of significant digits. These findings can be roughly 
verified by reference to Figs. 3, 6, 8, and 9. In practice, more 
than 3 frequencies would usually be required, therefore, the 
PTMM may be regarded as the fastest of the methods tested. 

Sample memory requirements were obtained from a 
calculation of the 8 lowest natural frequencies with 6 correct 
digits for the shaft system of Fig. 1. The results are summarized 
in Table 2 which shows that the FETMM is clearly superior in 
terms of memory requirements. This is due to the small number 
of shaft elements it needs. Note that the number of elements 
needed by the FEM is so low that its memory requirements fall 
below the TMMs' (except for the FETMM). The PTMM's and 
RTMM's relatively large memory requirements are due to the 
storage required for the polynomial coefficient calculation 
algorithm. Note that, in practice, a numerical grid generator 
would be needed to set up the 4096 elements needed by the 
LTMM, the PTMM, and the RTMM. 

Table 2 Requirements for 8 Frequencies with 6 

Method 
Correct Di~lits 

Elements Time Is] 
FEM 

LTMM 331 
PTMM 654 
RTMM 660 

FETMM 146 

128 17 
4096 202 
4096 8 
4096 12 
128 23 

Memory [kB] 
279 
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Other factors influence the choice of 'best' method. For 
example, the FEM has the advantage of not requiring any 
parameter tweaking to optimize its performance. The 
polynomial-based TMMs require adjustment of polynomial 
truncation and scaling parameters to optimize their 
performance. Another potential drawback of the TMMs is that 
they provide no absolute safeguard against missing an 
important low frequency. This is because (1) the generated 
polynomial normally is too ill-conditioned to allow extraction 
of all the higher roots and, (2) unfortunately, no root extractor 
exists which can be guaranteed to find all the lower roots 
unless it can find all the roots. 

Thus, based on the current study, there is no single winner. 
The method of choice appears to be the PTMM for processing 
speed, the FETMM for accuracy and low memory 
requirements, and the FEM for stability and robustness. 
Accuracy, stability, and robustness are considered of primary 
importance. Available computer power makes processing speed 
and memory requirements less critical except perhaps for very 
large rotor systems. 

The relatively unfavorable findings regarding the RTMM 
are not supported by the literature on the RTMM known to the 
author. However, they seem to be confirmed by comparison of 
Eqs. (4) and (5) for the PTMM with Eqs. (14) for the RTMM. 
One set of station transfers, with Eqs. (4) and (5) combined, 

and with initial conditions {y,0,M,V}I T = {1,0,0,0}Tand 

{0,1,0,0} T , requires a maximum of 32 multiplications and 24 

additions, and one evaluation of [P] from Eqs. (14) requires 
exactly the same number of operations. In a three-dimensional 
analysis, with transfer matrices of order 4x4, one set of PTMM 
station transfers would require 128 multiplications and 112 
additions, whereas, one RTMM [P]-evaluation would require 
256 multiplications and 224 additions. This suggests that the 
PTMM is the more efficient. The author would welcome 
discussions from researchers who have evidence to the 
contrary. 

The comparisons presented in this paper are to some extent 
affected by the simplicity of the system analysed. For example, 
application of the FEM to the system in Fig. 1 leads to the 
eigenproblem [K]{x}=X[M]{x}, where [K] and [M] are 

symmetric band-matrices with low memory requirements. Very 
efficient eigensolvers are available for this problem. This helps 
explain the surprisingly low processing time and memory 
requirements for the FEM, as shown in Table 2. If journal 
bearings were included in the FEM anal.~,sis, then an 

eigenproblem of the type ~M]~ 2 +[B]~+[K]J{x}=0 would 

result with nonsymmetric band-matrices and complex X. This 
would typically be solved by reduction to standard form, 
[A]{x} = k{x}, at twice the matrix order and with [A] 
nonsymmetric and non-banded. The eigensolvers available for 
this problem are far less efficient. In contrast, the efficiency of 
the polynomial TMM algorithms is much less sensitive to 
additional system complexities. 
6 Copyright © 2001 by ASME 
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CONCLUSION 
A quantitative comparison has been made between the Finite 
Element Method (FEM), the Lund Transfer Matrix Method 
(LTMM), the Polynomial Transfer Matrix Method (PTMM), 
the Riccati Transfer Matrix Method (RTMM), and the Finite- 
Element based Transfer Matrix Method (FETMM) in terms of 
free vibration analysis of a simple shaft system. The PTMM 
was found to be generally the fastest method. The FETMM was 
the most accurate and had the lowest memory requirements. 
The FEM could extract the most frequencies but with the 
lowest accuracy. The RTMM performed well but did not live 
up to its reputation for superior performance. The LTMM also 
performed well except on processing speed where it fell far 
short of the other methods. 

REFERENCES 
1. Myklestad, N.O., 1944, "A New Method for Calculating 

Natural Modes of Uncoupled Bending Vibration of 
Airplane Wings and Other Types of Beams", Journal of the 
Aeronautical Sciences, pp. 153-162. 

2. Prohl, M.A., 1945, "A General Method for Calculating 
Critical Speeds of Flexible Rotors", ASME Journal of 
Applied Mechanics, Vol. 12, pp. A142-A148. 

3. Ruhl, R.L. and Booker, J.F., 1972, "A Finite Element 
Model for Distributed Parameter Turborotor Systems", 
ASME Journal of Engineering for Industry, Vol. 94, pp. 
126-132. 

4. Lund, J.W., 1974, "Stability and Damped Critical Speeds 
of a Flexible Rotor in Fluid-Film Bearings", ASME 
Journal of Engineering for Industry, Vol. 96, pp. 509-517. 

5. Homer, GC. and Pilkey, W.D., 1978, "The Riccati Transfer 
Matrix Method", ASME Journal of Mechanical Design, 
Vol. 100, pp. 297-302. 

6. Murphy, B.T., and Vance, J.M., 1983, "An Improved 
Method for Calculating Critical Speeds and Rotordynamic 
Stability of Turbomachinery", ASME Journal of 
Engineering for Power, Vol. 105, pp. 591-595. 

7. Firoozian, R., and Zhu, H., 1991, "A Hybrid Method for 
the Vibration Analysis of Rotor-Bearing Systems", 
Proceeding of the IMechE, Part C: Journal of Mechanical 
Engineering Science, Vol. 205, pp. 131-137. 

8. Weaver, W., Timoshenko, S.P., and Young, D.H., 1990, 
Vibration Problems in Engineering, 5th Ed., John Wiley, 
New York. 

9. Press, W.H., Flannery, B.P., Teukolsky, S.A., and 
Vetterling, W.T., 1989, Numerical Recipes, Cambridge 
University Press, New York. 

10. Craig, R.R., 1981, Structural Dynamics. An Introduction to 
Computer Methods, John Wiley, New York. 

11. Steidel, R.F., 1989, An Introduction to Mechanical 
Vibrations, 3rd Ed., John Wiley, New York. 

12. Sokolnikoff, I.S., and Redheffer, R.M., 1958, Mathematics 
of Physics and Modern Engineering, McGraw-Hill, New 
York. 
loaded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Us
13. Vance, J.M., 1988, Rotordynamics of Turbomachinery, 
John Wiley, New York. 

14. Songyuan, L., 1985, "A Method for Calculating Damped 
Critical Speeds and Stability of Rotor-Bearing Systems", 
ASME Paper No. 85-DET-116, 7p. 

l 1 1 l 

Figure 1 Uniform Shaft on Spring Supports 

M1V1 

Y1 EI 
l 

Figure 2 Shaft Finite Element 

% 

12 

0 
, I  

,z '- 

10 

8 

6 

4 

2 

0 

1 10 100 1000 10000 100000 

Shaft Elements 
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Figure 7 RTMM Error Analysis 
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