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Abstract 
A boundary element method is presented to investigate 

the dynamic behavior of elastic structures partially or 
completely in contact with uniform axial flow. In the analysis 
of the linear fluid-structure interaction problem, it is assumed 
that the fluid is ideal and its motion is irrotational. 
Furthermore, the elastic structure is assumed to vibrate in 
relatively high-frequencies, so the infinite frequency limit 
condition is imposed for fluid free surface, which is satisfied 
implicitly by using method of images. When in contact with 
the flowing fluid, the structure is assumed to vibrate in its in 
vacuo eigen-modes that are obtained by using a finite element 
software. The wetted surface of the structure is idealized by 
using appropriate hydrodynamic panels and a boundary 
element method is formulated for velocity potential function, 
which is taken as linearly varying over the panels. Using the 
Bernoulli’s equation, the dynamic fluid pressure on the elastic 
structure is expressed in terms of potential function, and the 
fluid–structure interaction forces are calculated as generalized 
added mass, hydrodynamic damping and hydrodynamic 
stiffness coefficients, due to the inertia, Coriolis and 
centrifugal effects of fluid, respectively. Solution of the 
eigenvalue problem associated with the generalized equation 
of motion gives the dynamic characteristics of the structure in 
contact with fluid. As an application of the method, the 
dynamics of a simply supported cylindrical shell subjected to 
internal flow is studied. The predictions compare quite well 
with the previous results in the literature. 
 
INTRODUCTION 

This paper presents a boundary element method for 
investigating the dynamic response behavior of elastic 
structures in contact with a quiescent or axially flowing fluid. 
The method is general and can be applied to any shape of 
ttps://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms o
elastic body. The numerical method has been successfully 
used for different kinds of structures such as a cantilever plate 
vibrating partially submerged in a quiescent fluid [1], liquid 
storage tanks filled with water [2], and a circular cylindrical 
shell in contact with internal and/or external axially flowing 
fluid [3] by the authors.  

The response of elastic structures immersed in or 
conveying flowing fluid has been extensively studied, and 
general reviews of the literature have been given by 
Païdoussis [4] and Païdoussis and Li [5]. Recent books by 
Païdoussis [6, 7] provide a comprehensive treatment of the 
subject as well as a complete bibliography of all important 
work in the field. Moreover, Amabili and Garziera [8] 
presented a study on the linear dynamic analysis of cylindrical 
shells with flowing fluid. They investigated the influence of 
various complicating effects, such as non-uniform edge 
boundaries; internal, external and annular flows, etc. On the 
other hand, a three-part study, investigating the dynamics of 
cantilever cylinders in axial flow, has been reported. In the 
first part, Païdoussis et al [9] presented some old and new 
experimental results, and a comparison with linear theory was 
made. In the second part, Lopes et al [10] derived a weakly 
nonlinear equation of motion. The fluid dynamic forces were 
introduced in terms of virtual work expressions. The results of 
the calculations based on this theoretical model were 
presented in Semler et al [11]. Lakis and Selmane [12] present 
a hybrid finite element method to investigate the large 
amplitude vibrations of orthotropic cylindrical shells subjected 
to flowing fluid, in which only the linear effects of the fluid 
were taken into account. In a study based on the finite element 
method, refined shell theories and linear fluid dynamic theory, 
Toorani and Lakis [13] presented the flow-induced vibration 
characteristics of the anisotropic laminated cylindrical shells 
partially or completely filled with a quiescent liquid or 
1 Copyright © 2006 by ASME 
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subjected to a flowing fluid. Recently, Uğurlu and Ergin [3] 
studied the dynamic response behavior of a simply supported 
circular cylindrical shell subjected to axially flowing fluid by 
using a boundary element method in conjunction with the 
method of images. They presented the non-dimensional wet 
frequencies as a function of the non-dimensional flow 
velocities, and a comparison with the results in open literature 
was provided. Furthermore, they investigated the dynamic 
characteristics of the shell partially in contact with the internal 
and/or external flowing fluid.  

In this investigation, it is assumed that the fluid is ideal, 
i.e., inviscid, incompressible and its motion is irrotational. It is 
assumed that the flexible structure vibrates in its in vacuo 
eigenmodes when it is in contact with flowing fluid, and that 
each mode gives rise to a corresponding surface pressure 
distribution on the wetted surface of the structure. The in 
vacuo dynamic analysis entails the vibration of the structure in 
the absence of any external force and structural damping, and 
the corresponding dynamic characteristics (e.g., natural 
frequencies and mode shapes) of the structure were obtained 
by using a standard finite element software.  

At the fluid-structure interface, continuity considerations 
require that the normal velocity of the fluid is equal to that of 
structure. The normal velocities on the wetted surface of the 
structure are expressed in terms of modal structural 
displacements and their derivatives. By using a boundary 
element formulation, the fluid pressure is eliminated from the 
problem, and the fluid-structure interaction forces are 
calculated in terms of the generalized hydrodynamic added 
mass coefficients (due to the inertial effect of fluid), 
generalized fluid damping coefficients (due to the Coriolis 
acceleration of fluid) and generalized fluid stiffness 
coefficients (due to the centrifugal effect of fluid). However, 
when the structure is in contact with an ideal, quiescent fluid, 
the fluid-structure interaction forces are only associated with 
the inertial effect of fluid, i.e., the fluid pressure on the wetted 
surface of the structure is in phase with the structural 
acceleration.  

During the numerical analysis, the wetted surface is 
idealized by using appropriate boundary elements, referred to 
as hydrodynamic panels, over which a linear distribution is 
assumed for the potential function. The potential values were 
calculated by satisfying the necessary boundary conditions on 
the wetted surface.  

The generalized structural mass matrix is merged with the 
generalized hydrodynamic mass matrix, and the structural 
stiffness matrix with the generalized fluid stiffness matrix. 
Then, the total generalized mass and stiffness matrices are 
used together with the generalized fluid damping matrix in 
solving the eigenvalue problem for the elastic structure 
immersed in and/or containing flowing fluid. To assess the 
influence of the flowing fluid on the dynamic response 
behavior of the elastic structure, the non-dimensional 
eigenfrequency for the fundamental mode is presented as a 
function of the non-dimensional flow velocity. The associated 
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eigenmode is also presented for different flow velocities. The 
predictions of this study were compared with the results found 
in the open literature, and a very good comparison was 
obtained. 

MATHEMATICAL MODEL 
The Generalized Equation of Motion 

The equation of motion describing the response of a 
flexible structure to external excitation may be written as in 
Ergin et al [14] 

 
,+ + =VM U C U K U P  (1) 

 
where M, CV, K denote the mass, structural damping and 
stiffness matrices respectively. The vectors U, U  and U  
represent the structural displacements, velocities and 
accelerations, respectively, and the column vector P denotes 
the external forces. 

In an in vacuo analysis, the structure is assumed to vibrate 
in the absence of any structural damping and external forces 
reducing equation (1) to the form 
 

.+ =M U K U 0  (2) 
    
The form of equation (2) suggests that one can express the 
trial solution as 
 

ie .tω=U D  (3) 
 
Using equation (3) in equation (2) and canceling the common 
factor eiωt, one obtains the equation 
 

2( ) .ω− + =M K D 0  (4) 
 
This equation describes the simple harmonic oscillations of 
the free undamped structure and the in vacuo principle modes 
and natural frequencies are determined from the associated 
eigenvalue problem. 

The distortions of the structure may be expressed as the 
sum of the distortions in the principal modes, 
 

( )t=U Dp , (5) 
 
where D is the modal matrix whose columns are the in vacuo, 
undamped mode vectors of the structure. p is the principal 
coordinates vector. By substituting equation (5) into equation 
(1) and pre-multiplying by DT, the following generalized 
equation in terms of the principal coordinates of the structure 
is obtained: 
 

( ) ( ) ( ) ( ).t t t t+ + =ap bp cp Q  (6) 
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Here a, b, c denote the generalized mass, damping and 
stiffness matrices, respectively, and are defined as follows: 
 

a = DTM D,  b = DTCV D,  c = DTK D,  Q = DTP. (7) 
 
The generalized force matrix, Q(t) represents the fluid-
structure interaction and all other external forces, and it may 
be expressed as follows: 
 

( ) ( ( ) ( ) ( )) ( )t t t t t= − + + +Q Ap Bp Cp Ξ , (8) 
 
where A, B and C are the generalized added mass, generalized 
fluid damping, and generalized fluid stiffness matrices, 
respectively, and Ξ (t) denotes the generalized external force 
vector caused by waves, mechanical excitation, etc. 
 Thus, equation (6) may be rewritten in the form (see, for 
instance, Ref. [14]) 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t+ + + + + =a A p b B p c C p Ξ . (9) 
 
Formulation of the Fluid Problem 

A right-handed Cartesian coordinate system, xyz, is 
adopted in the present study and it is shown in Fig.1 for the 
circular cylindrical shell conveying fluid. The coordinate 
system is fixed in space with its origin at O, and the x-axis 
coincides with the center line of the cylindrical shell in the 
longitudinal direction. 

In the mathematical model, the fluid is assumed ideal, i.e., 
inviscid and incompressible, and its motion is irrotational and 
there exists a fluid velocity vector, v, which can be defined as 
the gradient of the velocity potential function Φ as 
 

( , , , ) ( , , , ).x y z t x y z tΦ= ∇v  (10) 
  
The velocity potential Φ may be written as 
 

U xΦ φ= + . (11) 
 
Here the steady velocity potential U x represents the effect of 
the mean flow associated with the undisturbed flow velocity U 
in the axial direction. Further, Φ is the unsteady velocity 
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potential associated with the perturbations to the flow field 
due to the motion of the flexible body, and satisfies the 
Laplace equation 

2 0φ∇ =  (12) 
         
throughout the fluid domain. 
 For the structure containing and/or submerged in flowing 
fluid, the vibratory response of the structure may be expressed 
in terms of principal coordinates as 
 

( ) e tt λ= 0p p ,  (13) 
     
where p0 and λ are complex nonzero constants, and t is the 
time. The imaginary part of λ is the circular frequency of 
oscillations and its real part gives an exponential growth or 
decay. The velocity potential function due to the distortion of 
the structure in the r-th in vacuo vibration mode may be 
written as follows 
 

0( , , , ) ( , , ) e t
r r rx y z t x y z p λφ φ= ,  r = 1, 2, …., M ,      (14) 

 
where M represents the number of modes of interest, and p0r is 
an unknown complex amplitude for the r-th principal 
coordinate. 
 On the wetted surface of the vibrating structure the fluid 
normal velocity must be equal to the normal velocity on the 
structure and this condition for the r-th modal vibration of the 
elastic structure containing or/and submerged in flowing fluid 
can be expressed as (see, for instance, Ref. [8]) 
 

( ). ,r r rU
t x

φ∂ ∂ ∂
= +

∂ ∂ ∂
u u

n
n

 (15) 

 
where n is the unit normal vector on the wetted surface and 
points out of the region of interest.  

The vector ur denotes the displacement response of the 
structure in the r-th principal coordinate and it may be written 
as 
 
 

Figure 1. Fluid conveying elastic cylindrical shell 
3 Copyright © 2006 by ASME 
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t
0( , , , ) ( , , ) e ,r r rx y z t x y z p λ=u u  (16) 

 
where ur (x, y, z) is the r-th modal displacement vector of the 
median surface of the elastic structure, and it is obtained from 
the in vacuo analysis. 
 Substituting equations (14) and (16) into (15), the 
following expression is obtained for the boundary condition 
on the fluid-structure interface 
 

( , , )
( , , ). . .r r

r
x y z

x y z U
x

φ
λ

∂ ∂
= +

∂ ∂
u

u n n
n

 (17) 

 
 In this study, it is assumed that the elastic structure 
vibrates at relatively high frequencies so that the effect of 
surface waves can be neglected. Therefore, the free surface 
condition (infinite frequency limit condition) for the 
perturbation potential can be approximated by 
 

0rφ = , on the free surface. (18) 
 
 
 

 
 
 

Figure 2. Wetted and imaginary surfaces of fluid 
domain and imposed boundary conditions  

 
The method of images [15] may be used, as shown in 

Fig.2, to satisfy this boundary condition. By adding an 
imaginary boundary region, the condition given by equation 
(18) at the horizontal surface can be omitted; thus the problem 
is reduced to a classical Neumann case. This condition can 
also be satisfied directly by using appropriate Green function. 
It should be noted that, for the completely filled elastic 
structure, the normal fluid velocity can not be arbitrarily 
specified. It has to satisfy the incompressibility condition 
 

0,
W im

r

S S

dS
φ

+

∂
=

∂∫∫ n
 (19) 

   
where SW  and Sim  represent the wetted and image surfaces of 
the elastic structure, respectively. 

( ).U
x

φ
λ

∂ ∂
= − +

∂ ∂
uu n

n

( ).U
x

φ
λ

∂ ∂
= +

∂ ∂
uu n

n

0φ =

imS

WS
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Solution of the Fluid Problem 

From Green’s third identity, the boundary value problem 
for the perturbation potential φ, can be represented by the 
boundary integral equation,  
 

( )* *( ) ( ) ( , ) ( ) ( ) ( , ) ,
WS

c s q s s q s dSξ φ ξ φ ξ φ ξ= −∫  (20) 

 
over the fluid-structure interface, where ξ  and s are the 
application point of the equation and a general field point on 
the wetted surface, respectively. Here ( , ) 1 4s rφ ξ π∗ =  is the 
fundamental solution in the three dimensional inviscid flow 
and /q φ n= ∂ ∂  denotes the flux where, 
 

2( , ) ( ) 4 .q s r rξ πn∗ = − ∂ ∂  (21) 
 
r is the distance between source and field points and the free 
term c(ξ) can be taken as the fraction of φ(ξ) that lies inside 
the domain of interest. 

The fluid-structure interaction problem may be separated 
into two parts: (i) the vibration of the elastic structure in a 
quiescent fluid, and (ii) the disturbance in the main axial flow 
due to the oscillation of the elastic structure. Thus, 
defining 1 2Uφ λφ φ= + , equation (17) may be divided into two 
seperate parts as 
 

1 ( , , ). ,x y z
φ∂

=
∂

u n
n

 (22a) 

2 ( , , ) . ,x y z
x

φ∂ ∂
=

∂ ∂
u n

n
 (22b) 

 
where φ1 denotes the displacement potential due to the 
vibration of the structure in a quiescent fluid, and φ2 represents 
the disturbing effect of the term ∑u/∑x to the main axial flow 
field. u represents the in vacuo modal displacement vector. 
 For the general solution of equation (20) with boundary 
conditions (22), the wetted surface can be discretized by using 
hydrodynamic panels and the distribution of the potential 
function and flux over each panel may be represented by 
means of the shape functions and nodal values 
 

1 1
, .

e en n

e ej ej e ej ej
j j

N q N qφ φ
= =

= =∑ ∑  (23) 

 
Here, ne is the number of nodal points assigned to each panel 
and Nej represents the shape function adopted for the 
distribution of potential function. For instance, in the case of a 
linear distribution, the shape functions for a quadrilateral 
panel can be expressed as (see, Wrobel [16]) 
4 Copyright © 2006 by ASME 
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1 2((1 )(1 )) / 4, ((1 )(1 )) / 4N Nς η ς η= − − = + −   

3 4((1 )(1 )) / 4, ((1 )(1 )) / 4.N Nς η ς η= + + = − +  (24) 
 
in the local coordinate system ζ, η. The unknown potential 
function values can be determined from the following sets of 
algebraic equations, after applying equation (20) for each 
nodal point, for the rth modal vibration form, (see, Ref. [17]) 
 

     1 1
1 1

( )
m

i

nm
r r

k k ij j
i j S

c N q dSφ φ ∗

= =

+ ∑∑ ∫∫   

1 1
( . )

m

i

nm
r
ij j j

i j S

N dSφu n ∗

= =

= ∑∑ ∫∫ ,  k = 1, 2, …, m    (25a) 

     2 2
1 1

( )
m

i

nm
r r

k k ij j
i j S

c N q dSφ φ ∗

= =

+ ∑∑ ∫∫   

1 1
( . )

m

i

rnm
ij

j j
i j S

N dS
x

φ
u

n ∗

= =

∂
=

∂∑∑ ∫∫ ,  k = 1, 2, …, m.  (25b) 

 
m denotes the total number of panels in the discretization. 
 
Generalized Fluid−Structure Interaction Forces  

Using the Bernoulli’s equation and neglecting the second 
order terms, the dynamic fluid pressure on the elastic structure 
due to the r-th modal vibration becomes 
 

( , , , ) ( ).r r
rP x y z t U

t x
φ φ

ρ
∂ ∂

= − +
∂ ∂

 (26) 

                      
ρ is the fluid density. Substituting equation (14) into (26), the 
following expression for the pressure is obtained, 
 

t
0( , , , ) ( ) e .r

r r rP x y z t U p
x

λφ
ρ λ φ

∂
= − +

∂
 (27) 

 
By using the definition 1 2r r rUφ λφ φ= + , equation (27) may 
be rewritten in the following form: 
 

2 2 t1 2
1 2 0( , , , ) ( ( ) ) e .r r

r r r rP x y z t U U p
x x

λφ φ
ρ λ φ λ φ

∂ ∂
= − + + +

∂ ∂
 

 (28) 
 
 The k-th component of the generalized fluid-structure 
interaction force due to the r-th modal vibration of the elastic 
structure subjected to axial flow can be expressed in terms of 
the pressure acting on the wetted surface of the structure as 
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0

( ) ( , , , ) .

e ( ( ) ) .

e . e ( ) .

e . .

W

W

W W

W

kr r k
S

t r r
r r r k

S

t t r
r r k r r k

S S

t r
r k

S

Z t P x y z t dS

p U U dS
x x

p dS p U dS
x

p U dS
x

λ

λ λ

λ

φ φ
ρ λ φ λ φ

φ
λ ρ φ λ ρ φ

φ
ρ

=

∂ ∂
= − + + +

∂ ∂

∂
= − − +

∂

∂
−

∂

∫∫

∫∫

∫∫ ∫∫

∫∫

u n

u n

u n u n

u n

 

(29) 
 
The generalized added mass Akr, generalized fluid damping 
(due to the Coriolis effect of fluid), Bkr, and generalized fluid 
stiffness (due to the centrifugal effect of fluid), Ckr, terms can 
be defined as 
 

1 . ,
W

kr r k
S

A dSρ φ= ∫∫ u n  (30) 

1
2( ) . ,

W

r
kr r k

S

B U dS
x

φ
ρ φ

∂
= +

∂∫∫ u n  (31) 

2 2 . .
W

r
kr k

S

C U dS
x

φ
ρ

∂
=

∂∫∫ u n  (32) 

      
Therefore, the generalized fluid-structure interaction force 
component, Zrk, can be rewritten as 
 

2
0 0 0( ) e e e

( ) ( ) ( ).

t t t
kr kr r kr r kr r

kr r kr r kr r

Z t A p B p C p
A p t B p t C p t

λ λ λλ λ= − − −
= − − −

 (33) 

 
Calculation of Eigenvalues and Eigenvectors 

The generalized equation of motion for the elastic 
structure in contact with axial flow assuming free vibrations 
with no structural damping is 
 

2 ( ) ( ) ( ) 0,λ λ⎡ ⎤+ + + + =⎣ ⎦a A B c C p  (34) 
   
where a and c denote the generalized structural mass and 
stiffness matrices respectively. The matrices A, B and C 
represent the generalized added mass, generalized fluid 
damping and generalized fluid stiffness matrices, respectively. 
 It should be noticed that the eigenvalue λ is generally 
complex. It was observed from the solution of the eigenvalue 
problem that, before the onset of the instability, the 
eigenvalues have zero real part, and therefore, the fluid-
structure interaction system is conservative. On the other 
hand, the eigenvectors p have both real and imaginary parts, 
which are different from zero. Therefore, the eigenvectors 
(modes) are complex. However, when the axial mean flow 
velocity is zero the eigenvectors only have real parts 
5 Copyright © 2006 by ASME 
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NUMERICAL RESULTS AND COMPARISONS 
A finite length circular cylindrical shell is chosen to 

demonstrate the applicability of the aforementioned theory to 
structures containing and/or submerged in flowing fluid. The 
shell structure adopted in this study is simply supported at 
both ends. The cylindrical shell under consideration was 
analytically investigated by, Selmane and Lakis [18], Amabili 
et al [19] and Amabili and Garziera [8]. The cylindrical shell 
adopted has the geometric and material properties: length-to-
radius ratio L/R = 2, thickness-to-radius ratio h/R = 0.01, 
Young’s modulus E = 206 GPa, Poisson’s ratio υ = 0.3, and 
mass density ρs = 7850 kg/m3. Fresh water is used as the 
contained fluid with a density of ρf = 1000 kg/m3. 
 A right-handed Cartesian coordinate system, xyz, is 
adopted in this study, and it is shown in Fig.1 for the 
cylindrical shell subjected to axial flow. The coordinate 
system is fixed in space with its origin at O. The x-axis lies 
along the length L, and coincides with the centerline of the 
cylindrical shell. 

For convenience, the following non-dimensional 
parameters are introduced: 
 

[ ]{ }1/ 22/ ( / ) / ( )V U L D hπ ρ=  

[ ]{ }1/ 22 2/ ( / ) / ( ) .L D hΩ λ π ρ=  
(35) 

  
Here, V and Ω denote the non-dimensional axial fluid velocity 
and non-dimensional eigenfrequency, respectively, and λ is the 
corresponding complex eigenvalues of the cylindrical shell 
conveying and/or submerged in flowing fluid. Furthermore, D 
is the flexural rigidity, and it is defined as D = Eh3/ 12 (1-υ2). 
 The in vacuo dynamic characteristics of the shell structure 
were obtained using a standard finite element software. This 
produced the information on natural frequencies and normal 
mode shapes of the dry shell structure in vacuum. In these 
calculations, the cylindrical shell was discretized with four-
noded quadrilateral shell elements, including both membrane 
and bending stiffness influences. For the converged dry 
dynamic results adopted in the wet calculations, 64 and 32 
finite elements were distributed around the circumference and 
along the shell structure, respectively. The mode shapes of the 
shell structure in vacuum are identified with the number of 
standing waves around the circumference, n, and the number 
of half-waves along the shell, m. A combination of m and n 
forms a particular mode shape (m, n). The results occur in 
pairs. That is, in general, for each natural frequency, there 
exists a pair of mode shapes satisfying the relevant 
orthogonality conditions. 
 By solving the associated eigenvalue problem (34), the 
non-dimensional eigenvalues and associated eigenmodes of 
the cylindrical shell containing flowing fluid are obtained as a 
function of the non-dimensional flow velocity. The predictions 
based on the proposed method are compared with the 
analytical calculations by Selmane and Lakis [18], Amabili et 
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al [19] and Amabili and Garziera [8]. Fig.3 presents the non-
dimensional wet frequency values as a function of the non-
dimensional flow velocity for the first and second wet modes 
for the circumferential wave number, n = 5. In order to show 
the convergence of the results, two groups of the calculations 
were performed. In the first group of the calculations, 48 and 
24 hydrodynamic panels, respectively, were distributed around 
the circumference and along the cylindrical shell (a total 
number of 1152 panels). However, 64 and 32 hydrodynamic 
panels were adopted around the circumference and along the 
shell, respectively, for the second group of the calculations (a 
total number of 2048 panels). To take into the coupling 
effects, 12 in vacuo modes (6 of which are symmetric and 6 
antiysmmetric) are included in each analysis, so that the first 
three wet modes are obtained with sufficient accuracy. As 
observed in Fig.3, the calculated wet frequencies based on 
these two idealizations are very close to each other. Therefore, 
it may be said that the idealization using 1152 hydrodynamic 
panels produces the converged wet results. For the first and 
second wet mode shapes with n = 5, the results of the present 
study compares well with those found in the open literature. 
As seen from Fig.3, the non-dimensional wet frequency values 
decrease with increasing non-dimensional flow velocity. The 
first mode shape reaches its zero frequency value at V = 3.32 
(for the 1152 panel idealization), and the intersection of the 
second mode with the axis of non-dimensional flow velocity 
at V = 4.41 is the point of restabilization.   
 

0.0

0.8

1.6

2.4

3.2

4.0

4.8

0.0 1.0 2.0 3.0 4.0 5.0
V

ω

 BEM (48-24)
 BEM (64-32)
Selmane and Lakis [18]
Amabili et al [19]
Amabili and Garziera [8]

m = 1

m = 2

Figure 3. The variation of nondimensional frequency with  
respect to nondimensional flow velocity, for n = 5 

 
 Fig.4 (a) and (b) present, respectively, the real and 
imaginary parts of the non-dimensional eigenfrequency, as a 
function of the non-dimensional flow velocity, for the first 
three axial modes with the circumferential wave number, n = 
5. As seen in Fig.4(b), the first mode reaches its zero 
frequency at V = 3.50, and the intersection of the second mode 
with the axis of non-dimensional flow velocity at V = 4.56 is 
the point of restabilization. Then, the first and second modes 
merge at V = 4.62 and this points corresponds to the onset of 
6 Copyright © 2006 by ASME 

f Use: http://www.asme.org/about-asme/terms-of-use



Down
the coupled mode flutter. It should also be noted that the 
coupled-mode flutter cannot be properly described by the 
linear theory. Furthermore, the real part of the non-
dimensional eigenfrequency is presented in Fig.4(a) and it is 
proportional to damping. It should also be noted that the 
system is stable when the real part of the non-dimensional 
eigenfrequency is zero or negative, and it is unstable when the 
real part is positive.  
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Figure 4. Variation of the first three nondimensional  

eigenvalues with respect to nondimensional flow velocity,  
for n = 5: (a) real part, (b) imaginary part. 

  
 The mode shapes of the cylindrical shell completely filled 
with flowing fluid are presented in Fig.5(a-b) at the times t = 
0, T/8, T/4, 3T/8 and T/2 (where T is the time period) for the 
non-dimensional flow velocities V = 1.05, 3.15, respectively, 
and in Fig.5(c) at the times t = 0, T/12, T/8 and T/4 for V = 
3.49, just before the instability. The mode shapes presented in 
Fig.5 are all the first axial mode shapes with the 
circumferential wave number, n = 5. It is clear that the mode 
shapes are complex, and they may take different forms in a 
specific time period.  

CONCLUSION 
A method of linear analysis is presented for the dynamic 

response behavior of elastic structures subjected to flowing 
fluid, based on boundary element method and the method of 
images. A simply supported elastic circular cylindrical shell 
structure filled with flowing fluid was chosen in order to 
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demonstrate the applicability of the method. It can be 
concluded from the results presented that the method proposed 
is suitable for the vibration analysis of flexible structures 
subjected to axial flow. 
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Figure 5. The wet mode shapes of cylindrical shell conveying  

fluid, for n = 5: (a) V = 1.05, (b) V = 3.15,  (c) V = 3.49. 
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