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ABSTRACT 
This paper presents an extended Kantorovich approach to 
investigate the vibrational behavior of electrically actuated 
rectangular microplates. The model accounts for the electric 
force of the excitation and for the applied in plane loads. 
Starting from a one term Galerkin approximation and following 
the extended Kantorovich procedure, the partial differential 
equation governing the microplate vibration, is discretized to 
two ordinary differential equation with constant coefficients. 
These equations are then solved analytically and iteratively 
with a rapid convergence procedure for finding microplate 
natural frequencies and modeshapes. Results in some specific 
cases are validated against other theoretical results reported in 
the literature. It is shown that rapid convergence, high precision 
and independency of initial guess function make the EKM an 
effective and accurate design tool for design optimization. 
 
KEYWORDS: Microplate, Vibration, Electrostatic actuation, 
Fundamental natural frequency. 
 
INTRODUCTION 
Technology can touch our daily lives in so many different 
ways, but the role of miniature devices and systems is not 
immediately apparent [1]. Technology of micro electro 
mechanical systems has experienced a lot of progress in testing 
and fabricating new devices recently. Their low manufacturing 
cost, batch production, light weight, small size, durability, low 
energy consumption and compatibility with integrated circuits, 
makes them even more attractive [2, 3]. 
Successful MEMS devices rely not only on well developed 
fabrication technologies, but also on the knowledge of device 
behavior, based on which a favorable structure of the device 
can be forged [3]. So simulation of micromachined systems and 
sensors is becoming increasingly important. Before prototyping 

a device, one wishes to virtually build the device and predict its 
behavior. This allows the optimization of various design 
parameters according to the specifications [4]. 
Typical MEMS devices employ a parallel plate capacitor with 
variable capacity in which one plate is actuated electrically and 
its motion is detected by capacitive changes [5]. These 
electrically actuated microplates form the most important 
actuation component part of many MEMS devices such as 
micropumps, micromirrors, microphones and microresonators 
[6-10]. 
Analysis of MEMS devices is challenging because the classical 
structural dynamic methodology is not easily applicable to the 
types of forcing and nonlinearities encountered in MEMS. A 
common approach in the literature is to assume a linear 
relationship between the excitation force and the plate 
deflection. The linear plate equation is then solved by 
numerical methods, such as Galerkin method, the Rayleigh Ritz 
method and the finite element method [5]. 
There has been extensive research in to the behavior of 
micromachined systems. Researchers have used variety of 
methods, such as analytical methods, numerical methods, 
reduced order modeling and perturbation methods to achieve 
this goal. Hu [11] suggested three analytical models, namely 
the full order, the fourth order and the third order models and 
the corresponding closed form solutions for the pull-in voltages 
of micro curled beams, subjected to electrostatic loads. Chao et 
al [3] present a novel method to predict the pull-in voltage in a 
closed form for microplates actuated by a distributed 
electrostatic force. 
Many researchers have used numerical methods for the analysis 
of MEMS devices. Abdel-Rahman et al [12] presented a 
nonlinear model for electrically actuated microbeams. They 
solved the boundary value problem describing the static 
deflection of the microbeam under electrostatic force due to a 
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DC polarization voltage numerically. They also used numerical 
approach to solve the eigenvalue problem describing the 
vibration of the microbeam around its statically deflected 
position for the natural frequencies and modeshapes. Faris et al. 
[13] have investigated the nonlinear modeling of annular 
plates. They determine the static deflection using a numerical 
shooting technique. 
Reduced order models have been paid close attention in 
analysis of MEMS devices. Zhao et al [5] proposed a reduced 
order model for electrically actuated microplate based MEMS. 
They found the linear undamped vibrational modes numerically 
and used those modeshapes in a Galerkin approximation to 
reduce the partial differential equations of motion into a finite 
dimensional system of nonlinearly coupled second order 
ordinary differential equations. They validated their model 
against experimental findings. 
Many researchers have used perturbation methods to simulate 
MEMS behavior. Nayfeh and Younis [14] used perturbation 
methods in conjunction with the finite element method to 
model and simulate flexible microstructures under the effect of 
squeeze film damping. Abdel-Rahman and Nayfeh [15] 
investigate secondary resonances of electrically actuated 
resonant microsensors using the multiple scales method. 
Nayfeh and Younis [16] utilized perturbation methods to 
present analytic expressions for the quality factors of 
microplate due to thermoelastic damping. 
Although the analysis of electrically actuated microplates has 
been the subject of many researches, the problem when a high 
precision response and low computational time is required still 
remains uninvestigated. In this paper an extended Kantorovich 
approach is implemented to model the vibration of microplates 
under electrostatic actuation. 
The Kantorovich method occupies a position intermediate 
between the exact solution of a given problem and solution 
which is obtained by means of methods of Ritz and Galerkin 
[17]. Results from extended Kantorovich method are even more 
accurate. This method is based on Variational principle and 
reduces the partial differential equation governing the system 
behavior to a set of uncoupled ordinary differential equations 
which are solved iteratively with a rapid convergence and the 
final solution would be independent of the initial guess 
function. 
The Kantorovich method was suggested by Kantorovich and 
Krylov [18]. Kerr [19] and Kerr and Alexander [20], extended 
the Kantorovich method by using it as a first step of an iterative 
procedure and showed that the implemented procedure 
converges very rapidly to a final form, irrespective of the initial 
guess function. They [20] used the extended Kantorovich 
method to analyze a clamped rectangular plate subjected to a 
uniform lateral load. Cortinez and Laura [21] used the same 
method for the vibrational analysis of rectangular plates of 
discontinuously varying thickness. Dalaei and Kerr [17] 
analyzed clamped rectangular orthotropic plates subjected to a 
uniform lateral load. Since there was no exact analytical 
solution for that problem, they tried to derive a closed-form 

approximate solution of high accuracy which was achieved by 
the extended Kantorovich method. They found that the 
convergence of the procedure is very rapid and that the final 
form of the generated solution is independent of the initial 
choice.  
Kerr [22] presented an extended Kantorovich procedure for the 
solution of the eigenvalue problems. His specific examples 
were the vibration of rectangular membrane and stability of an 
elastic rectangular plate compressed in its plane. He showed 
that for the membrane problem, the generated expressions for 
the eigenvalues and eigenfunctions are identical with the 
corresponding exact solution and for the clamped plate 
compressed uni-axially or bi-axially, the generated eigenvalues, 
based on a one term expression for the eigenfunction agree 
very closely with the relevant results available in the literature. 
Jones and Milne [23] applied the extended Kantorovich method 
to the vibration analysis of clamped rectangular plates and 
presented closed-form solutions for the plate mode shapes with 
high accuracy. They found that the process converges so 
rapidly that usually two iterates is sufficient to achieve a 
precise response. Dalaei and Kerr [24] extended what Jones 
and Milne [23] did and used the Extended Kantorovich method 
to analyze free vibration of clamped rectangular orthotropic 
plates. They derived closed-form solutions for system mode 
shapes and corresponding natural frequencies for the problem 
which had no exact solution. 
The current paper makes use of the advantages of the extended 
Kantorovich method, to model the static deflection of 
electrically actuated microplates under electrostatic force. It 
was found that the convergence of the procedure is very rapid. 
The effect of various design parameters such as applied in 
plane loads and microplate aspect ratio on the vibrational 
response of the microplate has also been studied. Presented 
model in some specific cases has been validated with 
theoretical findings reported in the literature. 
 
Problem Formulation 
The capacitively actuated microplate shown in figure (1) is 
being studied. Using the model of Nayfeh and Younis [14] and 
neglecting the pressure dependent terms one may obtain: 
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Figure (1): Capacitively actuated microplate.
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Where D  is a coefficient of Elastic modulus of the microplate, 
Ŵ  is the microplate deflection, 1N̂  is the applied in plane load 
per unit length in x  direction, ρ  is the microplate density, h  

is the microplate thickness, t̂  is the time, 0ε  is the electric 
permittivity of the vacuum, rε  is the electric permittivity of the 

ambient, pV  is the applied bias voltage, ev  is the applied AC 

voltage and d  is the distance between two electrode. Using the 
nondimensionalized variables ˆw W d= , ˆx x a= , ˆy y b= , 

a bα = , 2
1

ˆN N a D= , ( )2ˆt t a D hρ=  and 
4 2 3

0 r pa V Ddβ ε ε= , the nondimensionalized form of the 
equation (1) would be as equation (2). 
 

4 4 4 2 2
2 4

4 2 2 4 2 22 0w w w w wN w
x x y y x t

α α β∂ ∂ ∂ ∂ ∂+ + − + − =
∂ ∂ ∂ ∂ ∂ ∂

 )2( 

 
For finding the natural frequencies and modeshapes, one may 
assume. 
 
( ) ( ) ( ), , expw x y x y i tϕ ω=  )3( 

 
Where ( ),x yϕ  is the microplate modeshape and ω  is the 
corresponding natural frequency. Substituting equation (3) in to 
homogenous form of the equation (1), would lead to equation 
(4). 
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The extended Kantorovich method would be used to solve 
equation (4). First of all a first order Galerkin approximation is 
used. 
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Now according to the extended Kantorovich method it is 
assumed that: 
 
( ) ( ) ( ),x y f x g yϕ =  )6( 

 
If ( )g y is a prescribed known function, then variation of ϕ  

would be just because of variation of f . That is: 
 

( ) ( ) ( ),x y g y f xδϕ δ= )7( 

 
Substituting equations (6)  and (7) in to equation (5), one can 
arrive at: 
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Now, considering the point that fδ  has arbitrary values except 
at the boundaries and utilizing the fundamental lemma of 
variational calculus, one may arrive at the following ODE for 
( )f x . 
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Here it is tried to weaken some of the integrals appear in the 
equation (9). This incorporate some of boundary condition’s 
and reduces the degree of derivatives which have to be 
evaluated. Using the integration by parts: 
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Using equations (10) and (11) would reduce the equation (9) to 
equation (12). 
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Or in a more simplified manner: 
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2214
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= −
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If it was assumed that ( )f x  is known, one would arrive at a 

similar ODE in terms of ( )g y . These two eigenvalue ODEs 
can be solved iteratively for finding ( )f x , ( )g y  and 
microplate natural frequencies. In order to this the initial guess 
function ( ) ( )22 1g y y= −  is chosen. Using this assumption, 1I  

and 1I  would be obtained as follows. 
 

2
1 6I Nα= +  )16( 

4
2

63
2

I α β= −  (17)  

 
Now, with solving equation (13), one can arrive at equation 
(18). 
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( )
1 2 3

4
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Assuming a fully clamped microplate, the necessary boundary 
condition’s for f  and g  are equations (19) and (20).  
 
( ) ( ) ( ) ( )1 1 1 1 0f f f f= − = = − =′ ′  )19( 

( ) ( ) ( ) ( )1 1 1 1 0g g g g= − = = − =′ ′  )20( 

 
Imposing boundary condition’s (19) on equation (18) would 
lead to the following set of algebraic eigenvalue, eigenvector 
equations. 
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Now adding equations (21) and (22) and subtracting equation 
(24) from equation (23) would lead to the following system of 
algebraic equation in terms of 2C  and 4C . 
 

( ) ( )2 4cosh cos 0C Cρ χ+ =  )25( 

( ) ( )2 4sinh sin 0C Cρ ρ χ χ− =  )26( 

 
In a similar manner by subtracting equation (22) from equation 
(21) and adding equations (23) and (24) one would arrive at 
equations (27) and (28) in terms of 1C  and 3C . 
 

( ) ( )1 3sinh sin 0C Cρ χ+ =  )27( 

( ) ( )1 3cosh cos 0C Cρ ρ χ χ+ =  )28( 

 
Equations (25) and (26) are related to symmetric modeshapes 
and equations (27) and (28) are related to anti-symmetric 
modeshapes. Equating the determinant of coefficients of 
equations (25) and (26) would lead to the equation (29) and 
equating the determinant of the coefficients of equation (27) 
and (28) would lead to equation (30). 
 

tan tanhχ χ ρ ρ− =  )29( 

tanh tanχ ρ ρ χ=  )30( 

 
Since ρ  and χ  are functions of nω , solving equations (29) 
and (30) can find the values of microplate natural frequency. It 
is also obvious from equations (25), (26), (27) and (28) that for 
symmetric modeshapes: 
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And for anti-symmetric modeshapes: 
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In the extended Kantorovich procedure if it was assumed that 
( )f x  is a known function, then the following ODE would 

govern the behavior of ( )g y . 
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Where: 
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If one use the previously obtained closed form analytical 
function for ( )f x , then the integrations  in equations (34) and 
(35) can be obtained analytically as follows: 
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With solving equation (33), one may obtain equation (39) for 
( )g y . 
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Where: 
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Now performing the boundary condition’s (20) on equation 
(39) one may obtain a set of four homogeneous eigenvalue, 
eigenvector algebraic equations. Equating the coefficients of 
this set of equations with zero, would lead to equations (42) 
and (43), where equation (42) is for symmetric and equation 
(43) is for anti-symmetric modeshapes. 
 

tan tanhχ χ ρ ρ− =′ ′ ′ ′  )42( 

tanh tanχ ρ ρ χ=′ ′ ′ ′  )43( 

 
It can also be obtained that for symmetric modeshapes: 
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χ
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And for anti-symmetric modeshapes: 
 

1

3

sin
sinh

C
C

χ
ρ

′ ′= −
′ ′

 )45( 

 
This iterative procedure can be continued to find new functions 
for ( )f x  and ( )g y . But as would be seen, the convergence of 
the procedure is so fast that usually two or three iterates is 
sufficient for finding a high precision response. 
 
Results and Discussion 
Figure (2) shows the frequency parameter nω  at different 
modeshapes versus α  when 1

ˆ 0pN V= = . Results of this figure 
are in close agreement with tabulated results of Jones and 
Milne [23]. Figure (2) also implements that increasing the 
microplate aspect ratio would increase its natural frequencies.  
In order to investigate the convergence of the procedure, tables 
(1) and (2) has been prepared. These tables shows the values of 

2C , 4C , ρ  and χ  for functions ( )f x  and ( )g y  respectively 
at different iterates in the first modeshape. Note that in this 
modeshape 1 3 0C C= = . 
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Figure (2): frequency parameter nω  at different modeshapes versus 

α . 

 
 

Table 1: values of 2C , 4C , ρ  and χ  for function 

( )f x  at different iterates when 0pN V= =  and 1α =  

for modeshape ( )1,1 . 

2C 4C ρ χ 
0.042213065 1 3.26318507984225 2.15600947709075 
0.042220101 1 3.26305421238901 2.15603343766773 
0.042220103 1 3.26305417246660 2.15603345282247 
0.042220103 1 3.26305417436214 2.15603345329057 
0.042220103 1 3.26305417455107 2.15603345333045 

 
 

Table 2: values of 2C , 4C , ρ  and χ  for function 

( )g y  at different iterates when 0pN V= =  and 1α =  

for modeshape ( )1,1 . 

2C 4C
 

ρ χ 

0.04222025392 1 3.263051335801 2.15603394396 
0.04222010340 1 3.263054166668 2.15603345197 
0.04222010317 1 3.263054173891 2.15603345317 
0.04222010316 1 3.263054174513 2.15603345332 

 
 
These tables are a simple evident of the fast convergence of the 
procedure. Furthermore figure (3) shows the modeshapes ( )1,1 , 

( )1,2 , ( )2,1  and ( )2, 2  of the microplate at different iterates 
when 

1
ˆ 0pN V= = . It is seen that because of the rapid 

convergence, visual distinguishing of different iterates is 
impossible. 
 

 
Figure (3): first Microplate modeshapes at different iterates.

 
 
Figure (4) shows the variation of the normalized natural 
frequency with respect to natural frequency in zero voltage 
state with β  at different values of α  when 0N = . It is 
observed that with increasing the value of β  the fundamental 
natural frequency decreases and eventually approaches zero at 
pull-in. it is also concluded that at every specified actuating 
voltage, the value of natural frequency increases as the 
microplate aspect ratio increase. 
Figure (5) shows the values of  β  at pull-in versus α . It is 
seen that square like microplates can bear more voltage before 
the occurrence of pull-in. 
Figure (6) shows the effect of applied inplane loads on the 
microplate fundamental natural frequency at different values of 
β  and two distinct values of microplate aspect ratio. As it can 
be seen, applying tensile loads would increase the microplate 
fundamental natural frequency while applying compressive 
loads would decrease microplate fundamental natural 
frequency and it would eventually approaches zero near the 
pull-in instability. Figure (6) also shows that increasing the 
applied voltage would decrease the maximum applied inplane 
compressive load the structure can support. 
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Figure (4): variation of the normalized natural frequency with 

β  at different values of α  
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Figure (5): Values of  β  at pull-in versus α .

 
 
CONCLUSION 
In the current paper an extended Kantorovich method is 
developed for the vibrational analysis of electrically actuated 
microplates. The rapid convergence and high precision is 
shown to be the power of this method. In some specific cases 
the model is validated against theoretical results reported in the 
literature. The mentioned advantages make the EKM an 
effective and accurate design tool, useful in design optimization 
and determination of the stable operation range of MEMS 
devices. 
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Figure (6): Effect of applied inplane loads on the microplate 

fundamental natural frequency at different values of β  and 

0.1α = and 0.2α = . 
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