Flexible Timing Simulation of
Multiple-Cache Configurations

Edward S. Tam, Jude A. Rivers, and Edward S. Davidson
Advanced Computer Architecture Laboratory
Electrical Engineering and Computer Science Department
The University of Michigan
Ann Arbor, MI. 48109-2122
{estam,jrivers,davidson}@eecs.umich.edu*

Abstract

As the gap between processorand memory speedsincreases,cache
performancebecomesmore critical to overall systemperformance. Behavioral
cache simulation is typicallysedearly in the designcycle of new processor/cache
configurationsto determinethe performanceof proposedcacheconfigurationson
target workloads.However, behavioralcachesimulationdoesnot accountfor the
latency seenby each memory access. The Latency-Effects(LE) cache model
presentedn this paper accountsthis nominal latency as well as the additional
latenciesdueto trailing-edgeeffects,bus width considerationsport conflicts, and
the numberof outstandingaccessethat a cacheallows beforeit blocks. We also
extendthe LE cachemodelto handlethe latency effects of moving data among
multiple cachesmlcache, a new, easilyonfigurableand extensibletool, hasbeen
built based on the extendé& model. We show the useof micache in estimating
the performance dfaditionaland novel cacheconfigurationsjncluding odd/even,
2-level, Assist, Victim, and NTS cachebdVe alsoshow how the LE cachetiming
model provides more useful, realistic performanceestimatesthan other possible
behavioral-level cache timing models.

Keywords: cache timing simulation model evaluation

1 I ntroduction

Cacheperformancebecomesever more critical to overall systemperformanceas the gap
between processorand memory speedincreases. The performanceof a particular cache
configurationdependsnot only on the miss ratio incurred during the executionof a particular
workload but alsoon wherein the program’sexecutionthe missesoccur andthe latencyof each
miss. However, useful timing simulation of cacleetypically unavailableuntil late in the design
stage. Using today’s behavioralsimulators,simple, traditional cachesare evaluatedearly in the
designcycle; however,novel cachedesignsare often not consideredsince they are difficult to
model.

The issueof providing more useful cachetiming simulation analysisearly in the design
cycle hasbeenaddressedby the Latency-Effect§LE) cachemodel[Tam96], which incorporates
latency-addingeffects into a behavioral-levelsimulation, particularly trailing-edge effects, bus
width considerationsthe effectsof port conflicts, andthe numberof outstandingaccessethat a
cache can handle befdoéocking. Existing methodsof modifying behavioralcachesimulatorsto
incorporatetiming effects include adjusting the total cycle count reportedby a perfect cache
simulationby addingan estimatechumberof cyclesdueto cachemisses(the adjustedmodel) or
assigning a nominal leading-edge penalty to each miss as it occurs (a modelrefemdl as LE-
nominal). To illustrate the advantage®f the LE cachemodel, we will comparethe LE cache
model’s results to the results of using these other models.

L This research was funded in part by a gift from IBM.

Flexible Timing Smulation of Multiple-Cache Configurations 1

While our previous work concentrated on single, traditional caches [Tam96] amaLitico
lateralcacheqRivers97],the LE cachemodelis easily extendedo incorporateother novel cache
designs. Whenmultiple cachesare presentn a system,organizedeitheras parallel (multilateral)
L1 caches or sequenti@hultilevel) L1 andL2 cachesthe time to move dataamongcachesnust
be accounted for in any realistic cache timing simulation. This paper will detail the extertkien of
LE cachemodelto handlemultiple cachesystemsby accountingfor the additionallatency-adding
effectsexperiencedy accessethat requiredatamovementamongthe caches. We also present
micache, an easily configurablemultiple-cachesimulator basedon the extendedmodel, which
currently handles any processor system wighaessorandtwo cacheshackedby a "next" level
of memory. For multi-lateral cacheconfigurations(where the two cachesare accessedy the
processor irparallel),the "next" level is typically a secondevel of cache;for multi-level caches,
the "next" level is either a third level cacheor main memory. This next level can clearly be
incorporated similarly intonlcache, but is omitted for simplicity in this initial feasibility study.

Section 2 presents a brief overview of cache timing simulation. Section 3 diseersses
behavioral-levecachetiming models. Section4 presentshe extendedLE cachemodel and the
mlcache simulatorand Section5 explainsour implementatiorandtestingof micache. Section6
presents the resultd using micache aswell asa comparisorof the LE cachemodelto the other
cache timing models. Conclusions are presented in Section 7.

2 Timing simulation of caches

Thereare manyways that cacheperformancenasbeenevaluatedduring the designcycle.
Miss ratio hasbeenusedto indicate the potential performanceof a systemusing a given cache
when running target workloadsMliss ratios are easily obtainedusing behavioralsimulatorssuch
as Dinerolll [Hill85], Tycho [Hill93], ACS [PARL95], and others. While a lower miss ratio
usually indicates higher performance,the effect of the cache on overall processor/machine
performance is difficulto quantify using behavioralsimulators. However, behavioralsimulators
arevery fastand easyto configure,allowing many different cacheconfigurationsto be roughly
evaluated in a short period of time.

At the other end of the cache evaluation spectrum are cycle-by-cycle circuit-level
simulators. Thesesimulatorsare very accuratein modelinga cache’slatenciesand consequent
effects ona machine’soverall performance. However, sincecircuit-level simulatorsare complex
and hard to build and modify, theyprmally are not developeduntil late in the designcycle when
the processor/cachdesignis relatively stable. Circuit-level simulatorsare thus not suitablefor
evaluating many different, potentially novel, cache designs early in the design cycle.

The Latency-Effects(LE) cachemodel [Tam96] splits the difference betweenthesetwo
extreme approaches to cache simulation@ertbrmancesvaluation. The LE cachemodelandits
implementationincorporatethe flexibility and speedprovided by a behavioral simulator while
providing results that ammore useful, akin to the performanceesstimategprovidedby circuit-level
simulators. OuLE modelincorporategshe parameter®f traditional behavioralcachesimulators,
including cache size, block size, associativity, replacement policylretddition, it accountsfor
latenciesduetto trailing-edgeeffects,bus width considerationsport conflicts, and the numberof
accesses that the cache allows before blocking.

3 Behavioral-level cache timing models

Behavioral simulators are typically used to evaludsge numberof cacheconfigurations
earlyin the designcycle. The Latency-EffectdLE) cachemodel was developedto obtain more
realistic, useful timing simulations. Other simpler, but generallyless accuratebehavioral-level
cachetiming modelsexist, including the perfectcachemodel, the LE-nominal model, and the
adjusted model, presented below.

3.1 The LE cache model

The LE cachemodel accountsfor nominal accesslatenciesfor missesto the caches.
Furthermorethe modelaccountsfor additional latenciesdue to trailing-edgeeffects, bus width
considerationsport conflicts, andthe numberof outstandingaccessethat a cacheallows before
blocking.

Flexible Timing Smulation of Multiple-Cache Configurations 2

First, consider a single cache wdlperfectbackingmemory. Whenthe processomakes
an access while the caché'qmiiet,” i.e. thereis no activity still in procesdor any earlieraccess,
the cache state is interrogated and this access is assigned a nominal latency depending dain whethe
is a read or write, or a hit or miss. In this model, a single-cycle cache (in which a read hit access t
a quiet cache returns data to the processor at thefehd samecycle in which the accesgequest
is made) is assigned a latency of 0.

An access is said to commence in ¢§ele in which it is acceptedy the cacheanda read
access is said to complete in the cycle in which data is returned to the processthirdieglesome
activity related to finishing this access may still be pendintpe cache). A readaccesdo a quiet
cache thus commences at (the beginif)ghe samecycle, X, in which the processomakesthe
accesgequestand completesat (the end of) cycle X+L, wherelL is the nominal latency for this
access.In generalactivity of prior accessethatis still in processwvhenan accesss mademay
delaythe commencemerdf an accessor increasethe latency of the accessheyondits nominal
value due to other "latency-adding" effects.

Trailing-edgeeffectsmay increasethe latency of accessesnadeto cacheblocks that are
currently moving to the cache from the next level of memory aethdtof a previousmiss. For
example, if an access is made to block B at cycle Y, put@ousaccesso block B was madeat
time X and assigned a latency (including latency-adding effects) of L, then this access can complei
no earlierthancycle X+L andits latencyis increasedjf necessaryto insurethis. Since such
requestgmay not incur the full miss penaltyandthey do not causeany additionaltraffic between
the cacheand the memorythey arereportedas hits (or "delayedhits™); such hits will, however,
generallyexperiencea latencythatis greaterthanthe nominalhit latencydueto this trailing-edge
effect.

Furthermore, if the bus between the cache and the next level of memory is nehaidg
to return a full cache block in one cycle, then the latency is further increasee by more cycles
according to the distance between ploetion of the block referencedy this accesgelativeto the
portion referencedby the original miss. The trailing-edge effects, including these bus width
considerations, may thus increase the minimum completionftintéis referenceas a function of
when the data will be made available by a previous miss.

Anotherfactor that influencesthe completiontime of a memory accesss the numberof
outstanding accesses (NOA) tleatachecan handlebeforeit blocks. Oncethe cacheis blocked,
Nno new accesses can commence until at least one of the outstanding accesses completes. Typice
cachesallow "hits under misses,"i.e. hits can be completedwhile the cacheis still serving a
previousmiss; many cachesalsoallow multiple missesto be outstanding. The LE model uses
NOA to model this featureA blocking cachehasNOA=1; a fully nonblockingcachehasinfinite
NOA (the cacheneverblocksregardles®f the numberof accessem flight). If the numberof
outstanding accesses equals NOA when an acesade,thenthe commencementf this access
is delayeduntil one of the outstandingaccessess fully servedandno otheraccessnay be made
until the cycle in which this access commences. Iptleeiouslyassignedaccescompletiontime
is less than this commencemdinte plus the nominallatency,this differenceis thenaddedto the
completion time.

Finally, port conflicts are considered. If no appropriate port t@theessois availableat
the current completion time of this access, therctmpletiontime is furtherincreasedo the first
cycle at which such a port is available.

The Latency Effect$LE) cachemodelthus accountdor nominal hit and misstimes, plus
the addeddelaysdueto eachof the aforementionecffectsof prior accessesn the timing of an
access. Sometiming effectsare not accountedor in the model, including the effects of write-
through vs. write-back caches, write-back buffarg] the time requiredto obtainthe systembus
in the presenceof other users. Theselatency-addingeffects will be incorporatedin future
refinementsof the LE model. The effectsof TLB misses,pagefaults, etc. could alsobe added.
However,we choseto concentraten the modelingof multiple cachesystemdirst, as described
below.

In our pastwork [Tam96], we usedthe LE cachemodel for performanceevaluationsof
“traditional” single level cacheshackedby main memory. However,in today’s machinesan on-
chip L1 (first level) cache is generally backed by a L2 (second level) cacheftemdn L3 cache,
beforereachingmain memory. We thereforeextendedthe LE cachemodel to simulate multiple

Flexible Timing Smulation of Multiple-Cache Configurations 3

cachesn amemorysystem. In additionto multiple levels of cacheswe also evaluatedmulti-
lateral L1cachesj.e. parallelL1 caches Multi-lateral cachedesignsincludethe AssistCache,as
usedin the HP PA-RISC 7200 [Kurpanek94][Rashid94]the NTS Cache[Rivers96], and the
Victim Cache [Jouppi90].

With multiple caches, access latencies m@gendnot only on the cache-to-processand
cache-to-memorynteractions but mustnow include cache-to-cachateractions. Theselatencies
canincludethe time to "promote"” (move) a block from one cacheto another,the time to savea
replaced block from one cache in another cache, and the time to swaphbatiesncaches. The
numberof cyclesfor theseoperationsmay vary with the cache’sconfigurationand its nominal
access times. Depending upon the Width betweenthe cachesdifferent partsof the cacheline
will be available in the destination cacheddterenttimes. Furthermorejf anaccesgo the cache
line is initiated while it is inransitfrom one cacheto another this accesawill suffer trailing-edge
effects. These latency-adding effects easily be incorporatednto the LE cachemodel. In this
extension of the LE model, a dedicated bus was assumed to be present betwaemethigo port
conflicts were ignored. Also, as latencies for data movetemteencachess likely to be short,
we did not consider blocking either cache for accesses requiring inter-cache data movement.

3.2 Other behavioral cache timing models

Otherbehavioralcachetiming modelscaneasily be derived basedon a behavioralcache

simulator with no timing analysis, like Dinerolll:

perfect cache: In this simulator, a perfectcacheis assumed. All memory accesseshave zero
latency and there are no latency-addingeffects. This model can be used to
determine the best-case execution time of a processor withooaemgor memory
effects included.

adjusted: This is an "adjusted” processorsimulator that performs a behavioral cache
simulation and adds;fm; + p,*m,, cycles to thgrocessosimulatorcycle count,
wherepy andp,, are someconstantnumberof penalty cyclesfor readand write
misses,respectively,and m; and m,, are the numberof read and write misses,
respectively.

LE-nominal: This simulator (and the next) simulate a processor with cache durisgrthkation.
While the adjustedsimulator performs processorand cachesimulation separately
and then combines their resuitsobtain programexecutiontimes, the LE-nominal
simulatoraddsthe nominallatencyfor eachaccesdo executiontime asthe access
occurs during simulation. Additional latency-adding effects are ignored.

Full-LE: This is the fully implementedLE cachemodel simulatorthat is describedabove,
including all the additional latency-adding effects.

The performance predicted by each of these four models is presented in the experiments below.

4 Modeling and simulating multiple caches

We now presenta high-level picture of multiple cacheinteractionsand discusshow these
caches are actually modeled in simulation.

4.1 High-level description

Figure 1 showsa "fully-connected"memory systemwith two cachesbackedby a main
memory. Dependinguponthe specific configurationbeing evaluatedsomeof the pathswill be
deleted. Note that the direct path between memory and processor is not included in thesfigure,
is assumedhat datathat returnsto the processodirectly from memorymuststill go throughthe
cache unit. The effects of a memory to processor transfer can be obtained by aapigrupgate
parametewaluesto it for traversingthe correspondingnemory-to-cachend cache-to-processor
paths.)

Flexible Timing Smulation of Multiple-Cache Configurations 4

PROCESSOR

MEMORY

Figure 1. Interaction between multiple caches, processor, and memory

This figure canthusrepresentat a high level, practically any systemconsistingof two
caches,a processorand memory. By removing particulararcs and elementsfrom Figure 1,
different cacheconfigurationsare representede.g. a traditional single cache backedby main
memory (Figure 2a) or a 2-level cache, where the L2 cache is B and the L1 cach&hs A and
B cachescanhavedifferent sizes,associativitiesreplacemenpolicies, etc., which are specified
separately by assigning parameter values.

Figure 2c showsa novel, multi-lateral cacheconfiguration-- the Assistcache,asusedin
the HP PA-7200[Kurpanek94][Rashid94].All accessethat enterthe cachesystemmust enter
throughthe Assistbuffer (in this figure, the B cache). Note that thereis no direct memory-to-A
cachetransferpathin Figure2c. Whenevera word of B demonstratesemporality’? during this
lifetime, its cache block is promoted to the A cache. Othenitisesidesin the B cacheuntil it is
replaced. Once a blodlasbeenpromotedto the A cache,it residesthereuntil it is replaced. In
the basic Assist implementation, blocks that are replaced in A return to main memondiais,
no direct path from the A cache to the B cache.

A latency is assigned to each of the relevant paths in the figure for eadf typerationto
be performed. For instancewhena block in the B cacheis found to be temporalin the Assist
cache configuration, the time to promote the element to the A cache ninsliubledin the access’
latency, as promoted accesses must be serviced out of the A Gélethe latencyof anaccess
canbe determinedoy addingup the time to traverseeachof the pathsfrom where the accesss
residentat the time of the requesto its final destinationin the processor. For example,for the
Assist cache configuration, the nominal miss latency, trailing-edge effects, and bus width
considerations are incorporated in the memory-to-cache path, while the latency luetebes=and
trailing-edge effects are included in the cache-to-cache path. Regardless of the cache configuratio
eachaccesss subjectto the addedlatencies,if any, dueto port conflicts and the number of
outstanding accesses allowable (NOA).

2 A word exhibits temporality if it is accessed more than once during a lifetime in the cache. A lifetime of a

cache block refers to the time interval that the block spends in the cache from one of its allocations until its next
replacement. A particular memory block may have many lifetimes and thus may exhibit temporality in some
lifetimes, but not others.

Flexible Timing Smulation of Multiple-Cache Configurations 5

PROCESSCR PROCESSOR PROCESSOR

MEMORY MEMORY MEMORY

a) Single-level cache b) 2-level cache c) Assist cache
Figure 2. Different cache configurations described using the Figure 1 model

4.2 mlcache -- an easily configurable tool

In our previous work, our implementation of the LE cache mfwdedingle cachesthe LE
cache simulator) was built by modifying the Dinerolll cache simulator [Hill85]. Usiagoncept
of delayed update of the cache state in conjunction with considerationlatiethey-addingeffects,
we were able to create a trace-driven cache timing simulator. The dslaygdupdatecauseshe
effects of an access, i.e. the access’ placement into the cache, the removal of the replated line,
to occuronly after the specifiedlatencyof the acceshaspassed. A running global cycle count
definesexactlywhen eachaccesss presentedo the memorysystem. In the caseof a hit in the
cache the accesscan"complete”in the samecycle if the cachehit latencyis zero cycles. If the
access misses in the cache, the accessed block should not be "placed” in the cacheaminidahe
miss latency plugany cyclesdueto latency-addingeffectshavepassed. Updatingthe cachewith
the effects of the access without accounting for this latency igti@éme takenwithin the cache
to process the access. Thus, traditional behavioral cache simulators that allow an hevessto
immediate affect on the cacktatecannotproperly accountfor varying accesdatencies. The use
of a delayedupdateof the cachestate allows behavioralcache simulatorsto more accurately
represent each access’ latency.

Adapting the original LE cachesimulator [Tam96] to model multiple cachesinvolved
substantial low-level changes to the source code to achieve the desired effects and intenaations
systemcontainingtwo cachesa processorandmemory[Rivers97]. Furthermore Jatenciesfor
elementanoving betweentwo cacheswvere not takeninto accountin the hand-modifiedmultiple-
cache LE cache simulator. Witheseshortcomingsye felt the needto makethe tool both more
easily retargetableand more accuratein representingthe timing of the target configuration.
Accordingly, micache was developed as a parameterized version.

4.2.1 High-level parameterization

To makemlcache easily retargetableywe choseto providea library of routinesthata user
could choosefrom when deciding what actionstake placein the cacheat a given time. The
routines are accessed from a singll€Cnamedconfig.c . The usersimply modifies config.c
to describeall of the desiredinteractionsshownin Figure 1 betweenthe caches processorand
memory. The useralsocontrolswhenthe actionsoccurvia the delayedupdatemechanismbuilt
into the first implementation of the LE cache simulatiérmore interactionsare neededhanthose
provided, theycanthenbe codedinto the simulatorby hand;however,the routinesthat we have
already provided are adequate to model most conceivable dual-cache designs.

Flexible Timing Smulation of Multiple-Cache Configurations 6

While micache addresses many of the effesesenby a memoryaccessn a multiple-cache
configuration,somekey effectsare still not accountedfor. Multiple-cache configurationsthat
incorporateprefetching,as with a streamingbuffer [Jouppi90], cannot be dealt with because
hardware prefetching has not been included in the current implementation. Also, some
configurations,e.g. a smalleror less associativecache"backing™" a larger or more associative
(possibly multilateral) cache can potentially violdte multi-level inclusion principle [Baer88]; the
potentialfor this violation is commonin suchcachesandhas not beenaddressedn our current
studies.

Support Routine Description

check for_cache hit() check to see if accessed block is present in the cache
update() place an accessed block into the cache

move_over () move an accessed block from one cache to the other
do_swap() move an accessed block from cachel to cache2 and moy

evicted block to cachel

place an accessed block into both cachel and cache2 an
the evicted block from cache2 to cachel

do_swap with_inclusion()

do_save evicted() move the block evicted from cachel to cache2
find_and_remove() remove a block from a cache
check for_reuse() determine if a block exhibits temporal behavior (word re-u

Table 1. Support routines used to control cache state and interactions

Table 1 shows the routines provided for the we@hoosefrom anda brief descriptionof
each. Figure 3 shows portions of the config.c file whereinan Assist cacheconfigurationis
modeled by using these routines. As caisden,the operationsn the config.c file areall very
high level and easily understandahled relieve the userfrom learningthe intricaciesof the cache
simulator’s low-level operation in order to model a new cache.

4.2.2 Assessing latencies for multiple caches

Accountingfor latenciesbetweencachesis a simple extensionof the LE cachemodel -
given that we know what operationis occurring,we canaddthe correspondindatency onto the
accesgime and then accountfor any latency-addingeffects. For this paper, we assumethat
dedicated busses (as wide as the smeadiehe’sblocksize)are presentbetweenthe cachesso that
we may ignore bus width considerations between the caches for moves between A andlg& We
assume that, given these dedicated busses, there are dedicatéat posssesraveling between
the caches; this permigsprocessoreadfrom say, the A cachewhile a different elementis being
moved to A fromthe B cache. Implementation®f thesecachesn a real, well-designedmachine
would likely satisfy these assumptions.

Different latencies can also be assigned to a path depending upon the operasdeihgt
performed. For instancewe seethatin Table 2, the latencyassignedor the move_time differs
among the cache configurations. For an Assist cache (illustrated in Figuneo2egsbetweenthe
cachesarealwaysin a singledirection,from the B cache(buffer) to the A cache(main cache).
Thus, a move in the Assist cache configuration in our experiments requires agaigleneaning
an accesghat missesin the A cacheandhits in the B cacheand exhibits temporality is satisfied
with a singlecycle latency. Accessegshat hit in the A cachearereturnedin the samecycle (zero
cycle hit latency), as are accesses that hit in the B cache that do not exhibit temporality.

For a Victim cache,promotionsfrom the B cacheto the A cacherequirea swapto be
performed: the block from the B cache is moved into the A cactiéhe block evictedfrom the A
cache as a result of the move is moved to the B cache. Normally, this operation cannot aomplete
a single cycle, as there is only a single, albeit dedicated, bus bdtwamThesput two elements
need to be moved using the common bus. Thugamassigna maximumlatencyof two cycles
for a move betweenthe cachesfor the Victim configurationor assigna one cycle latency and

Flexible Timing Smulation of Multiple-Cache Configurations 7

assumea 2 block wide bus;we assignedatency?2 in the following experiments. If thereis an
access to a block that is moving between caches, the trailing-edge effect seen by thcs éstisr
properly accounted for by the LE cache model.

/~k
this is the standard handler for each access. it checks in the A cache
to see if the access is there first. if it isn't, it checks in the
B cache. if it's present in a cache, it handles the appropriate cache hit.
if the access misses in both caches, a miss is processed. this is done to
"sequentially”" perform a parallel check of the two caches in the first level

other designs may not need both caches checked (e.g. MLCOs that partition
the memory access stream based on some criteria like address (odd/even),
unctionality (integer/floting point), etc.).
*/
i nt handl e_access(int cycle_count, UpdateEntry{*Entry)
/* check for hit in A cache "first" */
if(lcheck_for_cache_hit(cycle_count,Entry))
/* miss in A cache - check in B cache */
if('check_for_cache_hit(cycle_count,Entry))
/* miss in both caches - handle the miss */
access_time = handle_miss(cycle_count,Entry);
else
/* hit in B cache (after miss in A cache) - handle the B cache hit */
access_time = handle_B_cache_hit(cycle_count,Entry);
else
/* hit in A cache - handle the A cache hit */
access_time = handle_A_cache_hit(cycle_count,Entry);
return access_time; }

i nt handle_A cache_hit(int cycle_count, UpdateEntr{y *Entry)
/* hitin A cache, so just update stack, etc. for A cache */
Entry->on_completion = DO_UPDATE;

Entry->access_latency = cache_latency;
Entry->which_cache = ACACHE;
return(handle_hit_timing(cycle_count,Entry,Entry->A)); }

i nt handl e_B cache_hit(int cycle_count, UpdateEntry *Entry)
/* hit in B cache, so do appropriate updates */
[* for assist cache, update is to promote it to A cache */
if(check_for_reuse((Entry->B))) {
Entry->on_completion = DO_MOVE;
Entry->move_direction = B_TO_A,
Entry->access_latency = move_time + cache_latency;
return(handle_miss_timing(cycle_count,Entry,Entry->B)); }
else {
/* just update this access to B cache */
Entry->access_latency = cache_latency;
Entry->which_cache = BCACHE;
return(handle_hit_timing(cycle_count,Entry,Entry->B)); } }

Figure 3: Part of a sample config.c file, showing the
basic evaluation process for each access

In a 2-level cache, the second level cache is typically much stbesethe first level cache
(which also permits it to be much larger than the L1 cach#)gifollowing experimentsywe have
assigned a five cycle latency for an element to move from the B (L2) cache to the A (I11) cache.

Flexible Timing Smulation of Multiple-Cache Configurations 8

DM | 2-LEVEL |ODD/EVEN] ASSIST VICTIM NTS

Cache A A B A B A B A B A B
Size 8/16K] 8K | 32K] 4K | 4K | 8K | 1K | 8K [1K | 8K | 1K
Associativity | 1/1 1 4 1 1 1 full 1 full 1 full
Replacement
policy —/— - |LRU| - - - |LRU| - |LRU] - |LRU
move time - 5 — 1 2 —
r/w latency to -
next level 11/17 5 |(1viq1i/i7 111 - |11/17411/17) - | 11/1711/17

Table 2. Characteristics of six different cache configurations studied

(times/latencies are in cycles)

The semanticof the other multiple-cacheconfigurationsare discussedn more detail in
Section 6, where we present the results of our experiments. thesebrief exampleshowever,
it is easy to see that extending the LE cache model to handle multiple caclzesovaplishedn a
straightforwardmannerand provides user-friendly,high-levelinterface. This modular, library-
basedapproachto cacheconfigurationallows a significant rangeof cacheconfigurationsto be
examined early in the design cycle.

5 Implementation and testing of mlcache

We haveimplementedsix different cacheconfigurationsusing the mlcache simulator: a
direct-mappedaingle cache,an Assistcache,an NTS cache,a Victim cache,an odd/evencache,
and a two-level cacheThe latenciesusedfor the timing simulationof thesecachesare shownin
Table 2.

5.1 Simulation environment

A timing simulationof cachesis of limited use without consideringthe latency-masking
effectsof processorexecution. Thus, we integratedour cachesimulator with the RCM_brisc
instruction-level processor simulator [Wellman95], as was done with the LE simul@f@ann®6].
RCM _ brisc simulates the execution of instructions fed totihé@form of a traceof the program’s
executionon an actualmachine,which in this study is an IBM RS/6000[Bakoglu90]. The
RCM _brisctool by itself simulatesthe executionof all instructionsbut assumesa perfect cache
model, where all datafrom memory is availablein a constant,prespecifiedamountof time.
However, the perfect cache model yields an unrealistic estimate of program performance; cache ar
memory effects must be includedin any processorsimulationif it is to realistically evaluatea
program'’s performance. To make the processor model more modern, we configured RCM_brisc t
represent aeight-wide,in-orderissue,eight functional unit processo 2 FXUs, 2 FPUs, 2 L/S
units, and 2 branchunits). Eachfunctionalunit hasa numberof reservatiorstationsthat buffer
instructions between the issue and execution units, permitting out-of-order execution and
completion of instructions. There are five register files insystem:a 32 registerGPR file, a 32
register FPR file with 40 physical registers (with register renaming), a two register link rélgister
(for branches)an 8 registercondition registerfile, and a two registercount registerfile. An
infinite number of register ports assumedo minimize instructionissueconflicts and constraints
and therebyncreasethe demandon the cache. In the optimal case,this machinecanissueup to
two load/stores per cycle and complete two per cycle; it has two cache read partsrahelwrite
port.

The memoryhierarchyincludesseparatd.1 cachesfor instructionand data. Sincethis
paper focuses omultiple-cachestructuredor data,we assumea perfectL1 instructioncachefor
simplicity and treat all instruction fetchesas hits with zero latency. Thus, all of the cache
configurations we describe in this paper representthe data cache configurations of the
processor/cache combinations that we evaluate.

Themicache simulator could easilhhavebeencombinedwith any other currently available
instruction-level simulators such @alisman[Bedichek95],SimICS [Magnusson95]and others.
This is possiblebecausericache maintainsthe stateof the cachesitself and doesnot take into

Flexible Timing Smulation of Multiple-Cache Configurations 9

accountvirtual memoryor TLB effects. It modelsup to the first two levels of datacacheand
assumes a perfect memory thereafter, regardless of the number of level of caches beydhe that.
RCM _brisctool was chosenfor conveniencesincethe LE cachemodel was implementedin the
same spirit using the Resource Conflict Methodology [Wellman95] model.

5.2 Target benchmarks

To evaluate the performancetbk cacheswe chosefrom a variety of scientific, floating-
point codesand memory-intensiveinteger benchmarks. The selectedbenchmarksand their
descriptions are shown in Table 3.

Memory References Perfect Memory
(millions) Performance
Program [Program Description Cycle
L oads Stores Count IPC
(millions)

APPBT navier-stokes eqns approx. 10.621 | 1.043 44412 1.126 |
APPSP navier-stokes eqns approx. 10.183 1.542 41.435 1.207
EQNTOTT [boolean -> truth table 14.994 2.474 59.807 0.836
FEMC em object identification 10.730 4,548 51.507 0.971
FETPDE |3-D fast fourier transform 9.229 5.506 35.507 1.408
SIMPLE [2-D Lagrangian hydrodynamigs 11.277 6.302 44.180 1.132
SPHOT monte-carlo particle transport] 16.948 5.151 65.139 0.767

Table 3: Benchmark program characteristics

APPBT, APPSP,and FFTPDEarefrom the NAS Benchmarksuite, EQNTOTT is from
the SPEC92 suite, and SIMPLE and SPHOT are from the RICEPS suite. The seventh benchmar
FEMC [Chatterjee93], is a floating point codevelopedandin useat the University of Michigan
Radiation Laboratory for evaluating electromagnetic backscatter fidistaatobject. Due to time
and resource constraints, we traeed simulatedthe executionof 50 million instructionsof each
program; performance of thest 10 million instructionsof eachprogramwas discardedo avoid
program initialization effects. Traa®llectionwasdoneon anIBM RS/6000runningAlX 3.2.4
with the ATRACE tracing package (developed by Ravi Nair of the IBM T.J. Watson Labs).

Table 3alsoshowsthe numberof cyclesrequiredto executethe codeon our RCM_brisc
processor simulator with a perfect cache (i.e. all memory accesses are satisfisdumneityele in
which they commence). Thesenumbersare neededfor determiningthe Relative Cache Effect
Ratio, as defined in [Rivers97], which is:

RCR, =

This ratio providesthe finite cachepenaltyof a given cacheconfigurationrelativeto the base8K
direct-mapped cachgenalty. The DM:8K cachethushasan RCR