
 __
Flexible Timing Simulation of Multiple-Cache Configurations 1

Flexible Timing Simulation of
Multiple-Cache Configurations

Edward S. Tam, Jude A. Rivers, and Edward S. Davidson
Advanced Computer Architecture Laboratory

Electrical Engineering and Computer Science Department
The University of Michigan
Ann Arbor, MI. 48109-2122

{estam,jrivers,davidson}@eecs.umich.edu1

Abstract

As the gap between processor and memory speeds increases, cache
performance becomes more critical to overall system performance. Behavioral
cache simulation is typically used early in the design cycle of new processor/cache
configurations to determine the performance of proposed cache configurations on
target workloads. However, behavioral cache simulation does not account for the
latency seen by each memory access. The Latency-Effects (LE) cache model
presented in this paper accounts this nominal latency as well as the additional
latencies due to trailing-edge effects, bus width considerations, port conflicts, and
the number of outstanding accesses that a cache allows before it blocks. We also
extend the LE cache model to handle the latency effects of moving data among
multiple caches. mlcache, a new, easily configurable and extensible tool, has been
built based on the extended LE model. We show the use of mlcache in estimating
the performance of traditional and novel cache configurations, including odd/even,
2-level, Assist, Victim, and NTS caches. We also show how the LE cache timing
model provides more useful, realistic performance estimates than other possible
behavioral-level cache timing models.

Keywords: cache timing simulation model evaluation

1 Introduction
Cache performance becomes ever more critical to overall system performance as the gap

between processor and memory speed increases. The performance of a particular cache
configuration depends not only on the miss ratio incurred during the execution of a particular
workload but also on where in the program’s execution the misses occur and the latency of each
miss. However, useful timing simulation of caches is typically unavailable until late in the design
stage. Using today’s behavioral simulators, simple, traditional caches are evaluated early in the
design cycle; however, novel cache designs are often not considered since they are difficult to
model.

The issue of providing more useful cache timing simulation analysis early in the design
cycle has been addressed by the Latency-Effects (LE) cache model [Tam96], which incorporates
latency-adding effects into a behavioral-level simulation, particularly trailing-edge effects, bus
width considerations, the effects of port conflicts, and the number of outstanding accesses that a
cache can handle before blocking. Existing methods of modifying behavioral cache simulators to
incorporate timing effects include adjusting the total cycle count reported by a perfect cache
simulation by adding an estimated number of cycles due to cache misses (the adjusted model) or
assigning a nominal leading-edge penalty to each miss as it occurs (a model we will refer to as LE-
nominal). To illustrate the advantages of the LE cache model, we will compare the LE cache
model’s results to the results of using these other models.

1. This research was funded in part by a gift from IBM.

 __
Flexible Timing Simulation of Multiple-Cache Configurations 2

While our previous work concentrated on single, traditional caches [Tam96] and two multi-
lateral caches [Rivers97], the LE cache model is easily extended to incorporate other novel cache
designs. When multiple caches are present in a system, organized either as parallel (multilateral)
L1 caches or sequential (multilevel) L1 and L2 caches, the time to move data among caches must
be accounted for in any realistic cache timing simulation. This paper will detail the extension of the
LE cache model to handle multiple cache systems by accounting for the additional latency-adding
effects experienced by accesses that require data movement among the caches. We also present
mlcache, an easily configurable multiple-cache simulator based on the extended model, which
currently handles any processor system with a processor and two caches backed by a "next" level
of memory. For multi-lateral cache configurations (where the two caches are accessed by the
processor in parallel), the "next" level is typically a second level of cache; for multi-level caches,
the "next" level is either a third level cache or main memory. This next level can clearly be
incorporated similarly into mlcache, but is omitted for simplicity in this initial feasibility study.

Section 2 presents a brief overview of cache timing simulation. Section 3 discusses several
behavioral-level cache timing models. Section 4 presents the extended LE cache model and the
mlcache simulator and Section 5 explains our implementation and testing of mlcache. Section 6
presents the results of using mlcache as well as a comparison of the LE cache model to the other
cache timing models. Conclusions are presented in Section 7.

2 Timing simulation of caches
There are many ways that cache performance has been evaluated during the design cycle.

Miss ratio has been used to indicate the potential performance of a system using a given cache
when running target workloads. Miss ratios are easily obtained using behavioral simulators such
as DineroIII [Hill85], Tycho [Hill93], ACS [PARL95], and others. While a lower miss ratio
usually indicates higher performance, the effect of the cache on overall processor/machine
performance is difficult to quantify using behavioral simulators. However, behavioral simulators
are very fast and easy to configure, allowing many different cache configurations to be roughly
evaluated in a short period of time.

At the other end of the cache evaluation spectrum are cycle-by-cycle circuit-level
simulators. These simulators are very accurate in modeling a cache’s latencies and consequent
effects on a machine’s overall performance. However, since circuit-level simulators are complex
and hard to build and modify, they normally are not developed until late in the design cycle when
the processor/cache design is relatively stable. Circuit-level simulators are thus not suitable for
evaluating many different, potentially novel, cache designs early in the design cycle.

The Latency-Effects (LE) cache model [Tam96] splits the difference between these two
extreme approaches to cache simulation and performance evaluation. The LE cache model and its
implementation incorporate the flexibility and speed provided by a behavioral simulator while
providing results that are more useful, akin to the performance estimates provided by circuit-level
simulators. Our LE model incorporates the parameters of traditional behavioral cache simulators,
including cache size, block size, associativity, replacement policy, etc. In addition, it accounts for
latencies due to trailing-edge effects, bus width considerations, port conflicts, and the number of
accesses that the cache allows before blocking.

3 Behavioral-level cache timing models
Behavioral simulators are typically used to evaluate a large number of cache configurations

early in the design cycle. The Latency-Effects (LE) cache model was developed to obtain more
realistic, useful timing simulations. Other simpler, but generally less accurate behavioral-level
cache timing models exist, including the perfect cache model, the LE-nominal model, and the
adjusted model, presented below.

3 . 1 The LE cache model
The LE cache model accounts for nominal access latencies for misses to the caches.

Furthermore, the model accounts for additional latencies due to trailing-edge effects, bus width
considerations, port conflicts, and the number of outstanding accesses that a cache allows before
blocking.

 __
Flexible Timing Simulation of Multiple-Cache Configurations 3

First, consider a single cache with a perfect backing memory. When the processor makes
an access while the cache is "quiet," i.e. there is no activity still in process for any earlier access,
the cache state is interrogated and this access is assigned a nominal latency depending on whether it
is a read or write, or a hit or miss. In this model, a single-cycle cache (in which a read hit access to
a quiet cache returns data to the processor at the end of the same cycle in which the access request
is made) is assigned a latency of 0.

An access is said to commence in the cycle in which it is accepted by the cache and a read
access is said to complete in the cycle in which data is returned to the processor (even though some
activity related to finishing this access may still be pending in the cache). A read access to a quiet
cache thus commences at (the beginning of) the same cycle, X, in which the processor makes the
access request and completes at (the end of) cycle X+L, where L is the nominal latency for this
access. In general, activity of prior accesses that is still in process when an access is made may
delay the commencement of an access or increase the latency of the access beyond its nominal
value due to other "latency-adding" effects.
 Trailing-edge effects may increase the latency of accesses made to cache blocks that are
currently moving to the cache from the next level of memory as the result of a previous miss. For
example, if an access is made to block B at cycle Y, but a previous access to block B was made at
time X and assigned a latency (including latency-adding effects) of L, then this access can complete
no earlier than cycle X+L and its latency is increased, if necessary, to insure this. Since such
requests may not incur the full miss penalty and they do not cause any additional traffic between
the cache and the memory they are reported as hits (or "delayed hits"); such hits will, however,
generally experience a latency that is greater than the nominal hit latency due to this trailing-edge
effect.

Furthermore, if the bus between the cache and the next level of memory is not wide enough
to return a full cache block in one cycle, then the latency is further increased by one or more cycles
according to the distance between the portion of the block referenced by this access relative to the
portion referenced by the original miss. The trailing-edge effects, including these bus width
considerations, may thus increase the minimum completion time for this reference as a function of
when the data will be made available by a previous miss.

Another factor that influences the completion time of a memory access is the number of
outstanding accesses (NOA) that a cache can handle before it blocks. Once the cache is blocked,
no new accesses can commence until at least one of the outstanding accesses completes. Typically,
caches allow "hits under misses," i.e. hits can be completed while the cache is still serving a
previous miss; many caches also allow multiple misses to be outstanding. The LE model uses
NOA to model this feature. A blocking cache has NOA=1; a fully nonblocking cache has infinite
NOA (the cache never blocks regardless of the number of accesses in flight). If the number of
outstanding accesses equals NOA when an access is made, then the commencement of this access
is delayed until one of the outstanding accesses is fully served and no other access may be made
until the cycle in which this access commences. If the previously assigned access completion time
is less than this commencement time plus the nominal latency, this difference is then added to the
completion time.

Finally, port conflicts are considered. If no appropriate port to the processor is available at
the current completion time of this access, then the completion time is further increased to the first
cycle at which such a port is available.

The Latency Effects (LE) cache model thus accounts for nominal hit and miss times, plus
the added delays due to each of the aforementioned effects of prior accesses on the timing of an
access. Some timing effects are not accounted for in the model, including the effects of write-
through vs. write-back caches, write-back buffers, and the time required to obtain the system bus
in the presence of other users. These latency-adding effects will be incorporated in future
refinements of the LE model. The effects of TLB misses, page faults, etc. could also be added.
However, we chose to concentrate on the modeling of multiple cache systems first, as described
below.

In our past work [Tam96], we used the LE cache model for performance evaluations of
"traditional" single level caches backed by main memory. However, in today’s machines an on-
chip L1 (first level) cache is generally backed by a L2 (second level) cache, and often an L3 cache,
before reaching main memory. We therefore extended the LE cache model to simulate multiple

 __
Flexible Timing Simulation of Multiple-Cache Configurations 4

caches in a memory system. In addition to multiple levels of caches, we also evaluated multi-
lateral L1 caches, i.e. parallel L1 caches Multi-lateral cache designs include the Assist Cache, as
used in the HP PA-RISC 7200 [Kurpanek94][Rashid94], the NTS Cache [Rivers96], and the
Victim Cache [Jouppi90].

With multiple caches, access latencies now depend not only on the cache-to-processor and
cache-to-memory interactions, but must now include cache-to-cache interactions. These latencies
can include the time to "promote" (move) a block from one cache to another, the time to save a
replaced block from one cache in another cache, and the time to swap entries between caches. The
number of cycles for these operations may vary with the cache’s configuration and its nominal
access times. Depending upon the bus width between the caches, different parts of the cache line
will be available in the destination cache at different times. Furthermore, if an access to the cache
line is initiated while it is in transit from one cache to another, this access will suffer trailing-edge
effects. These latency-adding effects can easily be incorporated into the LE cache model. In this
extension of the LE model, a dedicated bus was assumed to be present between the caches, so port
conflicts were ignored. Also, as latencies for data movement between caches is likely to be short,
we did not consider blocking either cache for accesses requiring inter-cache data movement.

3 . 2 Other behavioral cache timing models
Other behavioral cache timing models can easily be derived based on a behavioral cache

simulator with no timing analysis, like DineroIII:
perfect cache: In this simulator, a perfect cache is assumed. All memory accesses have zero

latency and there are no latency-adding effects. This model can be used to
determine the best-case execution time of a processor without any cache or memory
effects included.

adjusted: This is an "adjusted" processor simulator that performs a behavioral cache
simulation and adds pR*mR + pW*mW cycles to the processor simulator cycle count,
where pR and pW are some constant number of penalty cycles for read and write
misses, respectively, and mR and mW are the number of read and write misses,
respectively.

 LE-nominal: This simulator (and the next) simulate a processor with cache during the simulation.
While the adjusted simulator performs processor and cache simulation separately
and then combines their results to obtain program execution times, the LE-nominal
simulator adds the nominal latency for each access to execution time as the access
occurs during simulation. Additional latency-adding effects are ignored.

 Full-LE: This is the fully implemented LE cache model simulator that is described above,
including all the additional latency-adding effects.

The performance predicted by each of these four models is presented in the experiments below.

4 Modeling and simulating multiple caches
We now present a high-level picture of multiple cache interactions and discuss how these

caches are actually modeled in simulation.

4 . 1 High-level description
Figure 1 shows a "fully-connected" memory system with two caches backed by a main

memory. Depending upon the specific configuration being evaluated, some of the paths will be
deleted. Note that the direct path between memory and processor is not included in the figure, as it
is assumed that data that returns to the processor directly from memory must still go through the
cache unit. The effects of a memory to processor transfer can be obtained by assigning appropriate
parameter values to it for traversing the corresponding memory-to-cache and cache-to-processor
paths.)

 __
Flexible Timing Simulation of Multiple-Cache Configurations 5

PROCESSOR

A B

MEMORY

Figure 1: Interaction between multiple caches, processor, and memory

This figure can thus represent, at a high level, practically any system consisting of two
caches, a processor, and memory. By removing particular arcs and elements from Figure 1,
different cache configurations are represented, e.g. a traditional single cache backed by main
memory (Figure 2a) or a 2-level cache, where the L2 cache is B and the L1 cache is A. The A and
B caches can have different sizes, associativities, replacement policies, etc., which are specified
separately by assigning parameter values.

Figure 2c shows a novel, multi-lateral cache configuration -- the Assist cache, as used in
the HP PA-7200 [Kurpanek94][Rashid94]. All accesses that enter the cache system must enter
through the Assist buffer (in this figure, the B cache). Note that there is no direct memory-to-A
cache transfer path in Figure 2c. Whenever a word of B demonstrates temporality2 during this
lifetime, its cache block is promoted to the A cache. Otherwise, it resides in the B cache until it is
replaced. Once a block has been promoted to the A cache, it resides there until it is replaced. In
the basic Assist implementation, blocks that are replaced in A return to main memory; thus, there is
no direct path from the A cache to the B cache.

A latency is assigned to each of the relevant paths in the figure for each type of operation to
be performed. For instance, when a block in the B cache is found to be temporal in the Assist
cache configuration, the time to promote the element to the A cache must be included in the access’
latency, as promoted accesses must be serviced out of the A cache. Thus, the latency of an access
can be determined by adding up the time to traverse each of the paths from where the access is
resident at the time of the request to its final destination in the processor. For example, for the
Assist cache configuration, the nominal miss latency, trailing-edge effects, and bus width
considerations are incorporated in the memory-to-cache path, while the latency between caches and
trailing-edge effects are included in the cache-to-cache path. Regardless of the cache configuration,
each access is subject to the added latencies, if any, due to port conflicts and the number of
outstanding accesses allowable (NOA).

2. A word exhibits temporality if it is accessed more than once during a lifetime in the cache. A lifetime of a
cache block refers to the time interval that the block spends in the cache from one of its allocations until its next
replacement. A particular memory block may have many lifetimes and thus may exhibit temporality in some
lifetimes, but not others.

 __
Flexible Timing Simulation of Multiple-Cache Configurations 6

P R O C E S S O R

A

M E M O R Y

P R O C E S S O R

A B

M E M O R Y

P R O C E S S O R

A B

M E M O R Y

a) Single-level cache b) 2-level cache c) Assist cache
Figure 2: Different cache configurations described using the Figure 1 model

4 . 2 mlcache -- an easily configurable tool
In our previous work, our implementation of the LE cache model for single caches (the LE

cache simulator) was built by modifying the DineroIII cache simulator [Hill85]. Using the concept
of delayed update of the cache state in conjunction with consideration of the latency-adding effects,
we were able to create a trace-driven cache timing simulator. The use of delayed update causes the
effects of an access, i.e. the access’ placement into the cache, the removal of the replaced line, etc.,
to occur only after the specified latency of the access has passed. A running global cycle count
defines exactly when each access is presented to the memory system. In the case of a hit in the
cache, the access can "complete" in the same cycle if the cache hit latency is zero cycles. If the
access misses in the cache, the accessed block should not be "placed" in the cache until the nominal
miss latency plus any cycles due to latency-adding effects have passed. Updating the cache with
the effects of the access without accounting for this latency ignores the time taken within the cache
to process the access. Thus, traditional behavioral cache simulators that allow an access to have an
immediate affect on the cache state cannot properly account for varying access latencies. The use
of a delayed update of the cache state allows behavioral cache simulators to more accurately
represent each access’ latency.

Adapting the original LE cache simulator [Tam96] to model multiple caches involved
substantial low-level changes to the source code to achieve the desired effects and interactions for a
system containing two caches, a processor, and memory [Rivers97]. Furthermore, latencies for
elements moving between two caches were not taken into account in the hand-modified multiple-
cache LE cache simulator. With these shortcomings, we felt the need to make the tool both more
easily retargetable and more accurate in representing the timing of the target configuration.
Accordingly, mlcache was developed as a parameterized version.

4 . 2 . 1 High-level parameterization
To make mlcache easily retargetable, we chose to provide a library of routines that a user

could choose from when deciding what actions take place in the cache at a given time. The
routines are accessed from a single C file named config.c . The user simply modifies config.c
to describe all of the desired interactions shown in Figure 1 between the caches, processor, and
memory. The user also controls when the actions occur via the delayed update mechanism built
into the first implementation of the LE cache simulator. If more interactions are needed than those
provided, they can then be coded into the simulator by hand; however, the routines that we have
already provided are adequate to model most conceivable dual-cache designs.

 __
Flexible Timing Simulation of Multiple-Cache Configurations 7

While mlcache addresses many of the effects seen by a memory access in a multiple-cache
configuration, some key effects are still not accounted for. Multiple-cache configurations that
incorporate prefetching, as with a streaming buffer [Jouppi90], cannot be dealt with because
hardware prefetching has not been included in the current implementation. Also, some
configurations, e.g. a smaller or less associative cache "backing" a larger or more associative
(possibly multilateral) cache can potentially violate the multi-level inclusion principle [Baer88]; the
potential for this violation is common in such caches and has not been addressed in our current
studies.

Support Routine Description
check_for_cache_hit() check to see if accessed block is present in the cache
update() place an accessed block into the cache
move_over() move an accessed block from one cache to the other

do_swap() move an accessed block from cache1 to cache2 and move the
evicted block to cache1

do_swap_with_inclusion() place an accessed block into both cache1 and cache2 and move
the evicted block from cache2 to cache1

do_save_evicted() move the block evicted from cache1 to cache2
find_and_remove() remove a block from a cache
check_for_reuse() determine if a block exhibits temporal behavior (word re-use)

Table 1: Support routines used to control cache state and interactions

Table 1 shows the routines provided for the user to choose from and a brief description of
each. Figure 3 shows portions of the config.c file wherein an Assist cache configuration is
modeled by using these routines. As can be seen, the operations in the config.c file are all very
high level and easily understandable and relieve the user from learning the intricacies of the cache
simulator’s low-level operation in order to model a new cache.

4 . 2 . 2 Assessing latencies for multiple caches
Accounting for latencies between caches is a simple extension of the LE cache model -

given that we know what operation is occurring, we can add the corresponding latency onto the
access time and then account for any latency-adding effects. For this paper, we assume that
dedicated busses (as wide as the smaller cache’s blocksize) are present between the caches so that
we may ignore bus width considerations between the caches for moves between A and B. We also
assume that, given these dedicated busses, there are dedicated ports for accesses traveling between
the caches; this permits a processor read from say, the A cache while a different element is being
moved to A from the B cache. Implementations of these caches in a real, well-designed machine
would likely satisfy these assumptions.

Different latencies can also be assigned to a path depending upon the operation that is being
performed. For instance, we see that in Table 2, the latency assigned for the move_time differs
among the cache configurations. For an Assist cache (illustrated in Figure 2c), moves between the
caches are always in a single direction, from the B cache (buffer) to the A cache (main cache).
Thus, a move in the Assist cache configuration in our experiments requires a single cycle, meaning
an access that misses in the A cache and hits in the B cache and exhibits temporality is satisfied
with a single cycle latency. Accesses that hit in the A cache are returned in the same cycle (zero
cycle hit latency), as are accesses that hit in the B cache that do not exhibit temporality.

For a Victim cache, promotions from the B cache to the A cache require a swap to be
performed: the block from the B cache is moved into the A cache and the block evicted from the A
cache as a result of the move is moved to the B cache. Normally, this operation cannot complete in
a single cycle, as there is only a single, albeit dedicated, bus between the caches, but two elements
need to be moved using the common bus. Thus, we can assign a maximum latency of two cycles
for a move between the caches for the Victim configuration or assign a one cycle latency and

 __
Flexible Timing Simulation of Multiple-Cache Configurations 8

assume a 2 block wide bus; we assigned latency 2 in the following experiments. If there is an
access to a block that is moving between caches, the trailing-edge effect seen by this latter access is
properly accounted for by the LE cache model.

/*
 this is the standard handler for each access. it checks in the A cache
 to see if the access is there first. if it isn't, it checks in the
 B cache. if it's present in a cache, it handles the appropriate cache hit.
 if the access misses in both caches, a miss is processed. this is done to
 "sequentially" perform a parallel check of the two caches in the first level

 other designs may not need both caches checked (e.g. MLCOs that partition
 the memory access stream based on some criteria like address (odd/even),
 functionality (integer/floting point), etc.).
 */
int handle_access(int cycle_count, UpdateEntry *Entry) {
 /* check for hit in A cache "first" */
 if(!check_for_cache_hit(cycle_count,Entry))
 /* miss in A cache - check in B cache */
 if(!check_for_cache_hit(cycle_count,Entry))
 /* miss in both caches - handle the miss */
 access_time = handle_miss(cycle_count,Entry);
 else
 /* hit in B cache (after miss in A cache) - handle the B cache hit */
 access_time = handle_B_cache_hit(cycle_count,Entry);
 else
 /* hit in A cache - handle the A cache hit */
 access_time = handle_A_cache_hit(cycle_count,Entry);
 return access_time; }

int handle_A_cache_hit(int cycle_count, UpdateEntry *Entry) {
 /* hit in A cache, so just update stack, etc. for A cache */
 Entry->on_completion = DO_UPDATE;
 Entry->access_latency = cache_latency;
 Entry->which_cache = ACACHE;
 return(handle_hit_timing(cycle_count,Entry,Entry->A)); }

int handle_B_cache_hit(int cycle_count,UpdateEntry *Entry) {
 /* hit in B cache, so do appropriate updates */
 /* for assist cache, update is to promote it to A cache */
 if(check_for_reuse((Entry->B))) {
 Entry->on_completion = DO_MOVE;
 Entry->move_direction = B_TO_A;
 Entry->access_latency = move_time + cache_latency;
 return(handle_miss_timing(cycle_count,Entry,Entry->B)); }
 else {
 /* just update this access to B cache */
 Entry->access_latency = cache_latency;
 Entry->which_cache = BCACHE;
 return(handle_hit_timing(cycle_count,Entry,Entry->B)); } }

Figure 3: Part of a sample config.c file, showing the
basic evaluation process for each access

In a 2-level cache, the second level cache is typically much slower than the first level cache
(which also permits it to be much larger than the L1 cache); in the following experiments, we have
assigned a five cycle latency for an element to move from the B (L2) cache to the A (l1) cache.

 __
Flexible Timing Simulation of Multiple-Cache Configurations 9

DM 2-LEVEL ODD/EVEN ASSIST VICTIM NTS
Cache A A B A B A B A B A B
Size 8/16K 8K 32K 4K 4K 8K 1K 8K 1K 8K 1K
Associativity 1/1 1 4 1 1 1 full 1 full 1 full
Replacement
policy –/– – LRU – – – LRU – LRU – LRU

move time – 5 – 1 2 –
r/w latency to
next level 11/17 5 11/17 11/17 11/17 – 11/17 11/17 – 11/17 11/17

Table 2: Characteristics of six different cache configurations studied
(times/latencies are in cycles)

The semantics of the other multiple-cache configurations are discussed in more detail in
Section 6, where we present the results of our experiments. From these brief examples, however,
it is easy to see that extending the LE cache model to handle multiple caches was accomplished in a
straightforward manner and provides user-friendly, high-level interface. This modular, library-
based approach to cache configuration allows a significant range of cache configurations to be
examined early in the design cycle.

5 Implementation and testing of mlcache
We have implemented six different cache configurations using the mlcache simulator: a

direct-mapped single cache, an Assist cache, an NTS cache, a Victim cache, an odd/even cache,
and a two-level cache. The latencies used for the timing simulation of these caches are shown in
Table 2.

5 . 1 Simulation environment
A timing simulation of caches is of limited use without considering the latency-masking

effects of processor execution. Thus, we integrated our cache simulator with the RCM_brisc
instruction-level processor simulator [Wellman95], as was done with the LE simulator in [Tam96].
RCM_brisc simulates the execution of instructions fed to it in the form of a trace of the program’s
execution on an actual machine, which in this study is an IBM RS/6000 [Bakoglu90]. The
RCM_brisc tool by itself simulates the execution of all instructions but assumes a perfect cache
model, where all data from memory is available in a constant, prespecified amount of time.
However, the perfect cache model yields an unrealistic estimate of program performance; cache and
memory effects must be included in any processor simulation if it is to realistically evaluate a
program's performance. To make the processor model more modern, we configured RCM_brisc to
represent an eight-wide, in-order issue, eight functional unit processor (2 FXUs, 2 FPUs, 2 L/S
units, and 2 branch units). Each functional unit has a number of reservation stations that buffer
instructions between the issue and execution units, permitting out-of-order execution and
completion of instructions. There are five register files in the system: a 32 register GPR file, a 32
register FPR file with 40 physical registers (with register renaming), a two register link register file
(for branches), an 8 register condition register file, and a two register count register file. An
infinite number of register ports is assumed to minimize instruction issue conflicts and constraints
and thereby increase the demand on the cache. In the optimal case, this machine can issue up to
two load/stores per cycle and complete two per cycle; it has two cache read ports and a single write
port.

The memory hierarchy includes separate L1 caches for instruction and data. Since this
paper focuses on multiple-cache structures for data, we assume a perfect L1 instruction cache for
simplicity and treat all instruction fetches as hits with zero latency. Thus, all of the cache
configurations we describe in this paper represent the data cache configurations of the
processor/cache combinations that we evaluate.

The mlcache simulator could easily have been combined with any other currently available
instruction-level simulators such as Talisman [Bedichek95], SimICS [Magnusson95], and others.
This is possible because mlcache maintains the state of the caches itself and does not take into

 __
Flexible Timing Simulation of Multiple-Cache Configurations 10

account virtual memory or TLB effects. It models up to the first two levels of data cache and
assumes a perfect memory thereafter, regardless of the number of level of caches beyond that. The
RCM_brisc tool was chosen for convenience since the LE cache model was implemented in the
same spirit using the Resource Conflict Methodology [Wellman95] model.

5 . 2 Target benchmarks
To evaluate the performance of the caches, we chose from a variety of scientific, floating-

point codes and memory-intensive integer benchmarks. The selected benchmarks and their
descriptions are shown in Table 3.

Memory References
(millions)

Perfect Memory
Performance

Program Program Description
Loads Stores

Cycle
Count

(millions)
IPC

APPBT navier-stokes eqns approx. 10.621 1.043 44.414 1.126
APPSP navier-stokes eqns approx. 10.183 1.542 41.435 1.207
EQNTOTT boolean -> truth table 14.994 2.474 59.807 0.836
FEMC em object identification 10.730 4.548 51.507 0.971
FFTPDE 3-D fast fourier transform 9.229 5.506 35.507 1.408
SIMPLE 2-D Lagrangian hydrodynamics 11.277 6.302 44.180 1.132
SPHOT monte-carlo particle transport 16.948 5.151 65.139 0.767

Table 3: Benchmark program characteristics

APPBT, APPSP, and FFTPDE are from the NAS Benchmark suite, EQNTOTT is from
the SPEC92 suite, and SIMPLE and SPHOT are from the RICEPS suite. The seventh benchmark,
FEMC [Chatterjee93], is a floating point code developed and in use at the University of Michigan
Radiation Laboratory for evaluating electromagnetic backscatter from a distant object. Due to time
and resource constraints, we traced and simulated the execution of 50 million instructions of each
program; performance of the first 10 million instructions of each program was discarded to avoid
program initialization effects. Trace collection was done on an IBM RS/6000 running AIX 3.2.4
with the ATRACE tracing package (developed by Ravi Nair of the IBM T.J. Watson Labs).

Table 3 also shows the number of cycles required to execute the code on our RCM_brisc
processor simulator with a perfect cache (i.e. all memory accesses are satisfied in the same cycle in
which they commence). These numbers are needed for determining the Relative Cache Effect
Ratio, as defined in [Rivers97], which is:

CycleCountX - CycleCountPERFECT

CycleCountDM:8K - CycleCountPERFECT

RCRX =

This ratio provides the finite cache penalty of a given cache configuration relative to the base 8K
direct-mapped cache penalty. The DM:8K cache thus has an RCR of 1, and caches that perform
better than the DM:8K have RCRs between zero and one.

5 . 3 Experiments
Two main experiments were run using the combined processor/cache simulator (which we

call RCM_brisc+mlcache) and the chosen benchmarks. The first experiment uses mlcache to
compare the performance of different cache configurations when running the chosen benchmarks.
The second experiment evalua