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Abstract—Illumination distortion due to uncontrolled lighting
can severely degrade the color appearance of a photo. Frequently,
the desired colors for objects in a newly taken query image are
found in a previously stored database image. Then, the goal is to
change the colors in the query image to match the colors in the
database image. This paper presents a color restoration system
that automatically retrieves a database image which matches the
query image, even if the two images are taken from different
viewpoints and under different illuminations. Robust features
enable both accurate retrieval from the database and efficient
sampling of the color differences between the query and database
images. A spatially varying color mismatch model is generated,
and the colors of the query image are effectively restored.

I. INTRODUCTION

Photos are often taken in non-ideal lighting environments.
When the illumination is not carefully controlled or there is
camera glare, the resulting colors for objects of interest (OOIs)
in the photos can differ significantly from their intended colors.
The illuminant’s spectral distribution has as much influence on
the resulting colors as an object’s own spectral distribution [1].

Post-photography color restoration is an effective remedy
for photometric distortion. A previously stored image, called
a database image, that shows the ideal colors for OOIs can
provide guidance for color correction in the newly captured
image, called a query image. For example, Fig. 1 shows a
query-database pair for a CD cover. In this case, the OOIs
are the different objects on the CD cover, and the color
mismatches are very noticeable. The database and query
images will generally be taken from different viewpoints, as in
Fig. 1, which introduces geometric distortions between their
corresponding OOIs. Given a large database, an automated
restoration system must reliably select a database image con-
taining matching OOIs, despite the geometric differences. The
system must also be able to restore the colors of each query
OOI in its given pose.

Many techniques have been previously invented to correct
color distortion. Color restoration of faded movies in [2] uses
global contrast enhancement. The technique cannot correct for
spatially varying distortions like linear gradients. Similarly,
adaptive color equalization is used in [3] to improve color
appearance of old movies. Both [2] and [3] measure restoration
subjectively and do not reference clean database versions.

(a) (b)

Fig. 1. (a) Color-distorted query CD cover image and (b) corresponding
clean database CD cover image.

Restoration of paintings with reference to database images
is presented in [4], in which color histograms are used to
retrieve database matches. This retrieval method, however,
assumes the color differences between the query image and
matching database image are small. Color histograms are not
robust against large photometric distortions which commonly
occur in practice. In [5], the sample means of patches in a
query painting are adjusted to match the sample means of
corresponding patches in a database painting. The authors of
[4] and [5] assume there are no geometric distortions between
OOIs of query and database, i.e. color differences can be
sampled from collocated pixels.

In this paper, we propose a color restoration system that can
handle both photometric and geometric distortions between
query and database OOIs. The key strategy is to use localized
image features which are strongly robust against photometric
and geometric distortions [6] [7]. First, the robust features
enable accurate retrieval of a database image containing the
same OOIs as the query image, even if the two images show
different viewing angles and lighting conditions. Second, the
geometric distortions between the matching OOIs in the two
images can be calculated from the feature correspondences.
Thus, the features allow sampling of the color differences in a
much more general setting than [4] or [5]. If the database exists
on a server, features can be sent using far fewer bits than the
compressed query image itself. As special cases, our system
can also correct distorted intensities in a grayscale query image
or add color to grayscale query images.
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Fig. 2. Design of the proposed featured-based color restoration system.

Our proposed method of feature-based color sampling has
a broader application than color restoration. The method can
be used to efficiently compare two images in the presence
of geometric distortions. Typically, two images are compared
by measuring the differences between their collocated pixels.
This approach would characterize the images in Fig. 1 as being
very different, even though they share many visual similarities.
In our framework, the geometric distortions separating two
images can be found from robust feature correspondences, so
differences between non-collocated pixels can be easily mea-
sured. This geometry-aware approach captures the important
color differences after geometric compensation.

We will present feature-based color restoration as follows.
Sec. II discusses feature-based image matching and presents
a new technique on feature-based color difference sampling.
A spatially varying color mismatch function (CMF) can be
estimated from the samples, which describes how the query
image should be color-corrected relative to the database image.
Sec. III describes accurate but simple approximations for
the CMF, leading to efficient modeling by linear regression.
Experimental results for images of CD covers are presented
in Sec. IV. The proposed color restoration system gives
significant improvement, both subjectively and in terms of
objective mean-squared-error (MSE) measurements.

II. FEATURE-BASED COLOR RESTORATION

An overview of the proposed system is given in Fig. 2.
The top half of the system represents feature-based image
matching. Features are first extracted from the query image
on the camera, as explained in Sec. II-A. These features
are encoded and decoded for transmission over the network.
Then, on the server side, the query features are matched to
database features, as explained in II-B. The bottom half of the
system represents feature-based color restoration, which will
be discussed in Sec. II-C. Color restoration uses the features
and retrieved database image found in the top half.

A. Extraction of Robust Image Features

The first step in the image matching half of Fig. 2 is feature
extraction from the query image. We utilize the speeded-up
robust features (SURF) algorithm [7], which is similar to an
earlier proposed scale-invariant feature transform (SIFT) al-
gorithm [6]. SURF provides more compact feature descriptors
and faster matching than SIFT.

SURF finds keypoints in an image corresponding to extrema
in scale space. These keypoints can be reliably identified

Fig. 3. Query image with SURF points of interest overlaid.

Fig. 4. Query and database images with a perspective model between feature
correspondences.

despite photometric and geometric distortions. The algorithm
searches for keypoints at different scales, or different levels
of a multiresolution pyramid, to be robust against scaling
changes. Fig. 3 shows the keypoints displayed on top of
the query image from Fig. 1(a). For the ith keypoint, a 64-
dimensional descriptor hq,i is generated from histograms of
gradients in a local neighborhood around the keypoint. Each
histogram is calculated at the optimally selected scale found
earlier and also along an optimally selected orientation. The
complete query SURF feature consists of the descriptor hq,i

and the keypoint location (xq,i, yq,i).

B. Matching with Image Features

The M extracted query features {hq,i, (xq,i, yq,i)}M
i=1 are

encoded for efficient transmission over the network, using
the Karhunen-Loeve transform (KLT), scalar quantization,
and Huffman coding. Sec. IV will show that the size of
the compressed feature set is a small fraction of the size
of a compressed query image. If the database of reference
images resides on a remote server, the network represents a
communication link such as a Bluetooth or WiFi channel.

At the server, the query descriptor set Hq ≡ {hq,i}M
i=1 is

decoded. First, the query descriptors are classified through
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a scalable vocabulary tree (SVT), constructed during a one-
time training phase by hierarchical k-means clustering of all
database descriptors. The SVT is used to narrow down the
database search space to a small set of most likely database
images [8].

Then, for each likely database image found by the SVT, its
descriptor set can be effectively compared against the query
descriptor set using the ratio test [6]. The ratio test can reject
non-distinct descriptors which typically hinder, rather than
aid, the matching process. Let the kth database image have
descriptor set Hd,k ≡ {hd,k,i}Mk

i=1, where Mk is the size of
the set. Comparing Hq to Hd,k using the ratio test results in
number NRT

k of common features which pass the ratio test.
The final step in feature-based image matching is geometric

consistency checking (GCC) [6], which calculates a physically
sensible affine or perspective transformation between the key-
points in the query and database images. An example of a valid
perspective transformation between the keypoints for the query
and database images of Fig. 1 is shown in Fig. 4. Only the NRT

k

features for the kth database image which pass the ratio test
are further tested by GCC. Then, a very reliable measure of
matching accuracy is NGCC

k , the number of features which pass
both GCC and the ratio test

(
NGCC

k ≤ NRT
k

)
. Thus, our color

restoration system selects the max-NGCC
k database image as

the closest match. Sec. IV will demonstrate that feature-based
retrieval provides very high matching accuracy.

C. Sampling at Feature Locations and Restoration

Robust images features enable accurate retrieval of a
database image closely matched to the current query image.
The features which pass both the ratio test and GCC also
provide valuable information about the geometric distortions
between the corresponding keypoints in the query and database
images, as evident in Fig. 4. Larger OOIs can be defined as
clusters of keypoints, so the geometric distortions between
OOIs are also known. Color differences between query and
database OOIs can now be sampled.

Suppose the set of N filtered query keypoints, which have
passed the ratio test and GCC, is Pq ≡ {(xq,i, yq,i)}N

i=1.
Likewise, suppose the corresponding set of database keypoints
is Pd ≡ {(xd,i, yd,i)}N

i=1, where the ith elements of Pq and
Pd are geometrically matched. Then, samples of the color
difference between query image Q and database images D
are given by

Δj (xq,i, yq,i) ≡ Qj (xq,i, yq,i) − Dj (xd,i, yd,i)
j = 1, 2, 3 i = 1, ..., N, (1)

where j indexes color channels, while q and d differentiate
between query and database image spaces. Eq. (1) can be
interpreted as samples of the color mismatch function (CMF).
The CMF is a spatially varying description of how the query
colors differ from the database colors. If the entire CMF can
be accurately estimated, not only at the sample keypoints but
across all of image space, then the query image can be color-
corrected.

The filtered query keypoints and the pixel values at the
filtered database keypoints need to be communicated from
the database to the camera. Because the filtered keypoints
represent a sparse sampling of image space, this information
can be sent in very few bits, as shown in Sec. IV.

The remaining task is to reconstruct the CMF from the
sparse set of samples in (1). In Sec. III, we will present
practical techniques for generating an accurate estimate Δ̂.
Subtracting Δ̂ from the query image Q gives us a restored
image R:

Rj (xq, yq) ≡ Qj (xq, yq) − Δ̂j (xq, yq)
j = 1, 2, 3 (xq, yq) ∈ {query image space}. (2)

The restored image will show each OOI in the same pose as
in the query image but now with colors correctly matched
to the database image. Noticeable improvements from this
restoration process will be shown in Sec. IV.

III. COLOR MISMATCH MODELS

In this section, we present two computationally efficient
models for the CMF described in Sec. II. Both models perform
well at approximating typical photometric distortions.

A. Linear Model

Oftentimes, a linear model is sufficiently accurate for de-
scribing the photometric distortion observed in a query image.
It can correct two of the most common photometric distortions:
constant shifts and linear gradients. We can calculate a CMF
estimate of the form

Δlin,j (xq, yq) = aj · xq + bj · yq + cj j = 1, 2, 3, (3)

where a separate set of parameters {aj , bj , cj} is used for each
color channel. Given the samples in (1), the model parameters
can be estimated by linear regression.

Assuming Δlin models Δ well for the N samples from (1),
we can form the approximate matrix relationship⎡

⎢⎣
Δj (xq,1, yq,1)

...
Δj (xq,N , yq,N )

⎤
⎥⎦

︸ ︷︷ ︸
Δj

≈

⎡
⎢⎣

xq,1 yq,1 1
...

xq,N yq,N 1

⎤
⎥⎦

︸ ︷︷ ︸
X

⎡
⎣ aj

bj

cj

⎤
⎦

︸ ︷︷ ︸
aj

j = 1, 2, 3. (4)

If N > 3, which is always the case for practical feature-based
image retrieval, the system of equations is overdetermined, and
a least squares solution for the model parameters is appropriate
for minimizing the modeling error at the sample keypoints.
This solution is given by

âglob,j =
(
XT X

)−1
XT Δj j = 1, 2, 3. (5)

After calculating (5), we can estimate Δ̂ across all of query
image space using (3) and subsequently perform color restora-
tion by (2).

The proposed technique can be applied in any three-channel
color space, such as RGB or CIELAB spaces. Additionally,
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as special cases, if the query image is grayscale while the
database image is color, we can (i) apply the restoration in a
single channel to correct intensity distortions or (ii) convert
the query image into a color version.

B. Piecewise Linear Model

Higher order CMF models, like quadratic and cubic func-
tions, tend to overcompensate in regions of the query image
away from dense clusters of feature keypoints. Overcom-
pensation occurs even with moderate regularization. When
extreme regularization is applied, the higher order model
essentially becomes the linear model. An intermediate model
is a piecewise linear model, which can approximate nonlinear
distortions better than the linear model but at the same time
avoid the overcompensating behavior of higher order models.

To generate a piecewise linear model, the feature keypoints
must first be separated into several clusters. A simple approach
is to use the k-means clustering algorithm [9]. Alternatively,
the query image can be divided into multiple OOIs by some
suitable segmentation algorithm [10] [11], and the keypoints
within each segmented OOI would form their own cluster.

Suppose there are K clusters of query keypoints and K
corresponding clusters of database keypoints. For each of the
clusters, we fit a different linear model. Instead of directly
applying the techniques discussed in Sec. III-A, however,
proper regularization must be added to ensure a stable solution
for each cluster. Regularization is particularly important for
any cluster with a small number of elements, because the
least squares solution is very sensitive to noise when only a
few samples are available. Our piecewise linear model utilizes
Tikhonov regularization, which biases each local solution
towards a stable global solution [12].

The stable global solution is the least squares solution
âglob,j (j = 1, 2, 3) given by (5). Then, the local Tikhonov-
regularized solution is

âloc k,j = âglob,j +(
XT

k Xk + λkI
)−1

XT
k (Δk,j − Xkâglob,j)

j = 1, 2, 3 k = 1, . . . ,K, (6)

where I is an appropriately sized identity matrix, and Xk and
Δk,j are defined analogous as X and Δj in (4), except using
only the elements of the kth cluster. Additionally, λk is the
regularization parameter for the kth cluster, where larger values
of λk bias the local solution more towards the global solution.
Intuitively, clusters with a lower number of elements need
more guidance from the global solution. Thus, our selection
is λk is

λk ≡ num. elements overall

num. elements in kth cluster
. (7)

As the number of elements in the kth cluster decreases, âloc k,j

moves closer to âglob,j .
Near region boundaries, the different piecewise models need

to be smoothly merged together to avoid visually unpleasant
boundary artifacts. We propose a merging technique in which
all K local models exert some influence at each point of image

space, but a local model’s influence diminishes rapidly as the
distance increases from the cluster centroid. Specifically, the
merged model at point (xq, yq) is

âmer,j (xq, yq) =
K∑

k=1

αk (xq, yq) âloc k,j

αk (xq, yq) =
|| (xq, yq) − (xcen k, ycen k) ||−1

∑K
k′=1 || (xq, yq) − (xcen k′ , ycen k′) ||−1

j = 1, 2, 3, (8)

where (xcen k, ycen k) is the centroid of the kth cluster. Near
a cluster centroid, the merged model becomes effectively
that cluster’s local model. Between neighboring clusters, the
merged model is an average of those clusters’ local models.

IV. EXPERIMENTAL RESULTS

Applying the color restoration system described in Sec.
II along with the models introduced in Sec. III, the color
appearance of query images can be significantly improved. On
the camera side, photos of 50 different CD covers were taken,
and each query image has resolution of 2592×1944 pixels.
Uneven illumination and camera glare can be observed in most
of the query photos. Most query CD covers differ noticeably
in color appearance from their clean database versions, as
seen in the first two columns of Fig. 5. On the database side,
10,000 clean CD covers are stored, and each database image
has resolution of 500×500 pixels. Results reported here are for
color restoration in RGB space, but similar results are obtained
for color restoration in CIELAB space. For the piecewise
linear model, the centroids of the four quadrants of the CD
cover are used for the initialization of the k-means algorithm.

A. Image Matching Accuracy

Query and database SURF features are matched using the
criteria discussed in Sec. II. The result is that 48 of the 50
query images are correctly matched to their database versions.
SURF features are robust against the challenging photometric
and geometric distortions encountered in the query images.

B. Visual Color Improvements

The restored images are much closer in color appearance
to the database images than the unprocessed query images.
Fig. 5 shows four sets of images, each set consisting of
the unprocessed query image, the clean database image, the
linearly restored image, and the piecewise linearly restored
image. Both models perform well at shifting the query colors
towards the reference database colors. The piecewise linear
model is able to make more precise local adjustments.

C. MSE Reductions

Improvements from color restoration can also be quantified
using an objective mean squared error (MSE) metric. To
measure MSE between query and database CD covers, the
geometric distortion between them must first be removed. We
project each query cover into a rectified 500 x 500 square so
that it can be directly compared against the database cover. The
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(a) Norm. MSE = 1.00 (e) Norm. MSE = 0.00 (i) Norm. MSE = 0.14 (m) Norm. MSE = 0.12

(b) Norm. MSE = 1.00 (f) Norm. MSE = 0.00 (j) Norm. MSE = 0.22 (n) Norm. MSE = 0.21

(c) Norm. MSE = 1.00 (g) Norm. MSE = 0.00 (k) Norm. MSE = 0.22 (o) Norm. MSE = 0.21

(d) Norm. MSE = 1.00 (h) Norm. MSE = 0.00 (l) Norm. MSE = 0.16 (p) Norm. MSE = 0.13

Fig. 5. (a-d) Unprocessed query images. (e-h) Database images. (i-l) Restoration with linear model. (m-p) Restoration with piecewise linear model.

projection uses a perspective transformation calculated from
the filtered feature keypoints from Sec. II-B. Image registration
by integer-pel shifting over a small search range of [-10,10]
is also applied to reduce misalignment after projection.

Because the MSE fluctuates from one image to the next due
to changing lighting conditions, each MSE reported here is
normalized by the MSE between the (projected) unprocessed
query cover and the database cover. The normalized MSE of
the unprocessed query cover is always unity. If the normalized
MSE of the color-corrected query cover falls below unity, color
restoration has successfully reduced the MSE.

Labels under the images in Fig. 5 show the normalized MSE
values. All four sets show significant reductions in MSE after
color restoration, as much as 87 percent. Table I lists the mean
normalized MSE values, averaged over all 48 query covers

TABLE I
MEAN NORMALIZED MSE VALUES FOR QUERY CD COVERS.

Method Mean Normalized MSE

Unprocessed 1.000
Linear 0.330

Piecewise Linear 0.327

that are correctly matched. Piecewise linear restoration slightly
outperforms linear restoration.

D. Model Comparison

As shown in Sec. IV-B and IV-C, the linear and piecewise
linear models are both effective at reducing color distortion in
the query images. Both models are accurate approximations
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TABLE II
AVERAGE TRANSMISSION COSTS FOR COMPRESSED DATA.

Quantity Average Size (Kilobytes)

Query Image (2592 x 1944) 660
Database Image (500 x 500) 59

Feature Set 11
CMF Sample Set 1
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Fig. 6. (a-c) True CMF. (d-f) Linear model CMF. (g-i) Piecewise linear
model CMF. Test images come from third row of Fig. 5.

of the true CMF. Fig. 6 plots the true CMF and model CMFs
for the test images in the third row of Fig. 5. The large scale
variations of the true CMF across image space are accurately
captured by both models. Also, as designed, the piecewise
linear model can better adapt to these local variations.

E. Transmission Costs

Transmission costs over the network for image retrieval
and color restoration are low compared to the transmission
costs for compressed images, as shown in Table II. Images are
compressed at medium quality using JPEG. Feature sets are
transformed by KLT, scalar quantized, and entropy coded, and
a compressed bitstream is sent from the camera to the server.
In response, the server sends back the keypoint locations for
features which pass the ratio test and GCC and the associated
pixel values.

F. Complexity Analysis

The complexity of the color restoration algorithm is de-
pendent on the number of features Nf that pass the ratio

test and GCC. Sampling the color differences in (1) is an
O (Nf ) operation. Calculating a least-squares model from the

Nf color difference samples has O
(
N3

f

)
complexity because

matrix inversion and multiplication are required in (5) and
(6). Finally, color-correcting the query image in (2) requires
O (Np) complexity, where Np is the number of pixels.

V. CONCLUSION

This paper has presented an effective color restoration
system for correcting photometric distortions in any query
image. The system accurately uses robust features to retrieve
a matching database image that serves as color reference,
even when geometric and photometric distortions exist be-
tween common objects in the query and database images. By
efficiently reusing the feature keypoints to sample the color
differences between query and database images, the photo-
metric distortion can be reliably estimated and diminished.
Restored query images show significant color improvements,
both subjectively and objectively. Transmission costs for both
retrieval and color restoration are fairly low, and the proposed
method can be easily integrated into any existing feature-based
technologies. Feature-based color sampling also has a broader
application for comparing two images whose corresponding
pixels are not collocated.
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