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Abstract 

Background and Aims: 

Hepatocellular carcinoma (HCC) is a hypervascular tumor, and angiogenesis plays an 

important role in its development. Previously, we demonstrated that des-γ-carboxyl prothrombin 

(DCP) promotes both cell proliferation and migration of human umbilical vein endothelial cells 

(HUVECs) by inducing the autophosphorylation of kinase insert domain receptor (KDR). In the 

present study, DCP-associated tumor angiogenesis was assessed by comparing hypovascular and 

common hypervascular HCC.  

Methods: 

The solitary HCCs of 827 patients were classified into 2 groups according to the tumor 

density at the arterial phase of a dynamic computed tomography scan; the initial clinical data of 

patients with the hyper- and hypovascular types were compared. The HCC tissues from 95 

tumors were analyzed by immunohistochemical staining for DCP and phosphorylated KDR, and 

intratumoral microvessel density (MVD) was analyzed to evaluate microvessel angiogenesis.  

Results: 

The serum DCP levels (320  3532 mAU/mL) and tumor size (18.4  9.0 mm) of patients 

with hypervascular HCC were significantly greater than those with hypovascular HCC (38.7  

80 mAU/mL and 14.6  5.2 mm, P < 0.001). Immunohistochemical analysis revealed that the 

expressions of DCP and phospho-KDR were significantly greater in hypervascular HCC (71.4% 

and 31.0%, respectively) than in hypovascular HCC (7.6% and 5.7%, respectively). Intratumoral 

MVD was significantly correlated with DCP (r = 0.48, P < 0.0001).  

Conclusions: 

DCP production is associated with tumor angiogenesis in HCC.   
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Introduction 

Hepatocellular carcinoma (HCC) is the fifth most common type of tumor worldwide and the 

third most common cause of cancer-related death 1, 2. For localized tumors, effective and 

palliative treatment options include surgical resection, liver transplantation, local ablation 

therapy, and transcatheter arterial chemoembolization. However, HCC is diagnosed at advanced 

stages in many patients 3-5. Although a few molecular-targeting agents have recently become 

clinically available, their effects are relatively limited 6. Therefore, new therapeutic targets for 

HCC are urgently needed to manage tumor progression. 

HCC is a hypervascular tumor diagnosed according to a radiological finding of an arterial 

hypervascular pattern 5, 7. HCC progression is strongly related to active neovascularization 8-10, 

which promotes tumor growth by supplying oxygen and nutrients 11. Angiogenesis is essential 

for tumor invasion and metastasis in addition to tumor growth 12, 13. Therefore, suppressing tumor 

angiogenesis can lead to the control of tumor progression. Several angiogenic factors including 

vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), pituitary 

tumor-transforming gene 1, fibroblast growth factor (FGF), and angiopoietin-2 are associated 

with HCC tumor angiogenesis 14-20. 

Des-γ-carboxyl prothrombin (DCP) is a well-known tumor marker of HCC 7, 21 whose 

expression is significantly correlated with poor prognosis 22-24. DCP is also a useful indicator of 

vascular invasion 22, 25, 26. Previously, we demonstrated that DCP promotes both cell proliferation 

and migration in human umbilical vein endothelial cells (HUVECs) via the autophosphorylation 

of kinase insert domain receptor (KDR; also known as VEGF receptor 2) 27. The tube formation 

of vascular endothelial cells is induced by DCP in a dose-dependent manner 28. Furthermore, 

DCP treatment increases the expression of various angiogenic factors in HCC cells29. Although 



these studies demonstrate the potential paracrine function of DCP in HCC development, further 

investigation with clinical tissue samples is necessary. 

Gadolinium-ethoxybenzyl-diethylenetriamine (Gd-EOB-DTPA) recently became a clinically 

available contrast agent for magnetic resonance imaging (MRI). Hypovascular HCC can be 

detected using hepatocyte-specific imaging with Gd-EOB-DTPA 30. Here, we evaluated the 

association between DCP production and HCC angiogenesis by comparing hyper- and 

hypovascular HCC. We compared the clinical data of patients with hyper- and hypovascular 

HCC and investigated the correlation between DCP expression and HCC angiogenesis in human 

HCC tissue. 

  



Materials and Methods 

Patients  

A total of 827 patients who underwent radiofrequency ablation (RFA) or hepatic resection for 

solitary HCC (i.e., no metastasis) in Okayama University Hospital (Okayama, Japan) between 

January 2003 and October 2009 were enrolled. These patients had single space-occupying 

lesions without distant metastases according to imaging modalities such as ultrasonography (US), 

computed tomography (CT), angiography, and MRI. HCC was diagnosed according to the 

practice guidelines from the American Association for the Study of Liver Disease (AASLD) 31, 32. 

Atypical nodules and nodules <1 cm were histologically confirmed to be HCC by fine-needle 

aspiration biopsy under US guidance. In accordance with institutional guidelines, we obtained 

informed consent from all liver tissue sample donors and for their use of their clinical data. This 

study was approved by the Research Ethics Committee of Okayama University. All patients were 

Japanese and had chronic liver disease; 122 and 651 tested positive for hepatitis B surface 

antigen and hepatitis C virus antibodies, respectively. All blood tests were performed upon 

admission. The patients were classified into hyper- and hypovascular groups according to tumor 

vascularity evaluated in the arterial phase of a dynamic CT scan (Aquilion™; Toshiba, Tokyo, 

Japan). The arterial phases were acquired automatically starting 30 s after the intravenous bolus 

injection of contrast agents. If the hyperattenuation of the tumor at the arterial phase was 

observed by comparing the attenuation of the tumor to that of the hepatic parenchyma, the tumor 

was classified as hypervascular HCC. Other tumors were classified as hypovascular HCC. As 

mentioned above, all hypovascular HCCs underwent US-guided fine-needle biopsy for the 

diagnosis of hepatocellular carcinoma. Fourteen parameters obtained before the initial treatment 

were analyzed: age; sex; etiology; Child–Pugh class; the presence of ascites; the presence of 



hepatic encephalopathy; tumor size; and the levels of serum biochemical and tumor 

markers—alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin, total 

bilirubin, prothrombin time activity, α-fetoprotein (AFP), and DCP.  

 

HCC tissue and immunohistochemistry 

Paraffin-embedded tissue sections were obtained from 95 HCC patients treated between 2003 

and 2009 at Okayama University Hospital. In total, 53 HCC tissue specimens along with 

adjacent liver tissues were obtained by US-guided fine-needle liver biopsy and 42 by surgical 

resection. The 42 HCCs obtained by surgical resection were classified into the hypervascular 

group, and the 53 HCCs obtained by biopsy were classified into the hypovascular group. 

Immunohistochemistry was performed on dewaxed and dehydrated formalin-fixed paraffinized 

sections. After rehydration, endogenous peroxidase activity was blocked for 30 min using 

methanol solution containing 0.3% hydrogen peroxide. Nonspecific antibody binding was 

blocked by incubation with protein block serum-free solution (X0909; Dako Japan, Tokyo, 

Japan) for 30 min. The sections were incubated with primary antibodies against DCP (MU-3; 

Eisai Co. Ltd., Tokyo, Japan), phospho-KDR (2478; Cell Signaling Technology, Beverley, MA), 

and CD31 (M0823, Dako Japan) overnight at 4°C. Primary antibodies were detected using a 

biotinylated anti-rabbit secondary antibody (Dako Japan). The signal was amplified by 

avidin–biotin complex formation and developed with diaminobenzidine followed by 

hematoxylin counterstaining. The sections were subsequently dehydrated in alcohol and xylene, 

and mounted for observation. Sections were scored on a 4-titer scale: 0, negative; 1, weak signal; 

2, intermediate signal; and 3, strong signal.  

To determine microvessel density (MVD), the tissue sections were screened under low 
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magnification (40×) and the most vascularized areas within tumors were selected; the 3 selected 

areas were photographed with a digital camera under high magnification (100×) (BX51 and 

DP50; Olympus, Tokyo, Japan) 33. The recorded images had a resolution of 1,920,000 pixels. To 

calculate the MVD, the areas occupied by CD31-positive microvessels were quantified using 

Adobe Photoshop (version CS4; Adobe Systems Inc.). The average MVDs of the 3 selected areas 

were calculated as percentages of the CD31-stained area in a field of tumor sections. The 

sections were independently scored by two observers blinded to the groups the samples were 

from. We reviewed all discrepancies in the scoring process and reached a consensus on all 

sections.  

 

Cell culture 

The human HCC cell line Hep3B was obtained from the American Type Culture Collection 

(Manassas, VA). Hep3B cells were maintained in Dulbecco’s modified Eagle’s medium 

(Invitrogen, Carlsbad, CA) supplemented with 10% heat-inactivated fetal bovine serum (FBS) 

(Sigma, St. Louis, MO), 1% nonessential amino acids (Sigma), 1% sodium pyruvate (Sigma), 

and 1% penicillin/streptomycin solution (Sigma). Cells were cultured at 37°C in a humidified 

atmosphere of 5% CO2 and 95% air. Quiescence was carried out under restricted serum 

conditions with 0.1% dialyzed FBS for the indicated time periods. 

 

Stable transfection 

To alter DCP production in Hep3B cells, γ-glutamyl carboxylase (GGCX) activity was 

modified by introducing wild-type (WT)-GGCX cDNA and exon 2 deletion variant (Δ2)-GGCX 

cDNA, which has a dominant-negative effect 34. For stable transfection, Hep3B cells were 



transfected with either pCEP4-WT-GGCX or pCEP4-Δ2-GGCX using Superfect™ (Qiagen). 

Cells were selected by 400 μg/mL G418 (Nakalai). Polyclonal lines consisting of more than 20 

colonies were established. At least 2 independent stably transfected lines were established for 

each construct. 

The DCP levels produced by the cell lines were determined by electrochemiluminescence 

immunoassay (ECLIA) (Picolumi PIVKA-II™; Sanko Junyaku Co. Ltd., Tokyo, Japan). The 

ECLIA uses a mouse monoclonal anti-DCP antibody coated on solid-phase beads and a 

ruthenylated rabbit polyclonal anti-prothrombin antibody. The electrochemically triggered light 

reaction was quantified by an electrochemiluminescence detection system (Roche Diagnostics, 

Basel, Switzerland). Cells were grown to confluence in 10-cm culture dishes and incubated with 

quiescent media for 24 h. The conditioned media were collected, and the DCP produced by each 

cell line was determined using ECLIA (Hep3B-WT-GGCX; undetectable, Hep3B-Δ2-GGCX; 

7.9 ng·mL-1·day-1·10-6 cells). 

 

Tube formation assay 

An in vitro tube formation assay was performed to investigate angiogenesis 35. The tube 

formation experiments were conducted in triplicate in 24-well dishes using an angiogenesis kit 

(Kurabo, Osaka, Japan) according to the manufacturer’s instructions. Conditioned media from 

either Hep3B-WT-GGCX or Hep3B-Δ2-GGCX cells were maintained in serum-free medium for 

3 days without changing the medium. Conditioned media were collected and diluted (1:1) with 

the endothelial cell medium in the angiogenesis kit. The media were changed every 3 days. After 

11 days, the dishes were washed with PBS and fixed with 70% ethanol at 4°C. The fixed cells 

were stained for CD31 using the Tubule Staining Kit (Kurabo). Luminal length was evaluated 



using the Angiogenesis Image Analyzer (Kurabo) in 8 different fields for each culture. 

 

Statistical analysis 

Quantitative data are expressed as means  standard deviation. The Wilcoxon test, Fisher’s 

exact probability test, the chi-squared test, and the Kruskal–Wallis test were used to evaluate the 

differences between the hyper- and hypovascular groups. ANOVA was used to assess the 

differences in serum DCP levels between the hyper- and hypovascular groups. Correlations were 

evaluated using the Spearman rank test. P values <0.05 on 2-tailed tests were considered 

significant.  

  



Results 

Patient profiles 

The baseline characteristics of the patients are shown in Table 1. This study included 827 

patients: 563 men and 264 women (median, 68 years; range, 34–90 years). All patients had single 

HCC, and the median tumor size was 15 mm. Liver function was assessed according to 

Child–Pugh class. Based on the arterial phase of dynamic CT, 675 and 152 patients had hyper- 

and hypovascular tumors, respectively. No parameters differed significantly between groups 

except a small but significant difference regarding the etiology of HCC (P = 0.035, chi-square 

test) due to the small number of patients with HBV/HCV co-infection.  

 

Relationship between serum DCP level and HCC hypervascularity  

Serum DCP levels (320  3532 mAU/mL) and tumor size (18.4  9.0 mm) in the 

hypervascular group were significantly greater than those (38.7  80 mAU/mL and 14.6  5.2 

mm, respectively) in the hypovascular group (both P < 0.0001, Wilcoxon test). The tumor sizes 

were categorized as <10, 11–20, 21–30, or >31 mm. Table 2 presents the relationship between 

serum DCP level and tumor size. Serum DCP levels were not significantly different in the <10 

mm group, while those of the hypervascular group were significantly greater in the 11–20 (P = 

0.0052) and 21–30 mm (P = 0.039) groups. In the >31 mm group, the serum DCP levels of the 

hypervascular group tended to be greater. In the hypervascular HCC group, serum DCP levels 

were significantly correlated with tumor size (P < 0.001, ANOVA); however, no significant 

correlation was observed in the hypovascular HCC group (P = 0.75). 

 

Immunohistochemistry for DCP and phospho-KDR 



The expressions of DCP and phospho-KDR were analyzed by immunohistochemistry in 42 

and 53 HCCs in the hyper- and hypovascular groups, respectively. Fig. 1 presents the DCP and 

phospho-KDR staining scores. The proportion of DCP expression in the hypervascular group 

(71.4%) was significantly greater than that in the hypovascular group (7.6%) (P < 0.001) (Fig. 

1C). Furthermore, the proportion of phospho-KDR-positive tissue in the hypervascular group 

(31.0%) was significantly greater than that in the hypovascular group (5.7%) (P = 0.02) (Fig. 

1D). There was a significant correlation between DCP and positive phospho-KDR expression (r 

= 0.38, P = 0.0001, Spearman’s rank test).  

 

Relationship between DCP expression and intratumoral MVD  

Intratumoral MVD was assessed by measuring the CD31 staining of endothelial cells 9, 36. The 

median intratumoral MVD was 1.6% ± 2.4% (Table 3). The hypervascular group had a greater 

intratumoral MVD (2.9% ± 3.0%) than the hypovascular group (0.48% ± 0.44%) (P < 0.0001). 

Furthermore, DCP expression and intratumoral MVD were significantly correlated (r = 0.48, P < 

0.0001, Spearman’s rank test), and the intratumoral MVD was significantly greater in 

DCP-positive tumors (2.9% ± 3.1%) than DCP-negative ones (0.79% ± 1.3%, P < 0.0001). 

Moreover, moderately differentiated HCCs had greater intratumoral MVD (2.9 ± 3.0) than 

well-differentiated HCCs (0.78 ± 1.4). Well-differentiated HCCs had significantly greater 

intratumoral MVD in DCP-positive tumors (2.2% ± 3.2%, n = 10) than DCP-negative ones 

(0.51% ± 0.49%, n = 51, P = 0.02). Meanwhile, among moderately differentiated HCCs, 

DCP-positive tumors tended to exhibit greater intratumoral MVD (3.3% ± 3.1%, n = 24) than 

DCP-negative ones (2.2% ± 2.8%, n = 10, P = 0.17). 

 



Tube formation assay 

The biological effects of DCP were investigated by a tube formation assay using HUVECs 

co-cultured with fibroblasts. Conditioned medium from either Hep3B-WT-GGCX or 

Hep3B-Δ2-GGCX was added to HUVECs and fibroblasts plates. The conditioned medium from 

Hep3B-Δ2-GGCX activated the tube formation of HUVECs (Fig. 2A). The luminal length of 

HUVEC tubules with the conditioned medium from Hep3B-Δ2-GGCX was significantly greater 

than that with the conditioned medium from Hep3B-WT-GGCX (Fig. 2B).  

  



Discussion  

By comparing hyper- and hypovascular tumors, we demonstrated that DCP production is 

associated with tumor angiogenesis. We and others previously demonstrated that DCP stimulates 

vascular endothelial cell proliferation and migration 27,28. However, the effects of DCP 

production in clinical tissues remained unknown until now. The present results clearly 

demonstrate the relationship between DCP production and angiogenesis in HCC tissue for the 

first time.  

Gd-EOB-DTPA, a recently developed contrast agent for MRI imaging, enables the detection 

of small nodules diagnosed as hypovascular HCC, which were previously difficult to detect 30. 

Golfieri et al. demonstrate that the hepatobiliary phase of Gd-EOB-DTPA–enhanced MRI is 

useful for detecting hypovascular HCC 37. Although nodules with atypical vascular patterns need 

to be diagnosed by biopsy, Gd-EOB-DTPA–enhanced MRI improves early hypovascular HCC 

detection. In solitary HCC (no metastasis), the serum DCP levels and tumor sizes were 

significantly greater in the hypervascular group (Table 1). Previously, we demonstrated that DCP 

acts as an autologous growth factor for HCC and stimulates the Met-JAK-STAT signaling 

pathway 38. Because serum DCP levels may increase with respect to tumor volume, we classified 

HCC according to tumor size. In the hypervascular HCC group, serum DCP levels increased 

significantly with tumor size (Table 2), whereas this was not the case in the hypovascular HCC 

group (Table 2). After adjusting for tumor size, the serum DCP levels of the hypervascular HCC 

group were greater than those of the hypovascular HCC group. In the >31 mm group, statistical 

significance was unclear because of the small number of hypovascular HCCs >31 mm; large 

hypovascular HCCs are rare because angiogenesis is essential for tumor growth 39.  

The immunohistochemical analysis revealed that the expressions of DCP and phospho-KDR 



were greater in the hypervascular group than the hypovascular group (Fig. 1). This suggests that 

DCP plays an important role in HCC angiogenesis. In addition, KDR phosphorylation is 

important for the angiogenesis of HCC. Previously, we demonstrated that DCP directly induces 

KDR autophosphorylation and activates the KDR-PLC-γ-MAPK signaling pathway without 

VEGF involvement 27. Thus, the present results demonstrate a positive correlation between DCP 

and phospho-KDR expression in clinical tissue samples.  

Vasculogenic mimicry (i.e., tumor cells that mimic the patterns of vasculogenic networks) was 

recently reported to be implicated in HCC tumor angiogenesis 40. The immunohistochemical 

analysis for CD31 expression revealed that intratumoral MVD in the hypervascular group was 

greater than that in the hypovascular group (Table 3). We and others demonstrated that DCP 

promotes vascular endothelial cell proliferation and migration in vitro 27,28. Accordingly, DCP 

expression was correlated with intratumoral MVD in the clinical specimens.  

Although the proportion of phospho-KDR expression in the hypervascular group was greater 

than that in the hypovascular group, it was relatively low compared to the proportion of 

DCP-positive expression. This may be due to the sensitivity of immunostaining for 

phospho-KDR. In addition, tumor angiogenesis could also be regulated by other angiogenic 

factors including VEGF, PDGF, FGF, and angiopoietin-2 14-20.  

One limitation of the present study is that tumor vascularity was evaluated by dynamic CT 

scans instead of histology. Tumor vascularity may be underestimated when new blood vessels are 

still low in the dynamic CT scan, even if tumor angiogenesis occurred at the histological level. 

Therefore, tumor vascularity was evaluated by histology (Table 3). The results regarding 

intratumoral MVD are concordant with those of the dynamic CT scans. Thus, we carefully 

adjusted the staining density of the fine-needle biopsy specimens and surgically resected tissue 



samples by using biopsy specimens from the hypervascular HCCs. 

Furthermore, there may be a potential bias due to the sampling method of the specimens; most 

tissue specimens from the hypervascular group were obtained by surgical resection while those 

from the hypovascular group were obtained by fine-needle biopsy. However, this limitation is 

inevitable if we follow the AASLD’s HCC practice guidelines 31, 32. Consequently, further 

matched-pair case–control studies may be necessary.  

Many angiogenic and angiostatic factors are associated with tumor angiogenesis. Therefore, it 

was necessary to clarify whether DCP induces tumor angiogenesis without the help of other 

angiogenic factors. The enzyme GGCX converts DCP into normal prothrombin with vitamin K 

epoxide reductase 41. Previously, we demonstrated that DCP-positive HCC cell lines express 

Δ2-GGCX, which attenuates GGCX activity via a dominant-negative effect 34. The comparative 

study of HCC cell lines with WT-GGCX and Δ2-GGCX allows us to evaluate the angiogenic 

effect of DCP production while excluding the effects of other angiogenic factors. In the tube 

formation assay, the angiogenic activity of the conditioned medium from Hep3B-Δ2-GGCX was 

significantly greater than that from Hep3B-WT-GGCX. This result is consistent with the tube 

formation induced by purified DCP using HUVECs 28. The conditioned medium from 

Hep3B-WT-GGCX induced tube formation, suggesting DCP is not the only angiogenic factor at 

work. As mentioned above, angiogenesis is regulated by other angiogenic factors such as VEGF, 

PDGF, FGF, and angiopoietin-2 14-20. 

In conclusion, we clinically demonstrated that DCP production is associated with tumor 

angiogenesis as evidenced by differences in vascularity. HCC tumor angiogenesis is associated 

with risks of invasion 12, metastasis 10, 12, poorer disease-free survival, and early recurrence after 

HCC resection 42. Therefore, DCP may be a useful therapeutic target for controlling the tumor 



angiogenesis of HCC and requires further study. 
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Tables 

Table 1. Baseline characteristics 

 
  
Hypervascular group  

(n = 675)  

Hypovascular group  

(n = 152)  
P value 

Age 
 
71.0 ± 9.5 

 
71.9 ± 8.3 

 
0.53†  

Sex (M/F) 
 
470/205 

 
93/59 

 
0.053‡  

Etiology 
 
(97/509/10/59) 

 
(14/131/1/6) 

 
0.035§*  

(HBV/HCV/HBV+HCV/other) 
      

Child–Pugh class (A/B/C)  
 
(528/120/6) 

 
(128/23/0) 

 
0.67¶  

Total bilirubin level (g/dL)  
 
0.97 ± 0.50  

 
0.97 ± 0.41  

 
0.37†  

Albumin level (mg/dL)  
 
3.67 ± 0.54  

 
3.68 ± 0.47  

 
0.90†  

Prothrombin time activity (%)  
 
92.3 ± 17.9  

 
92.8 ± 17.2  

 
0.65†  

Ascites (none/mild/severe) 
 
(533/96/7) 

 
(133/16/2) 

 
0.25¶  

Hepatic encephalopathy 
 
(644/12/0) 

 
(148/3/0) 

 
0.90¶  

(0/grade I and II/grade III and IV) 
      

AST level (IU/L)  
 
54.9 ± 28.6  

 
58.2 ± 35.3  

 
0.19†  

ALT level (IU/L)  
 
47.7 ± 28.9  

 
50.0 ± 32.2  

 
0.51†  

AFP level (ng/mL) 
 
196 ± 2165  

 
45.8 ± 119  

 
0.17†  

DCP level (mAU/mL) 
 
320 ± 3532  

 
38.7 ± 80  

 
<0.0001†*  

Tumor size (mm)   18.4 ± 9.0  
 

14.6 ± 5.2  
 

<0.0001†*  

Data are means ± SD. P values were calculated using †the Wilcoxon test, ‡Fisher’s exact 

probability test, §the chi-square test, and ¶the Kruskal–Wallis test. *P < 0.05 was considered 

significant.  



Table 2. Relationship between primary tumor size and serum DCP levels 

  
DCP level (mAU/mL)  

  

Tumor size (mm)  
 

Hypervascular group  

(n = 675)  

Hypovascular group  

(n = 152)  
P value  

0–10  

(n = 133)  

41.1 ± 131  

(n = 100)   

29.0 ± 32.3  

(n = 33)  
0.44  

11–20  

(n = 486)  

72.1 ± 223  

(n = 383)  

43.4 ± 94.2  

(n = 103)  
0.0052*  

21–30  

(n = 145)  

135.7 ± 260  

(n = 132)  

21.9 ± 12.3  

(n = 13)  
0.039*  

31+  

(n = 63)  

2771 ± 11610  

(n = 60)  

39.0 ± 15.5  

(n = 3)  
0.17  

 

Data are means ± SD. P values were calculated using the Wilcoxon test.  

 

 

  



Table 3. Relationship between DCP expression and vascularization 

Group  Number of HCC 

samples  

MVD (%) in 

tumor 

 P value 

Vascular type      

    Hypervascular  42  2.9 ± 3.0  
 

<0.0001  

    Hypovascular  53 0.48 ± 0.44    

DCP expression      

    Positive  34  2.9 ± 3.1  
 

<0.0001 

    Negative  61  0.79 ± 1.3    

Tumor differentiation     

    Well differentiated 61 0.78 ± 1.4 
 

<0.0001 

    Moderately differentiated 34 2.9 ± 3.0   

 

Data are means ± SD. P values were calculated using the Wilcoxon test.  

 

  



Figure Legends 

Fig. 1. Immunohistochemistry of DCP and phospho-KDR 

(A, B) Immunohistochemical staining for DCP (A) and phospho-KDR with protein scores of 3  

(B) In HCC (original magnification, 100×).  

(C, D) The sections of each bar represent the percentage of each group with a particular score: 

0–3 for DCP (C) and phospho-KDR (D).  

 

Fig. 2. Tube formation assay with the conditioned media of HCC cell lines 

Equal amounts of conditioned media from the HCC cultures were added to the basal culture 

medium in the HUVEC/fibroblast co-culture system. Cells were stained with anti-CD31 antibody. 

(A) Representative photographs of tube formation. (B) Luminal length was quantified with the 

Angiogenesis Image Analyzer (Kurabo, Osaka, Japan). Data are expressed as means ± SD. 

control–WT-GGCX, *P = 0.0005 and WT-GGCX–Δ2-GGCX, **P = 0.004. 

 

 

 

 


