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Hydroelastic Vibration of 
Free-Edge Annular Plates 
This paper is concerned with the virtual mass effect due to the presence of water 
on the natural frequencies of free-edge annular plates resting on free surface or 
completely submerged, which has never been studied theoretically. Experiments 
were carried out for free-edge annular plates to find the so-called nondimension-
alized added virtual mass incremental factors. In this paper, theoretical nondimen-
sional added virtual mass incremental factors are obtained by employing the Han-
kel transformation technique in conjunction with the Fourier-Bessel series ap
proach. It is found that the theoretical nondimensionalized added virtual mass 
incremental factors for free-edge annular plates resting on free-surface agree well 
with experimental ones. The proposed method can be applied to different boundary 
conditions of plates. 

1 Introduction 
It is generally known that the natural frequencies of struc

tures which are in contact with water, or immersed in water, 
decrease significantly compared to the natural frequencies in 
air. This is due to the fact that the vibration of a structure in 
contact with water is transferred to the water motion and 
results in a discernible increase in the kinetic energy of the 
total system. This problem is referred to as the fluid-structure 
interaction problem. The first fluid-structure interaction prob
lem stems from the classical problems solved by Lord Ray-
leigh (1877) and Lamb (1921). They investigated the in
crease of inertia due to the presence of water and suggested 
the use of the approximate formula based on the so-called 
added virtual mass incremental (AVMI) factor, which is the 
ratio between the kinetic energy of the water and the kinetic 
energy of the structure. Lamb (1921) calculated the change 
in the natural frequencies of a thin circular plate clamped 
along its boundary and placed in the aperture of an infinite 
rigid plane baffle in contact with water. 

Lamb's work initiated the study on the vibration of circular 
plates in contact with water. Since his study, there have been 
numerous theoretical and experimental investigations on vi
bration of circular plates in contact with water (Powell and 
Roberts, 1923; McLachlan, 1932; Peake and Thurston, 1954; 
Espinosa and Gallego-Juarez, 1984; Kwak and Kim, 1991; 
Kwak, 1991, 1996; Amabili et al., 1995). It is worthwhile to 
be noted here that the problem solved by Kwak and Kim 
(1991) and Kwak (1991) is different from the Lamb's origi
nal problem since they considered the case of circular plates 
resting on free surface. The kinetic energy increases when 
the rigid-wall condition is imposed instead of free-surface 
condition since the rigid wall constrains the motion of water at 
the interface. They found that the nondimensionalized added 
virtual mass incremental (NAVMI) factors for the simply-
supported and clamped circular plates are considerable lower 
than those obtained by Lamb (1921) and Peake and Thurston 
(1954) but the NAVMI factors for the free-edge circular plate 
are almost identical in both cases. 

The advantage of using NAVMI factors is that the charac
teristics of the fluid-structure interaction problem can be 
understood qualitatively and they are easy to use. However, 
the NAVMI factors are available only for the circular plates 
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and rectangular plates in simple fluid domains. If someone 
wishes to solve a fluid-structure interaction problem which 
involves complex geometry of a structure and water domain, 
he should resort to the finite element modeling of fluid 
(FFEM) or the boundary element method (BEM) in con
junction with finite element modeling of structures. How
ever, the use of the FFEM or the BEM requires amounts of 
time on modeling and computation. In addition, it is quite 
difficult to obtain the qualitative measure of water effect by 
those methods. 

In this paper, the NAVMI factors for a uniform free-edge 
annular plate vibrating in free surface are obtained. A similar 
problem was solved by Amabili et al. (1996), and Amabili 
(1996) but the annular plate is assumed to be placed into a hole 
of the rigid wall in their works. Hence, the boundary condition 
considered in this paper is different from the one considered in 
the previous papers (Amabili et al., 1996; Amabili, 1996). The 
boundary value problem for the annular plate resting on free 
surface results in a triply mixed boundary value problem due 
to its boundary conditions. Notice that the triply mixed bound
ary value problem has never been addressed in the previous 
papers. Here we consider the case experimentally studied by 
AmabiH (1994). To solve the triply mixed boundary value 
problem and verify the experimental results, the Fourier-Bessel 
series approach used by Tranton (1950, 1954) is employed, 
which proved to be effective for the vibration problem of circu
lar membranes and circular plates in contact with water (Kwak, 
1994, 1996). 

In the theoretical analysis, we assume that the "wet" modes 
are almost identical with the "dry" modes. Experimentally it 
has been verified by Espinosa and Gallegro-Juarez (1986) and 
more specifically by Amabili et al. (1995) that mode shapes of 
free-edge circular plates immersed in water are very close to 
ones of plates in air. This assumption plays a very important role 
in this problem; we can decouple the fluid-structure interaction 
problem and derive a simple formula for the addressed problem. 
In fact, this amounts to saying that we can use the eigenfunctions 
of the annular plate vibrating in air to solve the hydroelastic 
problem of the annular plate immersed in water. We also assume 
that fluid is inviscid and imcompressible, and the thickness of 
the plate is thin relative to its radius; fluid sloshing at the free 
surface is neglected. 

In order to verify the theoretical results, experiments were 
carried out. It is found from the results that the theoretical 
NAVMI factors agree well with the experimental ones, thus 
validating the approach developed in this paper. 
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2 Added Virtual Mass Incremental Factor 
Let us consider an annular plate resting on free water surface, 

which has an outer radius, a, an inner radius, b and thickness, 
h. As mentioned above, we will use the assumption that the 
wet mode shapes are the same as the dry mode shapes. This 
assumption plays a very important role in solving the fluid-
structure interaction problem and enables us to separate the 
coupled problem into two independent boundary value problems 
as will be seen. 

The Rayleigh quotient can be applied to higher modes if the 
admissible functions are the exact eigenfunctions of the given 
problem. Based on the assumption, we can extend the theory 
to the higher wet modes. Thus, we can write the Rayleigh 
quotients for dry and wet cases as follows: 

u = 
v„ 

T* + T* 
(1) 

where/, is the natural frequency of plates in air,/„ is the natural 
frequency of plates in contact with water, Tf and Vp represent 
the reference kinetic energy and the maximum potential energy 
of the circular plate, respectively, and Tt represents the refer
ence kinetic energy of water due to the motion of the circular 
plate. The relation between the reference and maximum kinetic 
energy can be written as T^^^ = T*ui'^ (Meirovitch, 1986), 
where oj is the circular frequency in radians per second. 

Hence, the natural frequency in water can be expressed in 
terms of the natural frequency in air 

f.-
fa 

^/^ + 7 
(2) 

where y represents the added virtual mass incremental (AVMI) 
factor defined by the ratio of the kinetic energy of water due 
to the motion of the circular plate over the kinetic energy of 
the circular plate itself, i.e.. 

represents the eigenvector corresponding to specified nodal di
ameter and nodal circle in which 7j, Y^, h and K^ are the Bessel 
function of the first kind and second kind, and the modified 
Bessel function of the first kind and second kind of order s, 
respectively. \,„ (the eigenvalues), A.,„, fl,„, C„ and A„ are 
determined by applying the boundary conditions. The values of 
these coefficients for free-edge annular plates are given by Vo-
gel and Skinner (1965) but are re-evaluated for the present 
study. 

Next we consider the water domain which the plate is contact 
with. The three-dimensional oscillatory flow in cylindrical coor
dinates can be described by the velocity potential 

$ ( r , 9, z, t) = 4>{r, z) cos s6 u> cos ujt (7) 

where the spatial velocity potential, $ ( r , 6, z, t), satisfies the 
Laplace equation, V^$(r, 6, z, t) = 0. Considering the plate to 
be impermeable, the velocities of water and the plate particle 
in contact are identical at the water-plate interface. Also, the 
velocity potential becomes zero at free-surface if we assume 
that frequency is large (neglecting sloshing). In addition, the 
radiation condition requires that the disturbance attenuates as 
the distance from the plate becomes large. Hence, the boundary 
value problem for an annular plate vibrating in contact with 
water can be written as 

d^ d<l) 
~ H — + 

dr^ rdr 
dz' 

- ^ < / , = 0 

dz 
= -W,„(r) b <r <a 

</>(r) = 0 Q < r < b,r > a 

(/>, TT ' V ^ 0 as r, z -• CO 
ar az 

(8) 

(9) 

(10) 

(11) 

7^* 

Pph 
= Tf5 (3) 

where p„ is the density of water, pp is the mass density of the 
circular plate and T is the nondimensionalized added virtual 
mass incremental (NAVMI) factor which is a function of mode 
shapes and boundary conditions, and /? = p„alPph, is called a 
thickness correction factor, respectively. The objective of this 
paper is to compute T. 

The differential equation of motion for the annular plate vi
brating in vacuo can be written as 

DE^'wir, 6, t) + Pp 
d'-wir, 9, t) 

0 (4) 

where w{r, 6, t) is the deflection of the plate, D^ - Eh^l 
12(1 - t/^) is flexural rigidity, E is Young's modulus and v is 
Poisson's ratio, respectively. By separation of variables and 
assuming harmonic motion, the solution of Eq. (4) is expressed 
as; 

The boundary value problem consisting of partial differential 
Eq. (8) and boundary conditions (9), (10) and (11) is conve
niently handled by means of an integral transform. Considering 
the cylindrical coordinate system (r, 9, z), the obvious choice 
is the Hankel transformation (Sneddon, 1951), which is denoted 
by 

ct>, /.(C. z) = f 
Jo 

r<t)(r, z)JAir)dr (12) 

Moreover, we can derive the following relation by integrating 
by parts. 

/ > ( 
M 0 + ^ - ^ <A ) Js{^r)dr = -eMi, z) (13) 

Multiplying Eq. (8) by rJs(^r)dr, integrating over the entire 
radius, and using Eqs. (12) and (13), the partial differential 
equation, Eq. (8) , is reduced to the ordinary differential equa
tion. 

w(r, 6*, 0 = X X W,„(r) cos sd sin ut (5) 
1=0 n=0 

where w is a function of the dimensionless parameter \,„ and 

W^r) = A,,„7,( ^ j + B,„YI^ 

+ C I (6) 

dz" e^H = 0 (14) 

From the boundary condition (11), we conclude that the solu
tion of Eq. (14) should consist of the attenuating part only. 
Therefore, the solution of Eq. (14) has the form of 

^,(^, z) » fi(0e-* (15) 

Using the inversion formula of the Hankel transformation 
and Eq. (15), we obtain 
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<pir, z) = €.4>h{^, z)Js{£.r)di X am J,+2m+i{v)Js{pv)dv 

= f CS(Oe"*'/,(^r)rf^ (16) + 1 b, ( J,,^,^A6r])JApv)dv 
Jo ,=0 ' 'D 

Inserting Eq. (16) into the boundary conditions (9) and (10) =-F,„{p) for 6 < p < l (24) 
yields " f" „, 

2 . Om J r? J,+2,„+2iv)JAP'n)dv 

! eBiOJA^r)d^ = -W,„ b<r<a ( 1 7 ) "•"" « " . „ 
*̂ ° + ^ ^ ' J r'Js,ii+2{5r])JAPV)dr] 

[mOJA^r)di = 0 0<r<b,r>a (18) ' " " = 0 for 0 < p < <5 (25) 

If we evaluate integrals using the mathematical table [Grads-
We can nondimensionaUze our variables by introducing new hteyn and Ryzhik, 1994; Eqs. (6.512) and (6.574)], then we 
variables obtain 

„ pT(5 + m + s) ^ ^^ 1 , . 
^ ^'" T̂ TT 77:7-, T 2Fi(2 + m + s, - 2- m,l + s, pO 
„,=o H j + m)r(l + s) 

^ „, , ,, • ^ 2Fi(i + I + s,l + 1,3 + 21 + s,-. + 'Lb, , '^ ^ '- 2FAI + 1 + s,l + l,3 + 2l + s,-] = -F,„(p) for 6 < p < 1 (26) 

^ p T ( l + m + s) ^ ,, , , , , 

, . 2 r (2 + m)T(l + s) 

"SSma' l wVi . ) 'K ' " ' " " - ' ' ' • • " ' • ^^1°° '" »•='•=* ™ 

where 2F\{a, b\ c, x) represent the Hypergeometric function. 
p = - , ri = a£, 5 = - , A(n) = n'B(?7), Let us premultiply Eq. (27) by p2F,(l + 9 + i , - 1 - ^, 1 + 

a' ' a' ' s, (p^/<5^)) and integrate it from 0 to (5, and premultiplying Eq. 
(26) by p2F,( | + p + .J, - i - p , 1 + .y, p^) and integrate 

Fsnip) = a W,„(p) (19) 
from (5 to 1. Hence, we obtain 

Hence, the integral Eqs. (17) and (18) can be cast into the 
following form of the integral equations v u . x^ 1 n n ^ ^^ /-ION 

^ ^ L a,„Hp,„ + 2 . b,Hpi = gp p = 0,1,2, ... ( 2 8 ) 
/•" m=o (=0 

J Air,)U7ip)d7] = -F,„(p) 6 < p < 1 (20) 
" I flm-f^,™ + S fc/'?^.,/ = 0 9 = 0, 1, 2, . . . (29) 

r]-'Air])JAvp)dv =^0 p < 6, p > I (21) ">=" '"° 
Jo 

where 
If the integral Eqs. (20) and (21) are solved for A(r]), then 
B{r]) can be derived using Eq. (19) and 4>{r, z) using the 
inversion formula (16). ^ ^ H ; + m + 5) [" .+ i ^ .3 _ĵ  + s - -

In this paper, we propose the use of Fourier-Bessel series for '"" T(-+ m)r (I + s) Js ^ ^ ^' ^ 
the above integral equation based on the approach used by 
Tranton (1950, 1954). In deriving the solution, we will use the 
following property of Bessel functions [Gradshteyn and Ryzhik, ~ p , I + s, p^) 2/^1(5 + m + s, - ^ - m, 1 + s, p^)dp 
1994; Eq. (5.574)]. 

r . , (30) 
I X Js+2n+2(ax)Jsi^x)dx = 0 for 

c;2+2(+i-p/3 , 7 , \ M 

p > a and n a O ( 2 2 ) H„ = -, ^ ^ ^ P~''^"^'\F4 + p 

Hence, if we express A (77) in terms of the following Bessel 
series, , •, i •\ 1 

+ *, - 5 - p , 1 + .?, p ) 2fi( 5 + / + i , 5 + / , 

^(?7) = X amA+2»,+2(?7) + £ b,J,+2i+2iSr}) (23) 

then Eq. (21) is automatically satisfied for p > 1. Inserting Eq. 3 + 2/ + i ' , l r f p (31) 
(23) into Eqs. (20) and (21), we obtain ' 
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'"" 2r(2 + m ) r ( l + j ) Jo \ 
-I- .s, - 1 

1 + .s, 75 2/^1(1 + m + s,-\ - m,l + s, p^)dp (32) 

W?/ -
ni 

2fiT(2 ^T^i^r^"^'—• I 
-I - <],l + S,^] 2F1 1 + / + .5 

- 1 - / , 1 + ^ , ^ | r f p (33) 

gp = J pF,,„{p)2Fi (1 + p + s, ~\ 

-p,l+s,p^)dp (34) 

Let us compute the velocity potential at the water-plate inter
face, which can be written as 

0.20 

(0,1):Th9ory 
0 (0,1):Experlment 

\ (0,2);Theory 
\ X (0,2);Experiment 

0 \ . 

0.15 > \ ^ 

;: ^ s ^ •̂""•v.s..,̂ ^̂  

0.10 ** ~~~~-~- "̂"̂ -̂̂ -̂ ^ 
X ~ ~ " - - - _ ^ _ ^ ^ ~ \ 

0.2 0.4 0.5 

0(/3 
a Jo 

'A('n)Js(pv)dv for <5 < p < 1 (35) 

Fig. 1 NAVMI factors versus S; [s, n) = (0, 1), (0, 2); s = number of 
nodal diameters; n = number of nodal circles 

the nondimensionalized added virtual mass incremental factor, 
r,„, based on Eq. (3) can be expressed as 

Inserting Eq. (23) into Eq. (35) and using the mathematical 
table (Gradshteyn and Ryzhik, 1994), we can obtain 

HP, 0) V at,pT(l +m + s) ^ , , , 
- — — = 2u ";:; ;; 2/^1(1 + m + s, 

a „ t ; 2 r ( 2 + m ) r ( l + s) ' 
-1 - m, I + s, pA , 6 < p < \ (36) 

where af, = -aja^. Note that Eq. (36) is only valid for b < 
p < 1. The potential for p > 1 can be obtained but it is not 
necessary for the computation of the kinetic energy thus it is 
omitted. 

The reference kinetic energy of the water can be written as 
(i27r 

-I- m 

r * = - - p„ r f M r i i ^ ^(^r, 0)rdr cos^sBdO 
2 Jo Jo az 

r- r 
Jo Jo 

p„a^De j W,„ip)<l>{p,0)pdp (37) 

,„,o2r(2 + m ) r ( l + s) Js 

+ s, -\ - m,\ + s, p^)dp (41) 

Unfortunately, the integral appeared in Eq. (41) does not render 
a closed-form expression. Thus, we will resort to the numerical 
integration technique for the evaluation of this integral. 

All the numerical computation including the integral ap
peared in Eq. (41) is carried out using Mathematica (Wolfram, 
1988). It is found that up to .s = 5 and n = 5, 10 term series 
expansion was enough for the evaluation of A (r?) as the coeffi
cients for higher-order terms quickly converges to zero. The 
theoretical NAVMI factors, T,„, for free-edge annular plates, 
for {s, n) = (0, 1), (0, 2), (1 , 1), (2, 1), (2, 0), (3, 0) are 
shown as either solid or dashed lines in Figs. 1, 2 and 3. 

3 Experiments and Discussion 
The modal properties of three annular plates were experimen

tally determined, both in air (a condition which is very close 
to vacuum) and fully immersed in water. The annular plates are 

where 

D„ = 
27r for s = 0, 0.26 

(38) 
TT for i > 0. 

Inserting Eq. (36) into Eq. (37), we obtain 

T* 1 3n V «'>.r( 1 + m + s) f ,+ , 
n = - P^a'Df, 1 — p-'^'H',„(p)2Fi 

2 „,=o2r(2 -f- m)T{\ + s) Js 

X {I + m + s, ~\ - m,\ + s, p^)dp (39) 

Note that T* is the reference kinetic energy of water loaded 
on one side of the circular plate. If the circular plate is loaded 
on both sides therefore fully immersed in an unbounded fluid, 
the expression should be multiplied by 2. 

The reference kinetic energy of the plate can be written as 

T^- = ^p„ha'Doj Wlpdp (40) 

If we choose coefficients which satisfy / Wl„pdp = 1, then 
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Fig. 2 NAVMI factors versus S; (s, n) = (1,1) , (2 ,1 ) 
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Fig. 3 NAVMI factors versus S; (s, n) = (2, 0), (3, 0) 
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Fig. 4 Frequency Response Function (FRF) and its coherence for the 
annular plate with S = 0.3 immersed In water 

manufactured by accurate laser cutting in order to prevent any 
deformation and using UNI Fe P 11 MG low carbon steel, 
according to the Italian standards. The Young's modulus is 206 
GPa, the mass density is 7800 kg/m^ and the Poisson ratio is 
v = 0.3, respectively. The thickness of the plates is 1.5 mm, 
the outer radius 100 mm for all plates and the inner radius 15, 
30 and 50 mm, respectively. Thus, 6 considered in the experi
ments are 0.15, 0.3, and 0.5. 

All tests were carried out in a cylindrical tank with vertical 
axis having a diameter of 500 mm, which was built by gluing 
a Plexiglas transparent plate to a PVC pipe. The free-edge con
dition was obtained placing the test, plates on a compliant sus
pension made by flexible wires. The plates were immersed in 
water 80 mm below the free surface. The total level of water 
in the tank was 180 mm. The plates were excited using a B & 
K (Brilel & Kjaer) electro-dynamic exciter, model 4809, devel
oping a maximum force of 45 N. The extremity of its stinger 
was glued to a point of the specimen, which is away from 
the center in order to excite the symmetric modes as well as 
asymmetric modes. The force was measured by a PCB 208A03 
transducer and the response was measured by either a single-
beam laser Doppler vibrometer Polytec OFV 1102 or an auto
matic scanning laser Doppler vibrometer Polytec PSV-100. 
Both sets can detect velocity up to 0.25 m/s. The noncontact 
vibration measurement techniques used in this experiment have 
a definite advantage over the measurement using an accelerome-
ter since they do not add weight to a specimen. Furthermore, 
the weight of the accelerometer has an adverse effect on modes 
which may interfere the fluid-structure interaction; it changes 
the shape of the fluid-structure interface at the accelerometer 
location. The laser beam hits the plate through the transparent 
bottom of the tank and the water. In spite of such interfaces, 
the signal to noise ratio was confirmed affirmative by a good 
coherence as shown in Fig. 4. Figure 4 shows the frequency 
response function (FRF) and its coherence for the immersed 
annular plate with 5 = 0.3. A diagram of the experimental set
up is given in Fig. 5. 

The modal analysis was carried out on the annular plate with 
(5 = 0.3 in air and the same plate immersed in water to check 
the assumption that wet mode shapes are almost identical with 
dry mode shapes. FRF's were measured at 48 different points 
and 16 of them were measured around each of three circumfer
ences. Two circumferences were located very close to the edges 
(inner and outer); the last circumference was placed at an aver
age radius with respect to the other two. Tiie excitation was 
located at one of the 16 measured points of the last circle. The 
range of the measured FRF is from 0 Hz to 3200 Hz with a 
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frequency resolution of 0.98 Hz. The sensor used is the single-
beam laser Doppler vibrometer Polytec OFV 1102. The mea
surement of the FRF and the modal parameter estimation were 
performed by means of a HP 9000 workstation with DIFA 
Scadas II acquisition front-end and LMS CADA-X software for 
data acquisition and analysis. The FRF's were measured using 
8 averages and estimated with the Hv method. The modal pa
rameters were evaluated using the frequency domain direct pa
rameter estimation method (Sas, 1993). The excitation signal 
was burst random with 50 percent of the signal in the sample 
period. Figure 6 shows the first three experimentally detected 
dry and wet mode shapes of the plate. In particular, the funda
mental mode (s = 2, n = 0) presents split frequencies for the 
two coupled modes having the same shape but rotated by TT/ 
2n. This phenomenon is attributed to a loss of axisymmetry 
due to small defects of the specimen. As shown in the Fig. 6, 
the wet mode shapes are very close to the dry mode shapes, 
which validates the assumption introduced in the problem for
mulation. 

Natural frequencies and mode shapes of the other two plates 
with inner radius of 15 and 50 mm were obtained using the 
automatic scanning laser Doppler vibrometer (SLV) Polytec 
PSV-100. The two plates were excited, in air and in water, by 

Load Cell 
Shaker 

Water. 

Test Plate 

Elastic Wire. 

!N^ Stinger 

Laser Beam 

„Tank 

Transparent 
Bottom 

Laser Doppler 
Vibrometer 

Fig. 5 Diagram of the experimental set-up 
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Table 1 Comparison of theoretical frequencies and experimental re
sults for the plate with inner radius of 30 mm in air. Experimental damping 
factors of vibration in air are also given. 

Fig. 6 "Dry" and "Wet" mode shapes of the plate with S -
in water 

0.3 immersed 

a shaker using a burst random signal in order to estimate natural 
frequencies. Then, a fixed frequency sine wave excitation at the 
resonance frequency along with the SLV was used to obtain 
the mode shapes. Mode shapes are detected with good accuracy 
using this automatic scanning sensor, due to the large number 
of points that is possible to measure in a short period of time. 
Figure 7 shows the immersed mode shape of the annular plate 
which has an inner radius of 50 mm for the case of four nodal 
diameters and no nodal circle, i.e., s = 4, n = 0. A contour plot 
is used for the presentation of the mode shape. In this figure, 
the response is given as velocity and the contour plot is superim
posed to a picture of the experimental apparatus (the shaker is 
located on the top-left part of the picture). 

Natural frequencies detected experimentally in air on the 
three different plates are in good agreement with theoretical 
data presented by Vogel and Skinner (1965) and by Amabili 
et al. (1996). In Table 1, experimental natural frequencies are 
compared to computed frequencies for the plate having 6 = 
0.3. The maximum error is less than 5 percent. Two different 
behaviors are observed for modes having no nodal circles (n 
= 0) and modes having nodal circles (n > 0) ; in the first case 
two coupled modes (identical mode shape but rotated by TT/ 
2n) were detected, and one of these has an excellent agreement 
with theoretical data, while the other has a little higher fre
quency. On the contrary, all modes with « > 0 show frequencies 
little lower than theoretical ones. In Table 1, experimentally 
detected damping factors are also shown; they are about 0.05 
percent for listed modes. Damping factors range from 0.21 to 
0.5 percent for the same plate completely immersed in water 
(Table 2); therefore a general increment of damping is ob
served in water. However, this damping is not high. 

After measuring the natural frequencies in air and in water 
and identifying the corresponding modes, the NAVMI factors 
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s 
2 
2 
0 
3 
3 
1 
2 
0 
1 

n 
Q 

0 
1 
0 
0 
1 
1 
2 
2 

Theoretical (Hz) 
182.18 
182.18 
310.40 
455.16 
455.16 
680.92 
1226.86 
1870.98 
2183.80 

Experimental (Hz) 
182.5 
191.0 
300.0 
455.6 
464.8 
651.0 
1198.0 
1833.0 
2127.0 

Error (%) 
0.15 
4.82 
-3.34 
0.11 
2.12 
-4.40 
-2.36 
-2.03 
-2.60 

Exp. Damping (%) 
0.040 
0.030 
0.055 
0.051 
0.077 
0.022 
0.020 
0.132 
0.025 

were evaluated based on Eqs. (2) and (3). Since the plates 
were immersed into water, the NAVMI factors were divided 
by 2 to represent the case of the plate resting on free surface. 
Those values are plotted as either a circle or a cross in Figs. 1, 
2 and 3. As shown in those figures, the theoretical NAVMI 
factors agree quite well with the experimental results. Experi
mental data for 6 = 0 (circular plate) are taken from Amabili 
et al. (1995). It is shown that the natural frequencies in water 
computed by using the NAVMI factors are within 5 percent 
error. The error involved in the NAVMI factors is amplified 
because they appear in square root in the frequency relationship. 

In the case of split experimental frequencies for the same 
mode, the average value of the NAVMI factor is presented in 
the figures. However, differences between these factors com
puted from the two couples of corresponding modes are small. 

It is important to note that two main differences can be de
tected between the theoretical model and the performed experi
ments. First, the test tank has a finite radius and the water depth 
below the test plates is finite. Therefore the kinetic energy of 
water should be little increased in experiments with respect to 
the theoretical one, so that experimental NAVMI factors should 
be higher than those expected. Moreover, the distance between 
the test plate and the water free surface is finite (80 mm). 
Therefore free surface waves of the liquid are obtained as a 
consequence of the plate's vibration. This effect should reduce 
the measured NAVMI factors with respect to the actual ones. 
This effect was investigated by Amabili (1996) and shows a 
significant effect on some modes, especially for 6 = 0. These 
two differences give opposite effects on NAVMI factors. There
fore different errors between theoretical and experimental re
sults are expected for different modes and values of 6. In partic
ular, experimental NAVMI factors of modes (axisymmetric) 
given in Fig. 1 are below the theoretical values. A similar phe
nomenon is obtained for modes given in Fig. 2 (modes with one 
nodal circle). The opposite effect is shown by modes reported in 
Fig. 3 (modes without nodal circles). Hence, it seems that for 
our experiments the effect of finite fluid depth above the plate 
is larger for modes with nodal circles; in contrast, for modes 
without modal circles (n = 0) , the finite tank dimension is 
more important. 

An interesting phenomenon is that NAVMI factors decrease 
with 6 for axisymmetric modes (Fig. I) and modes with one 
nodal circle (Fig. 2), while they remain nearly the same for all 
the considered values of 6 for modes without nodal circles (Fig. 

Table 2 Comparison of theoretical frequencies and experimental re
sults for the plate with inner radius of 30 mm immersed in water. Experi
mental damping factors of vibration in water are also given. 

Fig. 7 Mode shape for s = 4 and n = 0 of the annular plate with 8 = 0.5 
immersed in water; natural frequency 448.2 Hz 

s 
2 
2 
0 
3 
1 
1 
2 
2 

n 
0 
0 
1 
0 
1 
1 
1 
1 

Theoretical (Hz) 
94.27 
94.27 
180.76 
255.61 
377.33 
377.33 
688.97 

. 688.97 

Experimental (Hz) 
92.97 
97.51 
173.3 
252.3 
371.1 
37B.8 
678.7 
686.3 

Error (%) 
-1.40 
3.32 
-4.30 
-1.31 
-1.68 
-0.41 
-1.51 
-0.39 

Exp. Damping (%) 
0.22 
0.24 
0.51 
0.27 
0.39 
0.36 
0.27 
0.21 
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3). Therefore it is possible to say that the effect of the dimension 
of the central hole on the fluid-structure interaction is small for 
modes without nodal circles and is large for axisymmetric modes. 
This is due to the fact that for modes with nodal circles and no 
nodal diameters, the parameter, 6 is very important. In fact, for 
small 6 values, there is a large relative movement between inner 
and outer plate's edge. On the contrary, this movement is small 
when S becomes close to one. Therefore, the NAVMI factor 
decreases rapidly with 6 as shown in Fig. 1. For modes without 
nodal circles, the influence of 6 is small because the deflection in 
the central plate's area is small. Therefore, NAVMI factors remain 
almost constant for those modes, as shown in Fig. 3. For modes 
having both nodal circles and nodal diameters, there is a combined 
result, as shown in Fig. 2. 

As a consequence of Eqs. (2) and (3), experimental NAVMI 
factors are evaluated with an increased error with respect to the 
error involved in the experimental natural frequencies of the 
immersed plates. The theoretical and experimental natural fre
quencies of the immersed plate with 6 = 0.3 are satisfactorily 
compared in Table 2. 

4 Conclusions 

Water has a significant effect on the vibration characteristics 
of structures in contact with water. In general, natural frequen
cies in water are smaller than those in air because the total 
kinetic energy increases due to the presence of water. This 
phenomena is often explained in terms of virtual mass increase. 
Assuming that the wet mode shapes are the same as the ones 
in air, we are able to separate the coupled problem into indepen
dent boundary value problems. Then, the change of natural 
frequency subjected to certain mode shape due to the presence 
of water can be predicted by the Rayleigh quotient, which de
pends on the added virtual mass incremental (AVMI) factor. 

In this paper, the nondimensionalized added virtual mass in
cremental (NAVMI) factors are obtained for the uniform annu
lar plates resting on free surface. To verify the theoretical re
sults, experiments were carried out and it is found that the 
experimental results agree well with the theoretical results. It 
is generally found that the NAVMI factor decreases as number 
of nodal diameter and nodal circles increases, which has the 
same tendency as observed in the circular plates. It is also found 
that the NAVMI factors decrease as the ratio of inner and outer 
radii increases. 
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