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ABSTRACT 

 

Installed in 2009, BIXI is the first major public bicycle-sharing system in Montreal, Canada. The 

BIXI system has been a success, accounting for more than one million trips annually. This 

success has increased the interest in exploring the factors affecting bicycle-sharing flows and 

usage. Using data compiled as minute-by-minute readings of bicycle availability at all the 

stations of the BIXI system between April and August 2012, this study contributes to the 

literature on bicycle-sharing. We examine the influence of meteorological data, temporal 

characteristics, bicycle infrastructure, land use and built environment attributes on arrival and 

departure flows at the station level using a multilevel approach to statistical modeling, which 

could easily be applied to other regions. The findings allow us to identify factors contributing to 

increased usage of bicycle-sharing in Montreal and to provide recommendations pertaining to 

station size and location decisions. The developed methodology and findings can be of benefit to 

city planners and engineers who are designing or modifying bicycle-sharing systems with the 

goal of maximizing usage and availability. 

 

Keywords: Bicycle-sharing systems, BIXI Montreal, BIXI arrivals and departures, linear mixed 

models, bicycle infrastructure, land use and built environment   



3 

 

1. Introduction 

 

In recent years, there has been growing attention on bicycle-sharing systems as an alternative and 

complementary mode of transportation. These systems are recognized to have traffic and health 

benefits such as flexible mobility, physical activity, and support for multimodal transport 

connections (Shaheen et al., 2010). A bicycle-sharing system is intended to provide more 

convenience because individuals can use the service without the costs and responsibilities 

associated with owning a bicycle for short trips within the service area of the system. Further, a 

bicycle-sharing system frees individuals from the need to secure their bicycles; bicycle theft is a 

common problem in urban regions (van Lierop et al., 2013; Rietveld and Daniel, 2004). Another 

advantage associated with this system is that the decision to make a trip by bicycle can be made 

in a short time frame. 

Currently, there are more than 4 hundred thousand public bicycles around the world and 

400 cities have installed or are planning to install a bicycle-sharing system (Fishman et al., 

2013). BIXI (a word formed by combining bicycle and taxi) was one of the first major public 

bicycle-sharing systems in North America. It was installed in 2009 in Montreal, Canada. The 

service began with 3000 bicycles and 300 stations. In 2012, the BIXI system had 410 stations 

with more than 4000 bicycles. Although bicycle-sharing systems are becoming more and more 

common around the world, there are relatively few studies exploring the factors affecting shared 

bicycle flows and usage. Fishman et al. (2013), after an extensive literature review, concluded 

that in order to better understand and maximize the effectiveness of bicycle-sharing programs, 

the evaluation of current performance of bicycle-sharing systems is crucial. Demand modeling 

plays an important role in determining the required capacity, and hence the success of new 

bicycle-sharing systems and/or the success of expanding an existing system. BIXI in Montreal is 

a mature system that offers a unique opportunity for understanding the factors influencing its 

flows and usage.  

In this study, using data compiled from minute-by-minute readings of bicycle availability 

at all 410 stations on the BIXI website between April and August 2012, we attempt to examine 

the determinants of bicycle-sharing demand in Montreal. The BIXI database compiled is 

augmented with meteorological data, temporal characteristics, bicycle infrastructure, land use, 

and built environment attributes allowing us to examine the influence of these factors on bicycle-

sharing system demand. Specifically, the main objective of the current paper is to quantify the 

influence of various factors on arrival and departure flows at the bicycle sharing station level 

using a general statistical modeling technique that other regions can adopt. The study employs a 

multilevel linear mixed modeling approach that explicitly recognizes the dependencies 

associated with bicycle flows originating at the same station. The model results obtained are 

validated using operational data compiled from 2013 (one year after the data used to fit the 

model). Further, we compute elasticity estimates of various attributes to illustrate the 

applicability of the developed model for policy analysis.  

The rest of the paper is organized as follows. Section 2 provides a literature review of 

earlier research and positions our research. Section 3 explains the data compilation and sample 

formation in detail. Section 4 presents the visual representation of BIXI flows. The statistical 

model employed in this paper and the model estimation results are discussed in section 5. Section 

6 discusses a policy exercise. Finally, Section 7 concludes the paper with recommendations for 

future research. 
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2. Literature Review 

  

The first bicycle-sharing system was introduced in the 1960s in the Netherlands (DeMaio, 2009; 

Shaheen et al., 2010). Since then, there have been four generations of these systems. The first 

generation was “white bicycles” or free bicycles available in different locations around the city. 

The idea was simple: a person would pick up one of the bicycles, which were typically painted in 

bright colors and unlocked, ride it to his or her destination, and leave it there for the next possible 

user. It was free and without any time constraint. This program failed because of many stolen 

and vandalized bicycles. In the 1990s, a second-generation coin-deposit system was introduced 

as a result of the experience of the first generation of bicycle-sharing systems. Locked bicycles 

could be borrowed with a small deposit, which was usually refunded on return. Unfortunately, 

this did not eliminate the issue of bicycle theft due to user anonymity (Shaheen et al., 2010). 

Also, no time limit for the use of bicycles resulted in excessively long rental periods for 

borrowed bicycles. The third generation system added transaction kiosks to docking stations to 

solve the problem of user anonymity. People could rent a bicycle for only a limited amount of 

time. These systems became relatively successful around the world. Fourth generation systems, 

also called demand-responsive multimodal systems, have been built on the success of the third 

generation, while also improving docking stations, bicycle redistribution, and integration with 

other transport modes (DeMaio, 2009; Shaheen et al., 2010). BIXI belongs to the latest 

generation of bicycle-sharing systems. The BIXI system aggregated more than 3.4 million trips 

in the 2010 season (PBSC, 2013).  

Over the past few years there have been several studies devoted to examining factors 

affecting bicycle-sharing flows and usage. A subset of these studies conducted a feasibility 

analysis, proposing different bicycle-sharing programs for different cities (for example, see 

Gregerson et al., 2010). These studies typically aim to identify potential locations for stations 

and to estimate bicycle-sharing flows and usage considering socio-demographic and land-use 

variables (such as population and job density) as well as topological and meteorological 

parameters for the proposed locations. There are relatively few quantitative studies on bicycle-

sharing systems employing actual bicycle usage data. Nair et al. (2013) investigated several 

aspects of such systems including system characteristics, utilization patterns and the connection 

with public transit using data from the Velib’ bicycle-sharing system in Paris, France. Buck and 

Buehler (2012) explored the influence of various factors — including bicycle lanes, population, 

number of households without a car, and retail destinations around the stations — on bicycle 

flows of the Capital bicycle-sharing system in Washington DC. Krykewycz et al. (2010) 

estimated demand for a proposed bicycle-sharing program in Philadelphia using observed 

bicycle flow rates in European cities. Rixey (2013) investigated the effects of demographic and 

built environment characteristics on average monthly bicycle usage in three different cities in the 

US at the station level using a regression analysis. He concluded that population density, job 

density, income levels, and the share of alternative commuters are all critical factors affecting 

bicycle-sharing ridership. The same approach has been applied by Daddio (2012) to the bicycle-

sharing system in Washington DC. Wang et al. (2012), in their analysis, considered annual rates 

for each station and examined the effects of nearby business and job densities, socio-

demographics, built environment, and transportation infrastructure variables on annual usage 

flows. They found that locating stations closer to jobs results in higher usage of the bicycle-
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sharing system. Moreover, the presence of food-related businesses near stations has a more 

positive impact on arrivals and departures than non-food commercial businesses. 

The objective of our research effort is similar to these previous studies. However by 

using aggregated monthly or yearly flow rates, these studies fail to capture the impact of 

variables that change in the short term; i.e., at an hourly level (such as variations in weather and 

time-of-day effects). Neglecting the presence of such variations usually reduces the applicability 

of the results obtained. Moreover, examining bicycle flows at an hourly level (or a short time 

frame) allows the analyst to provide the operators with bicycle demand profiles including excess 

and shortage information. A more recent research effort, Hampshire et al. (2013), studied the 

influence of bicycle infrastructure attributes and land-use characteristics on bicycle flows using 

aggregated hourly arrival and departure rates at the sub-city district (SCD) level in Barcelona and 

Seville, Spain. They highlighted that bicycle station density, the average capacity of stations in 

the SCD, and the number of points of interest in SCD are important contributors to arrival and 

departure rates. Contrary to the previously mentioned literature, while Hampshire et al. (2013) 

used a fine temporal dimension, their study fails to capture fine-grained spatial effects because 

the station flows studied are aggregated at the SCD level.  

There have been several studies conducted using the BIXI system. These studies use 

survey data rather than actual bicycle flow data obtained from stations. They contribute to the 

literature by studying user behavior in response to bicycle-sharing systems and examine the 

integration of this system with public transit (Bachand-Marleau et al., 2011; Bachand-Marleau et 

al., 2012; Fuller et al., 2011)
1
. 

The current paper contributes to literature by determining the effect of meteorological 

data, temporal characteristics, bicycle infrastructure, land use and urban form attributes on 

bicycle arrival and departure flows at the station level using real data. The estimated models will 

allow us to predict changes to the demand profiles (arrivals and departure flows) allowing us to 

examine the influence of changes to the system – capacity reallocation or new station 

installation.  

 

3. Data 

 

For this study, the hourly arrival and departure rates are obtained from minute-by-minute BIXI 

bicycle availability data for all stations in service (410 stations) between April and August 2012. 

Figure 1 shows the location of BIXI stations on the Montreal Island. It is important to note that, 

due to severe winter conditions in Montreal, the BIXI season starts on April 15
th

 and ends on 

November 15
th

 of each year.  

A sample formation exercise was necessary to obtain the arrival and departure rates from 

the bicycle availability data for every station. The raw data saved from the BIXI website 

provided information on the number of bicycles available at each station for every minute. The 

raw data was processed to generate minute-by-minute bicycle arrival and departure rates for 

every station. The arrival and departure rates obtained are not necessarily due to customer-based 

bicycle flows. It is important to note that bicycle-sharing system operators frequently perform 

rebalancing operations, removing bicycles from stations that are full and refilling the docks of 

                                                 
1
 A stream of studies concentrates on operational issues of bicycle-sharing systems such as maximizing efficiency of 

operator rebalancing program (Borgnat et al., 2011; Froehlich et al., 2009; Jensen et al., 2010; Kaltenbrunner et al., 

2010; Vogel and Mattfeld, 2011). The focus of these studies is more on optimizing bicycle repositioning operations 

to remove bicycles from full stations and refill empty stations, and it is not particularly related to our research effort. 
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empty stations. Unfortunately, the occurrence of rebalancing operations is not indicated in the 

minute-by-minute data available, and so it is not possible to directly distinguish whether the 

addition (removal) of bicycles is due to customers or operators. So, we adopt a heuristic 

mechanism to arrive at the “true” arrivals and departures. We identify spikes of bicycle 

availability (or removal) in the data compiled to differentiate between customer flows and 

operator flows. For this purpose, we aggregate the flow rate data temporally up to a 5-minute 

level to capture the effect of rebalancing operations. Specifically, we assume that a rebalancing 

operation has occurred if the 5-minute arrival/departure rate is greater than the 99th percentile 

arrival/departure for that station. When such a trigger is identified, the actual bicycle flow for 

this 5-minute period is obtained by averaging the bicycle flow rates of the two earlier 5-minute 

periods and the remainder of the flow is allocated to the rebalancing operation (a slight variant of 

this approach is employed in Hampshire et al., 2013). After correcting for rebalancing 

operations, hourly arrival and departure rates for every station are obtained by aggregating this 5-

minute bicycle flow data. 

Although the BIXI season starts April 15th every year, only a subset of the stations begin 

functioning within the first ten days of the season. Hence, from 2012 BIXI data, we removed the 

month of April and restricted our sample to the four months of May, June, July and August. 

Subsequently, to obtain a reasonable sample size, we randomly select two days for every station 

in our database. The arrival/departure rates in overnight hours (1 AM to 6 AM) are very low. 

Thus, we aggregate the bicycle flow rates in the overnight time period as one record, generating 

20 records for every day (one for the period 1 AM to 6 AM, and one for each remaining hour of 

the day). Further, to account for the influence of station capacity on bicycle flows, we 

normalized our dependent variable (arrivals or departures at a station) with station capacity. The 

final sample consisted of 16400 records (20 hours × 2 days × 410 stations) of normalized 

arrival and departure rates at a station level. The data sample compiled is well distributed across 

the four months (percentages of April, May, June and July range between 22.4 and 26 percent) 

and across all 7 days in a week (daily shares range from 12.8 to 15.6 percent). To be sure, the 

data sample employed in our analysis forms a small share of the entire data compiled. If the 

objective is to estimate a linear regression model, large sample size would not be an issue. 

However, in our paper, we estimate a linear mixed model (described in Section 5) whose 

structure results in longer model run times for larger samples. Further, employing very large 

samples for model estimation might result in data over-fit and inflated parameter significance. 

Two separate models are developed to examine the arrival rates and departure rates at every 

station. 

 

3.1. Independent variable generation 

The independent variables considered in our analysis can be categorized into three groups: (1) 

weather, (2) temporal and (3) spatial variables. Weather variables include hourly temperature, 

relative humidity, and the hourly weather condition represented as a dummy variable indicating 

whether or not it is raining. The temporal variables considered aim to capture time-of-day and 

day-of-the-week effects. Specifically, the day is divided into four periods: morning (6AM-

10AM), mid-day (10AM-3PM), PM (3PM-7PM) evening (7PM- 12AM). The influence of 

weekend vs. weekday was also taken into account. Further, to account for young individual users 

in the downtown core of Montreal, we included a Friday and Saturday night dummy variable to 

test for possible increase in BIXI usage during these periods compared to other times. 
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To examine the spatial determinants influencing bicycle usage at each station, two classes 

of spatial variables were used: a) Bicycle infrastructure and b) Land-use and built environment 

variables. The bicycle infrastructure variables included are at both the traffic analysis zone 

(TAZ
2
) level and the buffer level. A 250 meter buffer around each station was found to be an 

appropriate walking distance considering the distances between BIXI stations. Bicycle 

infrastructure variables were used to examine the effect of cycling facilities on the bicycle 

demand and usage of the bicycle-sharing system. The length of bicycle facilities (bicycle lanes 

and bicycle paths) in the buffer was calculated to capture the impact of placing BIXI stations 

near bicycle facilities on the usage of the bicycle-sharing system. Moreover, the length of minor 

roads (local streets and collectors) and major roads (arterials and highways) in the buffer were 

calculated to identify cyclist preference of routes. The number and capacity of BIXI stations in 

the 250 meter buffer were computed to capture the effect of neighbouring stations. 

Land-use and built environment characteristics are the other group of variables 

considered in our analysis. To study the influence of the central business district (CBD), the 

distance from each station to the CBD was computed. The walkscore corresponding to every 

station is also generated
3
. The presence of metro and bus stations near a BIXI station and the 

length of bus lines in the 250 meter buffer were generated to examine the influence of public 

transit on bicycle arrival and departure rates. We also considered three types of points of interest 

near each station: (1) the number of restaurants (including coffee shops and bars), (2) the number 

of other commercial enterprises and (3) a categorical variable indicating whether or not the BIXI 

station is near a university. The TAZ level variables considered in our analysis include 

population density and job density of the TAZ associated with each BIXI station. To provide an 

illustration of the data compiled, we provide a descriptive summary of the sample in Table 1. 

 

4. Visual Representation of BIXI flows 

 

In order to better understand the spatial and temporal variation of bicycle usage in the BIXI 

system, we represent the bicycle arrival and departure rates of every station visually using a 

geographic information system. For this purpose, the bicycle flows of every station in every day 

of June were considered. To conserve space, we mainly focus on the AM and PM time periods in 

our visualization exercise. We compute the average hourly arrival and departure flows at every 

station for the AM and PM time periods. The patterns are presented in Figure 2. Several 

interesting observations can be made from the results. First, we can see that flows are much 

higher for the BIXI system during the PM period. One plausible explanation for the trend is that 

employed individuals might find it easier to bicycle home since they are presumably not in as 

much of a rush as when going to work in the morning. These individuals might decide to arrive 

at work using less strenuous modes (such as bus or metro). Furthermore, people might also 

consider riding the BIXI as a useful exercise after work or might make short trips within the 

CBD — for instance, going from work to a restaurant. It is also possible that during the evening 

peak hour the population using BIXI includes students and other individuals without the typical 

schedule (e.g., workers in restaurants and coffee shops, and non-workers). Second, the higher 

concentration of arrival rates in CBD in the morning peak hour confirms the use of bicycle-

sharing system for daily commute purposes. Third, the results indicate that bicycle flows are 

                                                 
2
 Traffic Analysis Zone represents the unit of demarcation for urban metropolitan planning purposes. 

3
 The walkscore is a walkability index based on the distance to amenities such as grocery stores, restaurants, etc (see 

Carr et al., 2011 and http://www.walkscore.com/ for more information). 

http://www.walkscore.com/
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more spatially widespread in the evening peak compared to morning peak. Overall, the 

visualization provides a brief overview of bicycle flows in Montreal using the BIXI system. 

 

5. Analysis and Discussion 

 

5.1. Linear mixed models 

The most common methodology employed to study continuous dependent variables such as 

arrival and departure flows is the linear regression model. However, the traditional linear 

regression model is not appropriate to study data with multiple repeated observations. In our 

empirical analysis, we observe the arrivals and departures at the same station at an hourly level 

for each station. Hence to recognize this, we employ a multilevel linear model that explicitly 

recognizes the dependencies associated with the bicycle flow variable originating from the same 

BIXI station. Specifically, we employ a linear mixed modeling approach that builds on the linear 

regression model while incorporating the influence of repeated observations from the same 

station. The linear mixed model collapses to a simple linear regression model in the absence of 

any station specific effects. A brief description of the linear mixed model is provided below.  

 Let q = 1, 2, …, Q be an index to represent each station, d = 1, 2, …, D be an index to 

represent the various days on which data was collected and t = 1, 2, …, 20 be an index for hourly 

data collection period. The dependent variable (arrival or departure rate over station capacity) is 

modeled using a linear regression equation which, in its most general form, has the following 

structure: 

yqdt = βX + ε 

where yqdt is the normalized arrival or departure rate as dependent variable, X is an L×1 column 

vector of attributes and the model coefficients, β, is an L×1 column vector. The random error 

term, ε, is assumed to be normally distributed across the dataset. 

The error term may consist of three components of unobserved factors: a station 

component, a day component, and an hour-of-the-day component. Due to the substantial size of 

the data and the number of independent variables considered in our study, it is prohibitively 

burdensome, in terms of run time, to estimate the combined influence of the three components 

simultaneously. Thus, we consider the station and the time-of-day to be related common 

unobserved effects. In this structure, the data can be visualized as 20 records for each 

Station-Day combination for a total of 820 observations. Estimating a full covariance matrix (20 

x 20) is computationally intensive while providing very little intuition. Hence, we parameterize 

the covariance matrix (Ω). For estimating a parsimonious specification, we assume a first-order 

autoregressive moving average correlation structure with three parameters σ, ρ, and φ as follows: 

 

     (

       
   

   
      

   
         

            
   
   
   

) 

 

The parameter σ represents the error variance of ε, φ represents the common correlation factor 

across time periods, and ρ represents the dampening parameter that reduces the correlation with 

time. The correlation parameters φ and ρ, if significant, highlight the impact of station specific 

effects on the dependent variables.  The models are estimated in SPSS using the Restricted 

Maximum Likelihood Approach (REML) that is slightly different from maximum likelihood 
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(ML) approach. The REML approach estimates the parameters by computing the likelihood 

function on a transformed dataset. The approach is commonly used for linear mixed models 

(Harville, 1977). 

 

5.2. Model fit measures 

In our study, two model frameworks were estimated for arrivals and departures: (1) a linear 

regression model and (2) a linear mixed model. The final model selection was based on the 

restricted log-likelihood and Bayesian Information Criterion metrics. Our model estimation 

process was guided by considerations of parsimony and intuitiveness. The two model 

frameworks were compared using the log-likelihood ratio (LLR) test. For the arrivals model, the 

LLR test statistic was significant at any reasonable level of significance (the LLR test-statistic 

value was 3632, significantly higher than the corresponding chi-square value for two additional 

degrees of freedom (φ and ρ)). Similarly, for the departures model, the LLR test statistic was 

significant at any reasonable level of significance (the LLR test-statistic value was 3491). The 

LLR test comparisons clearly highlight the suitability of the mixed modeling approach employed 

in our analysis for examining the determinants of BIXI usage in Montreal.  

 

5.3. Results 

In this section, we discuss the results of linear mixed model estimation to understand the 

different effects of meteorological, spatial and temporal elements on the bicycle usage in the 

BIXI bicycle-sharing system. It must be noted that we considered several specifications but only 

the statistically significant results for arrival and departure rates are presented in Table 2.  

 

5.3.1.  Weather variables 

As expected, there is a positive correlation between temperature and the arrival and departure 

rates. On the other hand, humidity has a negative impact on the arrival and departure rates. 

People are less likely to ride a bicycle in rainy or very humid time periods. However, the rainy 

weather variable is not significant for the arrival rate model. This might be explained by the idea 

that the weather has a stronger effect on the decision of taking out a bicycle than on returning it. 

 

5.3.2. Temporal Variables    

People tend to bicycle more on weekdays than weekends, as highlighted by the negative 

coefficient of the weekend variable. The interpretation of the time-of-day variables needs to be 

judiciously undertaken due to the presence of interaction effects with population density and 

university variables. Nevertheless, we clearly observe that the BIXI system is more 

predominantly used during the PM period relative to other times of the day. The likelihood of 

using bicycle-sharing systems increases on Friday and Saturday nights, indicating a propensity of 

young individual users in the downtown core of Montreal during these periods compared to other 

days. 

 

5.3.3. Bicycle Infrastructure Variables 

In this section, the results for parameters related to bicycling infrastructure variables are 

explained. The bicycle flows and usage of the bicycle-sharing system increase when there are 

more bicycle facilities (bicycle lanes, bicycle paths, etc.) nearby a BIXI station (in agreement 

with the findings of Buck and Buehler, 2012). While the length of minor roads in a 250 meter 

buffer of each station is associated with a positive impact on arrival and departure rates, the 
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length of major roads has a negative effect. The results indicate that BIXI usage is more likely to 

occur in densely populated neighborhoods. The impact of the number of BIXI stations and the 

BIXI capacity in a 250 meter buffer need to be examined as a combination. At first glance, it 

might seem unintuitive that the impact of capacity is negative on BIXI usage. However, the 

result recognizes that as the number of stations increases we simultaneously increase the 

capacity. Hence, the estimates obtained are the overall effect of adding stations as well as 

capacity. In fact, the capacity variable is almost 25 times smaller than the positive impact 

associated with the number of BIXI stations, highlighting that adding more stations with capacity 

of 10-15 (the typical size in Montreal) is likely to increase BIXI usage more than adding a few 

large stations. The result provides an indication that adding stations with very large capacity is 

not as productive for arrivals and departures as adding smaller stations.  

 

5.3.4. Land Use and Built Environment Variables 

It is expected that the arrival and departure rates decrease when a BIXI station is located farther 

from the CBD. This is supported by the negative coefficient of the distance-to-the-CBD variable. 

BIXI users often combine their trip mode with the metro more than other modes of transport 

(Bachand-Marleau et al., 2012); this is also recognized by the positive impact of the presence of 

metro stations near BIXI stations in the results (similar results can be seen in Nair et al., 2013). 

In general, the number of restaurants in the vicinity of a BIXI station increases the usage of that 

station (similar to the findings of Wang et al., 2012, Hampshire et al., 2013). While the presence 

of this type of business has a negative impact on the departure rate of a BIXI station in the AM 

period, it intuitively has a positive influence in both arrival and departure rates in the PM period, 

reinforcing the attraction of bicycle-sharing systems for restaurant customers. The number of all 

other commercial enterprises in the 250 meter buffer of each station during PM and evening time 

periods is associated with negative impact. The coefficient associated with the presence of a 

university campus on a BIXI station’s arrival rate has, interestingly, the opposite sign in the AM 

and PM periods. BIXI stations near universities are more likely to experience a higher volume of 

bicycles arriving in the AM than in the PM. While for the departure rates model, the negative 

coefficient for the AM period has the similar explanation, the university variable does not have a 

significant influence in PM period. This is plausible since students and teachers tend to have 

more flexible schedules and usually do not have a fixed time for the end of a work day. The 

effect of population and job density are incorporated in both models at the TAZ level. BIXI 

stations in TAZs with higher population density tend to have higher arrival and departure rates 

(see Rixey, 2013; Wang et al, 2012, similar results). The opposite sign of job density in the AM 

and PM in the arrival rate models highlights the likely use of bicycle-sharing systems for daily 

work commute trips. 

 

5.4. Model Validation 

The model estimation results for arrival and departure rates were validated using data from May 

2013 (one year after the data used to fit the model). The bicycle availability data was compiled 

from minute-by-minute readings from the BIXI system for all the stations in May 2013. The 

same data compilation process described in sample preparation for model estimation (see section 

3) was repeated to compute bicycle arrival and departure rates. The model developed in section 

5.3 was used to generate predictions of bicycle arrivals and departures, and the predictions were 

compared with the observed values in the validation dataset. Specifically, we calculated two 

error metrics to evaluate model prediction performance: a) Root Mean Square Error (RMSE) and 
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b) Mean Absolute Error (MAE). Furthermore, we computed the absolute error as a percentage of 

station capacity and examined the number of stations with less than 5% error, between 5 and 

10% error, between 10 and 15% error, between 15 and 20% error, between 20 and 25% error, 

greater than 25% error. These measures were computed for the entire sample as well as for 

specific time periods of the day. The validation exercise results are presented in Table 3. Overall, 

the predicted arrival and departure rates are reasonably close to the observed rates with absolute 

error of around 1.8 bicycles per hour. The results indicate that for about 90% of the records the 

error in prediction is within 20%. The fit for the arrival model is slightly better than the fit for the 

departure model. In terms of time of day, we can see that the performance of the model in the 

PM period is relatively inferior to the performance of the model for other time periods. However 

the results are satisfactory considering the larger rates of arrival and departure in the PM period. 

The validation highlight the predictive ability of the proposed framework to examine BIXI 

system bicycle flows (arrivals and departures). 

 

6. Policy Exercise 

 

To better illustrate the magnitude of effects of variables on the use of BIXI system we computed 

the elasticity effects for both arrival and departure models by computing the percentage change 

of arrival/departure rate due to changes to the exogenous variables.  

In this part, we focus on the following variables: 1) increasing the length of bicycle 

facilities by 10% in the 250 meter buffer; 2) increasing the number of stations in the buffer 

without increasing the capacity in the buffer, i.e., we reallocate capacity to add a new station; 3) 

increasing the station capacity by the average station size (19); and 4) increasing the number of 

restaurants by 50% of average number in the 250 meter buffer. The elasticity effects are 

computed as a percentage difference in arrivals and departures relative to the base case. The 

measures generated are presented in Table 4. 

The following observations can be made from the results presented. First, an increase in 

the bicycle infrastructure variables (length of bicycle facilities, stations and/or capacity) leads to 

an increase in usage of the bicycle-sharing system, as expected, since the presence of 

infrastructure plays a great role in cyclists’ decision to use such a system. These effects are 

marginally higher for departures than for arrivals. Second, and more strikingly, we see that 

increasing the number of stations without increasing capacity in the buffer has a greater impact 

than increasing capacity by as much as an average station. We believe that this result is quite 

useful for future BIXI system planning purposes and for other bicycle-sharing operators. The 

result clearly underscores the need to reallocate very large stations as smaller stations with lower 

capacity in multiple locations to increase BIXI system usage. Third, it is interesting to see that 

the bicycle infrastructure variables in the buffer have the most significant impact on arrival rates 

in the AM period and on departure rates in the Night period, while the effect of station capacity 

has a similar trend during the day for both arrivals and departures. Finally, we see that increasing 

the number of restaurants results in an increase of bicycle usage especially in the PM and 

Evening periods. This finding can be helpful when trying to understand the best areas to allocate 

new stations to ensure high usage. 

 

7. Conclusion 
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This study examined the factors influencing the usage flows of a bicycle-sharing system in 

Montreal, Canada. It contributes to the literature by capturing the effect of meteorological data, 

temporal characteristics, bicycle infrastructure, land use, and built environment attributes on 

bicycle arrival and departure flows at the station level, using data obtained from the BIXI 

system. The multilevel model estimation approach provides intuitive results for both arrival and 

departure rates. It is observed that people are more likely to use a bicycle-sharing system under 

good weather conditions. While during the weekends the bicycle usage reduces, Friday and 

Saturday nights are positively related to arrival and departure rates. The bicycle flows are 

expected to decrease when we go farther from CBD. The accessibility measures are plausibly 

correlated to bicycle usage for every station. Restaurants, other commercial enterprises, and 

universities in the vicinity of a station significantly influence the arrival and departure rates of 

the BIXI station. The BIXI system variables, number of stations and capacity, have an intricate 

relationship with arrivals and departures. Specifically, we observe that adding a BIXI station has 

a predominantly stronger impact on bicycle flows compared to increasing station capacity. 

Population density of a station’s TAZ positively affects the bicycle flows while the effect of the 

TAZ job density variable has an opposite sign in the AM and the PM. 

The model estimation results for arrival and departure rates were validated using the data 

from May 2013. Overall, the predicted arrival and departure rates are reasonably close to the 

observed rates with absolute error of around 1.8 bicycles per hour. Further, in almost 90% of the 

validation records, the error in prediction was less than 20% of the capacity of that station. 

Further, to examine the impact of exogenous variables on BIXI arrivals and departures, the 

impact of changes to exogenous variables is considered. The results provide interesting insights. 

The most prominent result from the exercise highlights the intricate relationship between the 

number of stations and bicycle capacity. The relationship suggests that adding additional stations 

(either by relocating existing capacity from large stations or adding new bicycle slots) is more 

beneficial in terms of arrival and departure flows compared to adding capacity to existing 

stations. The finding is very important for decision makers planning to install new BIXI stations 

in Montreal or for decision makers planning new bicycle sharing schemes in other cities. 

 

ACKNOWLEDGEMENTS 

The authors would like to acknowledge financial support from Natural Sciences and Engineering 

Research Council (NSERC) of Canada under the Discovery Grants program. The authors would 

also like to acknowledge the critical input of two anonymous reviewers and editors of the special 

issue.  

 

References 

 

Bachand-Marleau, J., Larsen, J., El-Geneidy, A., 2011. Much-Anticipated Marriage of Cycling 

and Transit How Will It Work? Transportation Research Record 2247, 109-117. 

Bachand-Marleau, J., Lee, B., El-Geneidy, A., 2012. Better Understanding of Factors 

Influencing Likelihood of Using Shared Bicycle Systems and Frequency of Use. Transportation 

Research Record 2314, 66-71. 

Borgnat, P., Abry, P., Flandrin, P., Robardet, C., Rouquier, J.B., Fleury, E., 2011. Shared 

Bicycles in a City: A Signal Processing and Data Analysis Perspective. Advances in Complex 

Systems 14, 415-438. 



13 

 

Buck, D., Buehler, R., 2012. Bike lanes and other determinants of capital bikeshare trips. Paper 

presented at the 91st Transportation Research Board Annual Meeting 2012, Washington, DC.  

Carr, L.J., Dunsiger, S.I., Marcus, B.H., 2011. Validation of walk score for estimating access to 

walkable amenities. British Journal of Sports Medicine 45 (14), 1144-1148. 

Daddio, D., 2012. Maximizing Bicycle Sharing: An Empirical Analysis of Capital Bikeshare 

Usage. University of North Carolina at Chapel Hill. 

DeMaio, P., 2009. Bike-sharing: history, impacts, models of provision, and future. Journal of 

Public Transportation 12, 41-56. 

Fishman, E., Washington, S., Haworth, N., 2013. Bike Share: A Synthesis of the Literature. 

Transport Review 33, 148-165. 

Froehlich, J., Neumann, J., Oliver, N., 2009. Sensing and Predicting the Pulse of the City 

through Shared Bicycling. 21st International Joint Conference on Artificial Intelligence (Ijcai-

09), Proceedings, 1420-1426. 

Fuller, D., Gauvin, L., Kestens, Y., Daniel, M., Fournier, M., Morency, P., Drouin, L., 2011. Use 

of a New Public Bicycle Share Program in Montreal, Canada. American Journal of Preventive 

Medicine 41, 80-83. 

Gregerson, J., Hepp-Buchanan, M., Rowe, D., Vander Sluis, J., Wygonik, E., Xenakis, M., 

McCormack, E., 2010. Seattle Bicycle Share Feasibility Study. Seattle: University of 

Washington. 

Hampshire, R., M. Lavanya and N. Eluru, 2013. "An Empirical Analysis of Bike Sharing Usage 

and Rebalancing: Explaining Trip Generation and Attraction from Revealed Preference Data" 

Technical Paper, Heinz College, Carnegie Mellon University. 

Harville, D.A., 1977. Maximum Likelihood Approaches to Variance Component Estimation and 

to Related Problems. Journal of the American Statistical Association 72, 320-338. 

Jensen, P., Rouquier, J.B., Ovtracht, N., Robardet, C., 2010. Characterizing the speed and paths 

of shared bicycle use in Lyon. Transportation Research Part D: Transport and Environment 15, 

522-524. 

Kaltenbrunner, A., Meza, R., Grivolla, J., Codina, J., Banchs, R., 2010. Urban cycles and 

mobility patterns: Exploring and predicting trends in a bicycle-based public transport system. 

Pervasive and Mobile Computing 6, 455-466. 

Krykewycz, G., Puchalsky, C., Rocks, J., Bonnette, B., Jaskiewicz, F., 2010. Defining a Primary 

Market and Estimating Demand for Major Bicycle-Sharing Program in Philadelphia, 

Pennsylvania. Transportation Research Record, 117-124. 

Nair, R., Miller-Hooks, E., Hampshire, R., Busic, A., 2013. Large-Scale Vehicle Sharing 

Systems: Analysis of Velib. International Journal of Sustainable Transportation 7, 85-106. 

PBSC 2013, PBSC Urban Solutions. http://www.publicbikesystem.com/what-we-achived/case-

studies-info/?id=1. 

Rietveld, P., Daniel, V., 2004. Determinants of bicycle use: do municipal policies matter? 

Transportation Research Part A: Policy and Practice 38, 531-550. 



14 

 

Rixey, R., 2013. Station-Level Forecasting of Bike Sharing Ridership: Station Network Effects 

in Three U.S. Systems. Paper presented at the 92nd Transportation Research Board Annual 

Meeting 2013, Washington, DC.  

Shaheen, S., Guzman, S., Zhang, H., 2010. Bikesharing in Europe, the Americas, and Asia Past, 

Present, and Future. Transportation Research Record 2143, 159-167. 

van Lierop, D., Grimsrud, M., and El-Geneidy, A., 2013. Breaking into bicycle theft: Insights 

from Montreal, Canada. Forthcoming International Journal of Sustainable Transportation.  

Vogel, P., Mattfeld, D., 2011. Strategic and Operational Planning of Bike-Sharing Systems by 

Data Mining - A Case Study. Lecture Notes in Computer Science 6971, 127-141.  

Wang, X., Lindsey, G., Schoner, J., Harrison, A., 2012. Modeling bike share station activity: the 

effects of nearby businesses and jobs on trips to and from stations. Paper presented at the 92nd 

Transportation Research Board Annual Meeting 2012, Washington, DC.  

  



15 

 

 

 
Figure 1 BIXI stations in Montreal Island 
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Figure 2 Spatial Distribution of Average Arrival and Departure Rates in Peak hours 
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Table 1 Descriptive Summary of sample characteristics 

Continuous Variables Min Max Mean 
Std. 

Deviation 

Temperature (°C) 5.9 33 20.90 5.19 

Relative Humidity (%) 24 99 61.40 16.70 

Elevation (m) 14.3 154.8 49.22 24.33 

Station Distance to CBD (km) 0.11 9.26 3.45 1.91 

Length of Bicycle Facility in 250m Buffer (km) 0 2.49 0.70 0.51 

Length of Minor Roads in 250m Buffer  (km) 1.14 6.48 3.56 0.83 

Length of Major Roads in 250m Buffer (km) 0 5.73 1.14 1.02 

Length of Bus Lines in 250m Buffer (km) 0 12.33 2.81 1.94 

Area of Parks in 250m Buffer (m
2
) 0 194907 14551 26962 

Number of Restaurants in 250m Buffer 0 194 24.00 35.31 

Number of other Commercial Enterprises in 

250m Buffer 
0 1989 121.59 206.85 

Walkscore 14 97 62.3 15.7 

Number of BIXI stations in 250m Buffer 1 8 2.23 1.46 

Capacity of BIXI stations in 250m Buffer 7 223 46.89 40.49 

Station Capacity 7 65 19.53 7.95 

TAZ Pop Density (people per m
2 
×1000)  1.01 187.79 59.38 31.62 

TAZ Job Density (jobs per m
2 
×1000) 0.07 4078.13 141.19 528.96 

Categorical Variables Percentage 

Rainy Weather 9.7 

Weekends 26.5 

Friday & Saturday Nights 8.0 

Metro Station in 250m Buffer 21.7 

Station in Downtown area 17.1 

Station in Oldport area 4.9 

University in 250m buffer  17.1 

School in 250m buffer 40.7 
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Table 2 Model Estimation Results 

Parameter  

Arrival Rate Departure Rate 

Coefficient 
t-

statistic 
Coefficient 

t-

statistic 

Intercept 0.0784 3.066 0.0584 2.271 

 

Weather Variables 
    

Temperature 0.0048 8.829 0.0047 8.576 

Relative Humidity -0.0013 -8.556 -0.0012 -7.765 

Rainy Weather -0.0035 -0.697 -0.0124 -2.457 

 

Time Variables 
    

Weekend -0.0451 -7.031 -0.0506 -7.838 

AM -0.0259 -5.982 0.0548 11.768 

Midday -0.0186 -4.078 0.0065 1.418 

PM 0.0734 15.042 0.0526 10.824 

Friday & Saturday Nights 0.0608 10.218 0.0735 12.215 

 

Bicycle Infrastructure Variables 
    

Length of Bicycle Facility in 250m Buffer 0.0342 5.911 0.0361 6.200 

Length of Minor Roads in 250m Buffer 0.0110 2.645 0.0112 2.668 

Length of Major Roads in 250m Buffer -0.0173 -5.224 -0.0189 -5.659 

Number of BIXI stations in 250m Buffer 0.0254 4.923 0.0241 4.662 

Capacity of BIXI stations in 250m Buffer -0.0011 -5.581 -0.0010 -5.206 

 

Land use and Built Environment Variables 
    

Station Distance to CBD -0.0101 -4.974 -0.0110 -5.408 

Metro Station in 250m Buffer 0.0202 2.762 0.0181 2.465 

Number of Restaurants in 250m Buffer*PM 0.0005 3.459 0.0006 5.844 

Number of Restaurants in 250m Buffer 0.0004 3.691 0.0005 4.276 

Number of Restaurants in 250m Buffer*AM -- -- -0.0007 -6.504 

Number of other Commercial Enterprises in 

250m Buffer*PM 
-0.0001 -4.343 -- -- 

Number of other Commercial Enterprises in 

250m Buffer*Evening 
-0.0001 -5.246 -0.0001 -3.201 

University in 250m buffer * AM 0.0228 2.780 -0.0352 -4.052 

University in 250m buffer * PM -0.0367 -4.253 - - 

TAZ Pop Density 0.1603 1.804 0.1613 1.805 

TAZ Job Density * AM 0.0607 10.354 0.0142 2.036 

TAZ Job Density * PM -0.0230 -3.338 0.0197 2.875 

 

ARMA Correlation Parameters 
    

σ 0.0256 66.613 0.0262 67.282 

ρ 0.8928 114.741 0.8942 105.994 

φ 0.3546 35.216 0.3459 33.982 
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Table 3 Validation Results 

  Overall Night AM Midday PM Evening 

A
rr

iv
a
l 

Mean Absolute Error 1.840 1.649 1.971 1.828 2.426 1.696 

Root Mean Square Error 2.843 2.441 3.554 2.664 3.321 2.359 

Percentage of results with 

Absolute Error less than 

      

5% Station Capacity 37.6 39.6 48.9 37.1 25.3 39.0 

10% Station Capacity 65.2 71.9 75.2 65.8 49.1 67.5 

15% Station Capacity 82.0 88.4 86.5 83.9 68.8 85.2 

20% Station Capacity 90.4 94.3 91.0 92.1 82.2 93.6 

25% Station Capacity 94.1 96.1 93.4 95.0 90 96.5 

D
ep

a
rt

u
re

 

Mean Absolute Error 1.888 1.631 1.937 1.873 2.555 1.720 

Root Mean Square Error 2.884 2.529 2.981 2.680 3.782 2.452 

Percentage of results with 

Absolute Error less than 

      

5% Station Capacity 36.4 45.4 38.2 35.6 27.3 41.0 

10% Station Capacity 64.0 75.6 66.6 63.8 51.2 69.2 

15% Station Capacity 81.2 89.1 82.9 82.3 69.7 85.7 

20% Station Capacity 89.8 93.8 89.7 91.5 82.1 93.4 

25% Station Capacity 93.6 95.7 92.7 95.1 88.8 96.3 
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Table 4 Elasticity Effects for Arrival and Departure Rates* 

 Variable change considered Overall Night AM Midday PM Evening 

A
rr

iv
a
l 

Bicycle facility length in 250m buffer increased by 10% 1.78 0.67 3.01 2.06 1.19 1.27 

Number of BIXI stations in 250m buffer increased by 1(Neighbouring capacity 

remains same)  
19.51 -6.76 26.46 25.08 13.43 23.43 

Station capacity increased by 4  14.17 19.55 9.22 12.90 17.09 15.40 

Number of restaurants increased by 50%  4.68 -1.39 5.42 5.14 6.18 4.80 

D
ep

a
rt

u
re

 

Bicycle facility length in 250m buffer increased by 10% 2.09 3.94 2.61 1.83 1.41 1.73 

Number of BIXI stations in 250m buffer increased by 1(Neighbouring capacity 

remains same)  
26.83 46.74 28.65 22.50 16.06 32.34 

Station capacity increased by 4  13.34 8.11 12.04 14.70 17.20 11.34 

Number of restaurants increased by 50% 5.77 11.87 -3.03 5.72 9.17 8.22 

* The percentage change of arrival/departure rate due to changes to the exogenous variables 

 


