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Abstract: This paper presents geometrical algorithms for the detextion of various
workspaces of planar parallel manipulators. Workspaceslafined as regions which can be
reached by a reference poifitlocated on the mobile platform. First, thaaximal workspace
is determined as the region which can be reached by gointith at least one orientation.
From the above regions, tineclusive workspace, i.e., the region which can be attained by point
C with at least one orientation in a given range, can be obdaiiféen, thetotal orientation
workspace, i.e., the region which can be reached by gowith every orientation of the plat-
form in a given range, is determined. Three types of planalighmanipulators are described
and one of them is used to illustrate the algorithms.

1 Introduction

Parallel manipulators have been proposed as mechanitatiestares which can overcome the
limitations of serial robots [5]. Parallel manipulatoradeto complex kinematic equations and
the determination of their workspace is a challenging mobl Some researchers have ad-
dressed the problem of the determination of the workspageuallel manipulators ([2]; [8];
[11]; [12]), especially for computing the workspace of théot when its orientation is fixed.

In this paper, the problem of the determination of the woakgs of planar 3 d.o.f paral-
lel manipulators is addressed. Algorithms are proposeth®idetermination of the maximal
workspace, a problem which has been elusive to previougsesl

Planar 3 d.o.f. parallel manipulators are composed of thireematic chains connecting a
mobile platform to a fixed base. The manipulator of particuigerest in this study is referred
to as the3 — RPR manipulator. In this manipulator, the mobile platform isynected to the
base via three identical chains consisting of a revolutet jaitached to the ground followed
by an actuated prismatic joint which is connected to thefguiat by a revolute joint (figure 1).
Henceforth, the center of the joint connecting ikte chain to the ground will be denoteti
and the center of the joint connecting tie chain to the platform will be referred to &3.
Others types of planar parallel manipulators are:3the RR R robot ([1];[9];[5]) in which the
joints attached to the ground are the only actuated joirdstla®3 — PR R robot in which the
prismatic joints are actuated.

A fixed reference frame is defined on the base and a movingereferframe is attached
to the platform with its origin at a reference poifit The position of the moving platform is
defined by the coordinates of poi@tin the fixed reference frame and its orientation is given
by the angle) between one axis of the fixed reference frame and the comdsgppaxis of the
moving frame.

For the3 — RP R manipulator, the workspace limitations are due to the atrons of the
prismatic actuators. The maximum and minimum lengths ofpiti@matic actuator of thgth


https://core.ac.uk/display/357525207?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A3(c3,d3)

Ny

I3
Y B
/ 12
Al (0, 0 ¢

Figure 1: The3 — RPR parallel manipulator.

chain are denoteg ., o’ . . These values will be referred to egtreme values of the joint
coordinates.

Furthermore, aannular region £ is defined as the region which lies between two concentric
circles with different radii. The circl€® with the largest radius will be referred to as the
external circleand the smaller circlé’ (if it exists) will be referred to as thieternal circle. The
dimensions of the manipulators which are used in the exargke given in the appendix. In

what follows, the presentation of the various workspacdi$edus on the3— R P R manipulator.

2 Maximal workspace

The maximal workspace is defined as the region which the reference poiman reach with at
least one orientation. It shall be noted that the maximakgace will depend upon the choice
of the reference point. One of the objectives of the presemk s to determine geometrically
the boundary of the maximal workspace.

The determination of the maximal workspace has been addidsg Kassner [7] who
pointed out that the boundary of this workspace is compos$etr@ular arcs and of portions
of sextic curves, but was only able to compute them with ardiszation method. The same
observation was made by Kumar [8] but his method, based @wsanalysis, cannot be used
for a manipulator with prismatic actuators.

2.1 Determiningif a point isin the maximal workspace

First, a simple algorithm is derived to determine if a looatf the reference pointis in the max-
imal workspace, this being equivalent to determining iféhis at least one possible orientation
of the platform for this location.

For a given position of”, point B; can move on a circl&€'}; with centerC' and radius
||CB1||. We first verify if C'} is completely inside or outside the annular regioncorrespond-
ing to the constraint for leg 1, by checking the distance betthe centers @f}, and&; with
respect to their radii. 1€} is inside&;, then any orientation is allowed for the platform, with
respect to the constraints on leg 1.4} is outside&; then no orientation is allowed for the
platform andC' is outside the maximal workspace.



If the preceding test fails it may be assumed that there @eesection points betweefi}
and&g, £i. For each of these intersection points there is a uniquetatien angle possible
for the platform. These angles are ordered in the inte¥al7] in order to obtain a set of
consecutive intervals. Then, in order to determine whicérirals define valid orientations for
the platform, the middle value of each interval is used asotientation of the platform and
the constraints on leg 1 are tested for the correspondinfigtwation. A similar procedure is
performed for the legs 2 and 3. For légn various intervals are obtained and the gebf
possible orientations of the platform with respect to thest@int on the leg can be determined.

The intersectior, of these lists is then determined as the intersection ofialsets of three
intervals{l, € I, I, € I?,, Is € I3 }. If I, is not empty therC' belongs to the maximal
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workspace and, defines the possible orientation for the moving platformhat point.

2.2 Determination of the boundary of the maximal workspace

For purposes of simplification, it is first assumed that tHeremce point on the platform is
chosen as one of the;’s, for example poin3;. The general case will be presented later on as
a generalization. If a location dB; belongs to the boundary of the maximal workspace then
at least one of the legs is at an extreme value (otherwiseill be capable of moving in any
direction which is in contradiction wittB; being on the boundary of the workspace). Note
that the configuration with three legs in an extreme extengedines only isolated points of the
boundary since they are solutions of the direct kinematitseomanipulator, a problem which
admits at most 6 different solutions [3].

2.2.1 Boundary pointswith one extreme leg length

In order to geometrically determine the points of the boupndiar which one leg length of the
manipulator is at an extreme value, the kinematic chiiB; B; is considered as a planar serial
2 d.o.f. manipulator whose joint &; is fixed to the ground. It is well known that the positions
of B; belonging to the boundary of the workspace are suchAhaB;, B; lie on the same line.
For instance, consider leg 1: two types of alignment areiplessEither A, B; Bs or A; B3 B,
(or B3 A, By) are aligned in this order. Consequently, paiitlies on a circleC's, centered at
A;. As B3 moves onC',, pointsB;, B, will move on circles denoted’s, , Cz,. Valid positions
of B3 on its circle are such that the corresponding position80fB;, B3 respectively belong
to the annular region§,, &, &s.

Let o denote the rotation angle of leg 1 arouad The intersection points of circlép, with
the annular regio@; are then computed. All the intersection points define speeé#iues for
the anglex and the orientation of the platform. These values are oddera list leading to a set
of intervalsI®. It is then possible to determine which intervals are congmtsmof the boundary
of the workspace by taking the middle point of the arc andfyig if the corresponding pose
of the platform belongs to the workspace.

As mentioned previously various types of alignment withovas extreme values of the leg
length are possible and some of them will lead to a comporfehedoundary. The arcs which
are obtained after studying these different cases are@lacn appropriate structure and will
be denotegbhase 1 arcs.



2.2.2 Boundary pointswith two extreme leg lengths

The case for which the reference point lies on the boundathefvorkspace while two leg
lengths of the manipulator are in an extreme extension isine@stigated. Since the reference
point is pointBs, only the cases where the legs with extreme lengths are lagd 2 need to be
considered.

When legs 1 and 2 have a fixed length, the trajectory of pBinis the coupler curve of a
four-bar mechanism. This mechanism has been well studieahid it is well known that the
coupler curve is a sextic. Consequently it can be deducadhibadoundary of the maximal
workspace will be constituted of circular arcs and of porsiof sextics.

Four sextics will play an important role in this study. Theg #he coupler curves of the
four-bar mechanisms with leg lengths corresponding to #réous combinations of extreme
lengths of legs 1 and 2, i.e ..+ Pinaw)s Pimass Pinin)s Conin: Psin)s Prins Pias)-

Some particular points, referred to as tngical points will determine the circular arcs and
the portions of sextic which define the boundary of the makwmaikspace. The critical points
can be of five different types, thereby defining five sets ohqumnts.

The first set consists of the intersection points of the sexnd the annular regidf: in
this case the three leg lengths are at an extreme value. foheeréhese points are solutions of
thedirect kinematics and can be found numerically. The second set of criticaltsaansists of
the intersection points of the sextics with the phase 1 &nahis case the length of legs 1 and 2
are defined by the sextics and the length of leg 3 is the raditrearc. These points will also
be critical points for the arcs. A third set of critical pa@rare the multiple points of the sextics.
Indeed we may have only one critical point on a circuit on tletis: therefore introducing
the multiple points as critical points enables to define twas af sextic on the circuit, one
of them being a member of the boundary of the workspace. Rinttiese multiple points is
a well known problem [4]. The fourth set of critical points fthe sextics will be the limit
points of the coupler curve. Indeed, for some value of thddagths the four-bar mechanism
may not be a crank, i.e., the anglas restricted to belong to some intervals. Consequently
the sextic is not continuous and each positiomBgfcorresponding to one of the bounds of the
intervals is a critical point. The last set of critical parfor the sextics consists of the set of
intersection points between the sextics. Recently Innbbeas proposed an algorithm to solve
this problem [6].

2.2.3 Determination of the portions of sextic belonging to the boundary

Any portion of sextic belonging to the boundary must lie betw two critical points. For each
critical point7; the unique pair of anglesg;, v; corresponding td; is determined (note that
for the critical points which are multiple points of the céepcurve although the coupler point
is identical, the angles;, v; are different). For a given value @f, there are in general two
possible solutions for) which are obtained by solving a second order equation inahgent

of the half-angle of). Consequently) is determined using one of the two expressions of the
tangent of the half-angle.

First, theT;'s are sorted according to the expression which is used fteraéning the
corresponding angle;, thereby giving rise to two sets @f’s. Each of these sets is then sorted
according to an increasing value of the angleConsequently, the sextics are split iai@s of
sextics, some of which are components of the boundary of geémal workspace.



A component of the boundary will be such that for any pointlemdrc a motion along one
of the normals to the sextic will lead to a violation of the straints while a motion along the
other normal will lead to feasible values for the link lergittAny other combination implies
that the arc is not a component of the boundary of the maxirgtspace. In order to perform
this test, the inverse jacobian matrix for a point on the mcgxample the middle pointi.e. the
coupler point obtained far as the middle value between the anglesf the extreme points of
the arc) is computed as well as the unit normal vectgrs, of the sextic at this point. Then
the joint velocities are calculated for a cartesian veloditected alongn;, n,. The sign of
the joint velocities obtained indicates whether or not tleeia component of the boundary. A
similar procedure is used to identify the circular arcs Wwtdce components of the boundary. To
this end, the phase 1 arcs, for which the critical points —thersection points with the sextics
and the extreme points of the arcs — have been determinedpasedered. Each of the arcs
between two critical points is examined to determine if treeiga component of the boundary
by using the same test as for the arcs of sextic. The boundaheanaximal workspace is
finally obtained as a list of circular arcs and portions oftesx The maximal workspace of the
manipulators described in the appendix are shown in figure 2.

The computation time of the boundary of the maximal workspgadeavily dependent on
the result. On a SUN 4-60 workstation this time may vary frds0@ to 15000 ms. The most
expensive part of the procedure is the calculation of therseiction of the sextics.
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Figure 2: Left: the maximal workspace for manipulator 3 with € [8,12], p» € [5,15],

ps € [10,17]. Middle: the maximal workspace for manipulator#, € [8,12], p» € [5,15],

p3 € [10,17]. Right: the area within the thick lines is the maximal worksg of manipulator

3 with p; € [5,20], po € [5,20], p3 € [5,20]. The dashed and thin lines represent the constant
orientation workspace for various orientations of thefplan.

2.2.4 Maximal workspace for any reference point

To compute the maximal workspace for a reference pointreiffiefrom B;, a similar algorithm
can be used. Basically, only the complexity of the algorithithbe increased. Indeed, not only
the eight circles of typ€’,, C; have to be considered but also the four circles centered at
which correspond to the case where the length of link 3 has<iaree value. Similarly, the
twelve sextics which can be obtained from all the possiblaesafor the extreme lengths of
links 1, 2, 3 must now be considered.



3 Inclusive maximal workspace

Theinclusive maximal workspace (denoted MW is defined as the set of all the positions which
can be reached by the reference point with at least one atientof the platform in a given
interval referred to as therientation interval. Hence, the maximal workspace is simply a
particular case of MW for which the prescribed orientation intervalis 27]. In what follows,

it is assumed that the orientation of the moving platformaéreed by the angle between the
x axis and the lineB; B;. Moreover, it is also assumed that the reference point ofrtbeing
platform is Bs.

The computation of the boundary of th&W is similar to the computation of the boundary
of the maximal workspace. First, it is recalled that it is gieto determine if a point belongs to
thel MW since one can compute the possible orientations of the rgglatform at this point.

It is also clear that a point lies on the boundary if and onigtifeast one of the link lengths is
at an extreme value.

Consider first the circles described By when pointsA;, B;, B; lie on the same line. For
each position o33 on the circles, the orientation of the moving platform isquely defined.
The valid circular arcs must satisfy the following congttai the point$3;, B;, Bs lie inside the
annular regiong’, &, £ and the orientation of the moving platform belongs to themation
interval.

The determination of these arcs is thus similar to obtaitivegarcs when computing the
maximal workspace boundary. The main difference is thdtlmg the® intervals involves the
consideration of the rotation angiesuch that the orientation of the moving platform corre-
sponds to one of the limits of the orientation interval.

Similarly, when the sextics are considered, the positidn8sofor which the orientation of
the moving platform is at one of the limits of the orientatioterval will be added in the set of
critical points.

To verify if a particular arc is a component of the bounddmg, dérientation for a point taken
at random on the arc is examined to determine if it belongféootientation interval. Then
the test using the inverse jacobian matrix allows to deteentfithe arc is a component of the
boundary.

Typically the computation time for ahMW is about 1000 to 20000 ms on a SUN 4-60
workstation. Figure 3 presents somgV for various orientation intervals.
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Figure 3:1 MW of manipulator 1 for various orientation intervals (theemriation intervals al-
ways begin at 0). The limits arg < [2, 8], p» € [5,25], ps € [10, 25].



4 Total orientation workspace

This section addresses the problem of determining the megiachable by the reference point
with all the orientations in a given sgt, 6;] which will be referred to as the orientation interval.
This workspace will be denoted a&OW

It is relatively easy to determine if a point belongs to thisrkepace since it is possible to
compute the possible orientations for any position of tiieremce point. For a point belonging
to the boundary of th& OW one leg will be at an extreme value. Indeed, two legs caneot b
at an extreme value since in this case the orientation of tbeing platform is unique and
consequently the point cannot belong to Ti@W

Assume that for a point on the boundary the orientation ofntle®ing platform is one of
the bounds of the interval, i.&; or §; while the length of leg is at an extreme value. AB,
moves on the circle of the annular regiéncorresponding to the value of the leg length, point
B3 moves on a circl€ with the same radius whose center is obtained by translétiangenter
of & by the vectoBB;B3, which is fixed since the orientation of the moving platfosiknown.
Any point in theTOW must lie within the circle”?,. Therefore if the boundg;, 6, and all the
possibleB;’s are considered, any point of tiF€@OW must be inside the 12 circles with center
and radii (A3,05,,,):(As; P,i), (A1 + B1Bs, py,0.).(A1 + BiBs, p,,,.), (A2 + B2Bs, 07,,.),

(AQ + B2B3, p?nzn)

Assume now that a point on the boundary is reached with antatien different fron;, 6,
and that the length of link 1 has an extreme value,gay. When the orientation of the moving
platform lies in the orientation intervak; belongs to a circular arc defined by its ceniir its
radius||B3B; || and the angleg;, §;. As the point belongs to tHEOW the arc must lie inside the
annular regior€;. Furthermore this arc is tangent at some point to the extemée of £; since
B3 lies on the boundary of thEOW This tangency implies that poift; lies on a circle of center
A; and radiug}, . — ||B1Bs3||. Any point within theTOW must be inside this circle. Four such
circles may exist, whose center and radii afg,(},,, — ||B1Bs||), (41, 0., — ||B1Bs]|),
(A2,P%Laz — [|B2Bsl|), (A2, piin — [ B2Bsl|).

If a point B3 belongs to th& OW it is necessary that the point is included in the 16 circles
which have been determined. Consequently the boundaryedof @V is the intersection of
these sixteen circles. Note that a particular casE@Mis thedextrous workspace, which is the
region which can be reached by the reference point with aieptation [8],[12],[11].

5 Conclusion

Geometrical algorithms for the determination of the boumad various workspaces for pla-
nar parallel manipulators have been described. Basidad#lyptesented algorithms can be ex-
tended without any difficulties to other types of planar pataobots [10]. The authors want
to acknowledge that this work has been supported in part éythnce-Canada collaboration
contractn® 070191.

Appendix

The dimensions of the manipulators used in the examples©p#per are defined in figure 1
and their numerical values are presented in the followibteta



| Manipulator| Type | It | b | Iz | e |e| ds | p |

1 RPR| 25 25 25 | 20 | 0| 10 | 60
2 RPR | 20.839| 17.045| 16.54| 1591| O 10 52.74
3 RPR 25 25 25 20 10| 17.32] 60
4 RPR 2 2 2 10 5| 8.66 60
References

[1] Gosselin C.Kinematic analysis optimization and programming of parallel robotic manip-
ulators. Ph.D. Thesis, McGill University, Montréal, June, 15, 898

[2] Gosselin C. and Angeles J. The optimum kinematic desigm glanar three-degree-of-
freedom parallel manipulatal. of Mechanisms, Transmissionsand Automationin Design,
110(1):35-41, March 1988.

[3] Gosselin C., Sefrioui J., and Richard M.J. Solution palgniale au probleme de la
cinématique directe des manipulateurs paralleles @ahslegrés de libertéViechanism
and Machine Theory, 27(2):107-119, March 1992.

[4] Hunt K.H. Kinematic geometry of mechanisms. Clarendon Press, Oxford, 1978.

[5] Hunt K.H. Structural kinematics of in parallel actuatezbot arms. J. of Mechanisms,
Transmissions and Automation in Design, 105:705—-712, March 1983.

[6] Innocenti C. Analytical determination of the intersect of two coupler-point curves
generated by two four-bar linkages. In J. Angeles P. Kovacgjommel, editorCompu-
tational Kinematics, pages 251-262. Kluwer, 1993.

[7] Kassner D.J. Kinematics analysis of a planar three-@egf-freedom platform-type robot
manipulator. Master’s thesis, Purdue University, PurdDecember 1990.

[8] Kumar V. Characterization of workspaces of parallel ipafators. ASME J. of Mechani-
cal Design, 114:368-375, September 1992.

[9] Ma O. and Angeles J. Direct kinematics and dynamics ofanat three-dof parallel
manipulator. IPASME Design and Automation Conf., volume 3, pages 313—-320, Montréal,
September, 17-20, 1989.

[10] Merlet J-P. and Mouly N. Espaces de travail et planifarade trajectoire des robots
paralleles plans. Research Report 2291, INRIA, FevripteSeber 1994.

[11] Pennock G.R. and Kassner D.J. The workspace of a geyeoatetry planar three degree
of freedom platform manipulatorASME J. of Mechanical Design, 115:269-276, June
1993.

[12] Williams Il R.L. and Reinholtz C.F. Closed-form workage determination and optimiza-
tion for parallel robot mechanisms. ASBME Proc. of the the 20th Biennial Mechanisms
Conf., pages 341-351, Kissimmee, Orlando, September, 25-278.198



