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Abstract: This paper presents geometrical algorithms for the determination of various
workspaces of planar parallel manipulators. Workspaces are defined as regions which can be
reached by a reference pointC located on the mobile platform. First, themaximal workspace
is determined as the region which can be reached by pointC with at least one orientation.
From the above regions, theinclusive workspace, i.e., the region which can be attained by point
C with at least one orientation in a given range, can be obtained. Then, thetotal orientation
workspace, i.e., the region which can be reached by pointC with every orientation of the plat-
form in a given range, is determined. Three types of planar parallel manipulators are described
and one of them is used to illustrate the algorithms.

1 Introduction

Parallel manipulators have been proposed as mechanical architectures which can overcome the
limitations of serial robots [5]. Parallel manipulators lead to complex kinematic equations and
the determination of their workspace is a challenging problem. Some researchers have ad-
dressed the problem of the determination of the workspace ofparallel manipulators ([2]; [8];
[11]; [12]), especially for computing the workspace of the robot when its orientation is fixed.

In this paper, the problem of the determination of the workspaces of planar 3 d.o.f paral-
lel manipulators is addressed. Algorithms are proposed forthe determination of the maximal
workspace, a problem which has been elusive to previous analyses.

Planar 3 d.o.f. parallel manipulators are composed of threekinematic chains connecting a
mobile platform to a fixed base. The manipulator of particular interest in this study is referred
to as the3 − RPR manipulator. In this manipulator, the mobile platform is connected to the
base via three identical chains consisting of a revolute joint attached to the ground followed
by an actuated prismatic joint which is connected to the platform by a revolute joint (figure 1).
Henceforth, the center of the joint connecting theith chain to the ground will be denotedAi
and the center of the joint connecting theith chain to the platform will be referred to asBi.
Others types of planar parallel manipulators are: the3 − RRR robot ([1];[9];[5]) in which the
joints attached to the ground are the only actuated joints and the3 − PRR robot in which the
prismatic joints are actuated.

A fixed reference frame is defined on the base and a moving reference frame is attached
to the platform with its origin at a reference pointC. The position of the moving platform is
defined by the coordinates of pointC in the fixed reference frame and its orientation is given
by the angleθ between one axis of the fixed reference frame and the corresponding axis of the
moving frame.

For the3 − RPR manipulator, the workspace limitations are due to the limitations of the
prismatic actuators. The maximum and minimum lengths of theprismatic actuator of thejth
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Figure 1: The3 −RPR parallel manipulator.

chain are denotedρjmax, ρ
j
min. These values will be referred to asextreme values of the joint

coordinates.
Furthermore, anannular region E is defined as the region which lies between two concentric

circles with different radii. The circleEe with the largest radius will be referred to as the
external circle and the smaller circleE i (if it exists) will be referred to as theinternal circle. The
dimensions of the manipulators which are used in the examples are given in the appendix. In
what follows, the presentation of the various workspaces will focus on the3−RPRmanipulator.

2 Maximal workspace

Themaximal workspace is defined as the region which the reference pointC can reach with at
least one orientation. It shall be noted that the maximal workspace will depend upon the choice
of the reference point. One of the objectives of the present work is to determine geometrically
the boundary of the maximal workspace.

The determination of the maximal workspace has been addressed by Kassner [7] who
pointed out that the boundary of this workspace is composed of circular arcs and of portions
of sextic curves, but was only able to compute them with a discretization method. The same
observation was made by Kumar [8] but his method, based on screw analysis, cannot be used
for a manipulator with prismatic actuators.

2.1 Determining if a point is in the maximal workspace

First, a simple algorithm is derived to determine if a location of the reference point is in the max-
imal workspace, this being equivalent to determining if there is at least one possible orientation
of the platform for this location.

For a given position ofC, point B1 can move on a circleC1
B with centerC and radius

||CB1||. We first verify ifC1
B is completely inside or outside the annular regionE1, correspond-

ing to the constraint for leg 1, by checking the distance between the centers ofC1
B andE1 with

respect to their radii. IfC1
B is insideE1, then any orientation is allowed for the platform, with

respect to the constraints on leg 1. IfC1
B is outsideE1 then no orientation is allowed for the

platform andC is outside the maximal workspace.



If the preceding test fails it may be assumed that there are intersection points betweenC1
B

andEe1 , E i1. For each of these intersection points there is a unique orientation angle possible
for the platform. These angles are ordered in the interval [0, 2π] in order to obtain a set of
consecutive intervals. Then, in order to determine which intervals define valid orientations for
the platform, the middle value of each interval is used as theorientation of the platform and
the constraints on leg 1 are tested for the corresponding configuration. A similar procedure is
performed for the legs 2 and 3. For legi, n various intervals are obtained and the setI in of
possible orientations of the platform with respect to the constraint on the leg can be determined.

The intersectionI∩ of these lists is then determined as the intersection of all the sets of three
intervals{I1 ∈ I1

n1
, I2 ∈ I2

n2
, I3 ∈ I3

n3
}. If I∩ is not empty thenC belongs to the maximal

workspace andI∩ defines the possible orientation for the moving platform at this point.

2.2 Determination of the boundary of the maximal workspace

For purposes of simplification, it is first assumed that the reference point on the platform is
chosen as one of theBi’s, for example pointB3. The general case will be presented later on as
a generalization. If a location ofB3 belongs to the boundary of the maximal workspace then
at least one of the legs is at an extreme value (otherwiseB3 will be capable of moving in any
direction which is in contradiction withB3 being on the boundary of the workspace). Note
that the configuration with three legs in an extreme extension defines only isolated points of the
boundary since they are solutions of the direct kinematics of the manipulator, a problem which
admits at most 6 different solutions [3].

2.2.1 Boundary points with one extreme leg length

In order to geometrically determine the points of the boundary for which one leg length of the
manipulator is at an extreme value, the kinematic chainAiBiB3 is considered as a planar serial
2 d.o.f. manipulator whose joint atAi is fixed to the ground. It is well known that the positions
of B3 belonging to the boundary of the workspace are such thatAi, Bi, B3 lie on the same line.
For instance, consider leg 1: two types of alignment are possible. EitherA1B1B3 or A1B3B1

(orB3A1B1) are aligned in this order. Consequently, pointB3 lies on a circleCB3
centered at

Ai. AsB3 moves onCB3
, pointsB1, B2 will move on circles denotedCB1

, CB2
. Valid positions

of B3 on its circle are such that the corresponding positions ofB1, B2, B3 respectively belong
to the annular regionsE1, E2, E3.

Letα denote the rotation angle of leg 1 aroundA1. The intersection points of circleCBi
with

the annular regionEi are then computed. All the intersection points define specific values for
the angleα and the orientation of the platform. These values are ordered in a list leading to a set
of intervalsI i. It is then possible to determine which intervals are components of the boundary
of the workspace by taking the middle point of the arc and verifying if the corresponding pose
of the platform belongs to the workspace.

As mentioned previously various types of alignment with various extreme values of the leg
length are possible and some of them will lead to a component of the boundary. The arcs which
are obtained after studying these different cases are placed in an appropriate structure and will
be denotedphase 1 arcs.



2.2.2 Boundary points with two extreme leg lengths

The case for which the reference point lies on the boundary ofthe workspace while two leg
lengths of the manipulator are in an extreme extension is nowinvestigated. Since the reference
point is pointB3, only the cases where the legs with extreme lengths are legs 1and 2 need to be
considered.

When legs 1 and 2 have a fixed length, the trajectory of pointB3 is the coupler curve of a
four-bar mechanism. This mechanism has been well studied [4] and it is well known that the
coupler curve is a sextic. Consequently it can be deduced that the boundary of the maximal
workspace will be constituted of circular arcs and of portions of sextics.

Four sextics will play an important role in this study. They are the coupler curves of the
four-bar mechanisms with leg lengths corresponding to the various combinations of extreme
lengths of legs 1 and 2, i.e., (ρ1

max, ρ
2
max), (ρ1

max, ρ
2
min), (ρ1

min, ρ
2
min), (ρ1

min, ρ
2
max).

Some particular points, referred to as thecritical points will determine the circular arcs and
the portions of sextic which define the boundary of the maximal workspace. The critical points
can be of five different types, thereby defining five sets of such points.

The first set consists of the intersection points of the sextics and the annular regionE3: in
this case the three leg lengths are at an extreme value. Therefore, these points are solutions of
thedirect kinematics and can be found numerically. The second set of critical points consists of
the intersection points of the sextics with the phase 1 arcs.In this case the length of legs 1 and 2
are defined by the sextics and the length of leg 3 is the radius of the arc. These points will also
be critical points for the arcs. A third set of critical points are the multiple points of the sextics.
Indeed we may have only one critical point on a circuit on the sextic: therefore introducing
the multiple points as critical points enables to define two arcs of sextic on the circuit, one
of them being a member of the boundary of the workspace. Finding these multiple points is
a well known problem [4]. The fourth set of critical points for the sextics will be the limit
points of the coupler curve. Indeed, for some value of the leglengths the four-bar mechanism
may not be a crank, i.e., the angleφ is restricted to belong to some intervals. Consequently
the sextic is not continuous and each position ofB3 corresponding to one of the bounds of the
intervals is a critical point. The last set of critical points for the sextics consists of the set of
intersection points between the sextics. Recently Innocenti has proposed an algorithm to solve
this problem [6].

2.2.3 Determination of the portions of sextic belonging to the boundary

Any portion of sextic belonging to the boundary must lie between two critical points. For each
critical pointTi the unique pair of anglesφi, ψi corresponding toTi is determined (note that
for the critical points which are multiple points of the coupler curve although the coupler point
is identical, the anglesφi, ψi are different). For a given value ofφ, there are in general two
possible solutions forψ which are obtained by solving a second order equation in the tangent
of the half-angle ofψ. Consequentlyψ is determined using one of the two expressions of the
tangent of the half-angle.

First, theTi’s are sorted according to the expression which is used for determining the
corresponding angleψi, thereby giving rise to two sets ofTi’s. Each of these sets is then sorted
according to an increasing value of the angleφ. Consequently, the sextics are split intoarcs of
sextics, some of which are components of the boundary of the maximal workspace.



A component of the boundary will be such that for any point on the arc a motion along one
of the normals to the sextic will lead to a violation of the constraints while a motion along the
other normal will lead to feasible values for the link lengths. Any other combination implies
that the arc is not a component of the boundary of the maximal workspace. In order to perform
this test, the inverse jacobian matrix for a point on the arc (for example the middle point i.e. the
coupler point obtained forψ as the middle value between the anglesψ of the extreme points of
the arc) is computed as well as the unit normal vectorsn1,n2 of the sextic at this point. Then
the joint velocities are calculated for a cartesian velocity directed alongn1,n2. The sign of
the joint velocities obtained indicates whether or not the arc is a component of the boundary. A
similar procedure is used to identify the circular arcs which are components of the boundary. To
this end, the phase 1 arcs, for which the critical points — theintersection points with the sextics
and the extreme points of the arcs — have been determined, areconsidered. Each of the arcs
between two critical points is examined to determine if the arc is a component of the boundary
by using the same test as for the arcs of sextic. The boundary of the maximal workspace is
finally obtained as a list of circular arcs and portions of sextics. The maximal workspace of the
manipulators described in the appendix are shown in figure 2.

The computation time of the boundary of the maximal workspace is heavily dependent on
the result. On a SUN 4-60 workstation this time may vary from 1500 to 15000 ms. The most
expensive part of the procedure is the calculation of the intersection of the sextics.
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Figure 2: Left: the maximal workspace for manipulator 3 withρ1 ∈ [8, 12], ρ2 ∈ [5, 15],
ρ3 ∈ [10, 17]. Middle: the maximal workspace for manipulator 4,ρ1 ∈ [8, 12], ρ2 ∈ [5, 15],
ρ3 ∈ [10, 17]. Right: the area within the thick lines is the maximal workspace of manipulator
3 with ρ1 ∈ [5, 20], ρ2 ∈ [5, 20], ρ3 ∈ [5, 20]. The dashed and thin lines represent the constant
orientation workspace for various orientations of the platform.

2.2.4 Maximal workspace for any reference point

To compute the maximal workspace for a reference point different fromB3, a similar algorithm
can be used. Basically, only the complexity of the algorithmwill be increased. Indeed, not only
the eight circles of typeC1, C2 have to be considered but also the four circles centered atA3

which correspond to the case where the length of link 3 has an extreme value. Similarly, the
twelve sextics which can be obtained from all the possible values for the extreme lengths of
links 1, 2, 3 must now be considered.



3 Inclusive maximal workspace

Theinclusive maximal workspace (denotedIMW) is defined as the set of all the positions which
can be reached by the reference point with at least one orientation of the platform in a given
interval referred to as theorientation interval. Hence, the maximal workspace is simply a
particular case ofIMW for which the prescribed orientation interval is[0, 2π]. In what follows,
it is assumed that the orientation of the moving platform is defined by the angle between the
x axis and the lineB3B1. Moreover, it is also assumed that the reference point of themoving
platform isB3.

The computation of the boundary of theIMW is similar to the computation of the boundary
of the maximal workspace. First, it is recalled that it is simple to determine if a point belongs to
theIMW since one can compute the possible orientations of the moving platform at this point.
It is also clear that a point lies on the boundary if and only ifat least one of the link lengths is
at an extreme value.

Consider first the circles described byB3 when pointsAi, Bi, B3 lie on the same line. For
each position ofB3 on the circles, the orientation of the moving platform is uniquely defined.
The valid circular arcs must satisfy the following constraints: the pointsB1, B2, B3 lie inside the
annular regionsE1, E2, E3 and the orientation of the moving platform belongs to the orientation
interval.

The determination of these arcs is thus similar to obtainingthe arcs when computing the
maximal workspace boundary. The main difference is that building theI i intervals involves the
consideration of the rotation angleα such that the orientation of the moving platform corre-
sponds to one of the limits of the orientation interval.

Similarly, when the sextics are considered, the positions of B3 for which the orientation of
the moving platform is at one of the limits of the orientationinterval will be added in the set of
critical points.

To verify if a particular arc is a component of the boundary, the orientation for a point taken
at random on the arc is examined to determine if it belongs to the orientation interval. Then
the test using the inverse jacobian matrix allows to determine if the arc is a component of the
boundary.

Typically the computation time for anIMW is about 1000 to 20000 ms on a SUN 4-60
workstation. Figure 3 presents someIMW for various orientation intervals.
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Figure 3:IMW of manipulator 1 for various orientation intervals (the orientation intervals al-
ways begin at 0). The limits areρ1 ∈ [2, 8], ρ2 ∈ [5, 25], ρ3 ∈ [10, 25].



4 Total orientation workspace

This section addresses the problem of determining the region reachable by the reference point
with all the orientations in a given set[θi, θj ] which will be referred to as the orientation interval.
This workspace will be denoted asTOW.

It is relatively easy to determine if a point belongs to this workspace since it is possible to
compute the possible orientations for any position of the reference point. For a point belonging
to the boundary of theTOW, one leg will be at an extreme value. Indeed, two legs cannot be
at an extreme value since in this case the orientation of the moving platform is unique and
consequently the point cannot belong to theTOW.

Assume that for a point on the boundary the orientation of themoving platform is one of
the bounds of the interval, i.e.,θi or θj while the length of legi is at an extreme value. AsBi

moves on the circle of the annular regionEi corresponding to the value of the leg length, point
B3 moves on a circleCi

w with the same radius whose center is obtained by translatingthe center
of Ei by the vectorBiB3, which is fixed since the orientation of the moving platform is known.
Any point in theTOW must lie within the circleCi

w. Therefore if the boundsθi, θj and all the
possibleBi’s are considered, any point of theTOW must be inside the 12 circles with center
and radii (A3,ρ3

max),(A3, ρ
3
min), (A1 + B1B3, ρ

1
max),(A1 + B1B3, ρ

1
min), (A2 + B2B3, ρ

2
max),

(A2 + B2B3, ρ
2
min).

Assume now that a point on the boundary is reached with an orientation different fromθi, θj
and that the length of link 1 has an extreme value, sayρ1

max. When the orientation of the moving
platform lies in the orientation interval,B1 belongs to a circular arc defined by its centerB3, its
radius||B3B1|| and the anglesθi, θj . As the point belongs to theTOW the arc must lie inside the
annular regionE1. Furthermore this arc is tangent at some point to the external circle of E1 since
B3 lies on the boundary of theTOW. This tangency implies that pointB3 lies on a circle of center
A1 and radiusρ1

max−||B1B3||. Any point within theTOW must be inside this circle. Four such
circles may exist, whose center and radii are (A1, ρ

1
max − ||B1B3||), (A1, ρ

1
min − ||B1B3||),

(A2, ρ
2
max − ||B2B3||), (A2, ρ

2
min − ||B2B3||).

If a pointB3 belongs to theTOW it is necessary that the point is included in the 16 circles
which have been determined. Consequently the boundary of the TOW is the intersection of
these sixteen circles. Note that a particular case ofTOW is thedextrous workspace, which is the
region which can be reached by the reference point with any orientation [8],[12],[11].

5 Conclusion

Geometrical algorithms for the determination of the boundary of various workspaces for pla-
nar parallel manipulators have been described. Basically the presented algorithms can be ex-
tended without any difficulties to other types of planar parallel robots [10]. The authors want
to acknowledge that this work has been supported in part by the France-Canada collaboration
contractn◦ 070191.

Appendix

The dimensions of the manipulators used in the examples of this paper are defined in figure 1
and their numerical values are presented in the following table.



Manipulator Type l1 l2 l3 c2 c3 d3 µ

1 RPR 25 25 25 20 0 10 60
2 RPR 20.839 17.045 16.54 15.91 0 10 52.74
3 RPR 25 25 25 20 10 17.32 60
4 RPR 2 2 2 10 5 8.66 60
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