-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by CiteSeerX

UNIVERSITY OF AMSTERDAM
X

UVA-DARE (Digital Academic Repository)

Indirect jumps improve instruction sequence performance

Bergstra, J.A.; Middelburg, C.A.

Link to publication

Citation for published version (APA):
Bergstra, J. A., & Middelburg, C. A. (2009). Indirect jumps improve instruction sequence performance. Ithaca,
NY: arXiv.org.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask
the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,
The Netherlands. You will be contacted as soon as possible.

UVA-DARE is a service provided by the library of the University of Amsterdam (http.//dare.uva.nl)

Download date: 28 Jun 2019

https://core.ac.uk/display/357525148?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dare.uva.nl/personal/pure/en/publications/indirect-jumps-improve-instruction-sequence-performance(b38aaf61-1ba1-448c-b7f9-157dca507c15).html

0909.2089v1 [cs.PL] 11 Sep 2009

arxXiv

Indirect Jumps Improve
Instruction Sequence Performance

J.A. Bergstra and C.A. Middelburg

Informatics Institute, Faculty of Science, University of Amsterdam,
Science Park 107, 1098 XG Amsterdam, the Netherlands
J.A.Bergstra@uva.nl,C.A.Middelburg@uva.nl

Abstract. Instruction sequences with direct and indirect jump instruc-
tions are as expressive as instruction sequences with direct jump instruc-
tions only. We show that, in the case where the number of instructions is
not bounded, there exist instruction sequences of the former kind from
which elimination of indirect jump instructions is possible without a
super-linear increase of their maximal internal delay on execution only
at the cost of a super-linear increase of their length.

Keywords: instruction sequence performance, indirect jump instruction,
maximal internal delay, projectionism.

1998 ACM Computing Classification: D.3.3, F.1.1, F.3.3.

1 Introduction

We take the view that sequential programs are in essence sequences of instruc-
tions. Although instruction sequences with direct and indirect jump instructions
are as expressive as instruction sequences with direct jump instructions only
(see [2]), indirect jump instructions are widely used to implement features of
high-level programming language such as Java [6] and C# [7]. Therefore, we
consider a theoretical understanding of both direct jump instructions and indi-
rect jump instructions highly relevant to programming. In this paper, we show
that, in the case where the number of instructions is not bounded, there exist
instruction sequences with direct and indirect jump instructions from which elim-
ination of indirect jump instructions is possible without a super-linear increase
of their maximal internal delay on execution only at the cost of a super-linear
increase of their length.

The work presented in this paper belongs to a line of research whose working
hypothesis is that instruction sequence is a central notion of computer science.
The object pursued with this line of research is the development of theory from
this working hypothesis. In this line of research, program algebra [1] is the set-
ting used for investigating instruction sequences. The starting-point of program
algebra is the perception of a program as a single-pass instruction sequence, i.e.
a finite or infinite sequence of instructions of which each instruction is executed
at most once and can be dropped after it has been executed or jumped over.
This perception is simple, appealing, and links up with practice.

http://arxiv.org/abs/0909.2089v1

The perception of a program as a single-pass instruction sequence forms part
of a point of view taken in the line of research to which the work presented in
this paper belongs. It is the point of view that:

— any instruction sequence P, and more general any program P, first and for
all represents a single-pass instruction sequence as considered in program
algebra;

— this single-pass instruction sequence, found by a translation called a pro-
jection, represents in a natural and preferred way what is supposed to take
place on execution of P;

— program algebra provides the preferred notation for single-pass instruction
sequences.

In [4], the name projectionism is coined for this point of view and its main
challenges are discussed. The result of this paper is connected with two of the
challenges of projectionism identified in that paper: explosion of size and degra-
dation of performance.

The program notation used in this paper to show that indirect jumps im-
prove instruction sequence performance is PGLB;;. This program notation is a
minor variant of PGLC;j, a program notation with indirect jumps instructions
introduced in [2]. Both program notations are close to existing assembly lan-
guages and have relative jump instructions. The main difference between them
is that PGLB;j has an explicit termination instruction and PGLGC;; has not. This
difference makes the former program notation more convenient for the purpose
of this paper.

The performance measure use in this paper is the maximal internal delay
of an instruction sequence on execution. The maximal internal delay of an in-
struction sequence on execution is the largest possible delay that can take place
between successively executed instructions whose effects are observable exter-
nally. Another conceivable performance measure is the largest possible sum of
such delays on execution of the instruction sequence. In this paper, we do not
consider the latter performance measure because it looks to be less adequate to
the interactive performance of instruction sequences.

This paper is organized as follows. First, we give a survey of the program nota-
tion PGLB;; (Section 2). Next, we introduce the notion of maximal internal delay
of a PGLB;; program (Section 3). After that, we present the above-mentioned re-
sult concerning the elimination of indirect jump instructions (Section 4). Finally,
we make some concluding remarks (Section 5).

2 PGLB with Indirect Jumps

In this section, we give a survey of the program notation PGLB;;. This program
notation is a variant of the program notation PGLB, which belongs to a hierarchy
of program notations rooted in program algebra (see [1]). PGLB and PGLB;;
are close to existing assembly languages and have relative jump instructions.

It is assumed that fixed but arbitrary numbers I and N have been given,
which are considered the number of registers available and the greatest natural
number that can be contained in a register. Moreover, it is also assumed that
fixed but arbitrary finite sets F of foci and M of methods have been given.

The set 2 of basic instructions is {f.m | f € F,m € M}. The view is that
the execution environment of a PGLB;; program provides a number of services,
that each focus plays the role of a name of a service, that each method plays
the role of a command that a service can be requested to process, and that the
execution of a basic instruction f.m amounts to making a request to the service
named f to process command m. The intuition is that the processing of the
command m may modify the state of the service named f and that the service
in question will produce T or F at its completion.

PGLB;;j has the following primitive instructions:

— for each a € %, a plain basic instruction a;

— for each a € %A, a positive test instruction +a;

— for each a € %, a negative test instruction —a;

— for each | € N, a direct forward jump instruction #l;

— for each I € N, a direct backward jump instruction \#l;

— for each i € [1,1] and n € [1, N], a register set instruction set:i:n;
— for each i € [1,I], an indirect forward jump instruction i#:i;

— for each i € [1,], an indirect backward jump instruction i\#i;

— a termination instruction .

PGLB;j programs have the form w; ;... ; ug, where uq,...,u; are primitive
instructions of PGLB;;.

On execution of a PGLB;j; program, these primitive instructions have the
following effects:

— the effect of a positive test instruction +a is that basic instruction a is
executed and execution proceeds with the next primitive instruction if T
is produced and otherwise the next primitive instruction is skipped and
execution proceeds with the primitive instruction following the skipped one
— if there is no primitive instructions to proceed with, deadlock occurs;

— the effect of a negative test instruction —a is the same as the effect of +a,
but with the role of the value produced reversed;

— the effect of a plain basic instruction a is the same as the effect of +a,
but execution always proceeds as if T is produced;

— the effect of a direct forward jump instruction #l is that execution pro-
ceeds with the [-th next instruction of the program concerned — if [equals
0 or there is no primitive instructions to proceed with, deadlock occurs;

— the effect of a direct backward jump instruction \#! is that execution pro-
ceeds with the [-th previous instruction of the program concerned — if [equals
0 or there is no primitive instructions to proceed with, deadlock occurs;

— the effect of a register set instruction set:i:n is that the contents of register
1 is set to n and execution proceeds with the next primitive instruction — if
there is no primitive instructions to proceed with, deadlock occurs;

— the effect of an indirect forward jump instruction i#: is the same as the
effect of #I, where [is the content of register ;

— the effect of an indirect backward jump instruction i\#i is the same as the
effect of \#l, where [is the content of register i;

— the effect of the termination instruction ! is that execution terminates.

PGLB;; is a minor variant of PGLC;j, a program notation with indirect jumps
instructions introduced in [2]. The differences between PGLB;; and PGLCj; are
the following;:

— in those cases where deadlock occurs on execution of PGLB;j; programs be-
cause there is no primitive instructions to proceed with, termination takes
place on execution of PGLCj; programs;

— the termination instruction ! is not available in PGLC;;.

The meaning of PGLC;; programs is formally described in [2] by means of a
mapping of PGLC;; programs to closed terms of program algebra. In that way,
the behaviour of PGLC;; programs on execution is described indirectly: the be-
haviour of the programs denoted by closed terms of program algebra on exe-
cution is formally described in several papers, including [2], using basic thread
algebra [1].! Because PGLB; is a minor variant of PGLC;j, we refrain from de-
scribing the behaviour of PGLB;; programs on execution formally in the current

paper.

3 Internal Delays of PGLB;; Programs

In this section, we will define the notion of maximal internal delay of a PGLBj;
program.

It is assumed that a fixed but arbitrary set X C 2 of auxiliary basic in-
structions has been given. The view is that, in common with the effect of jump
instructions, the effect of auxiliary basic instructions is wholly unobservable ex-
ternally, but contributes to the realization of externally observable behaviour.
In [1], examples are given in which auxiliary basic instructions are useful or even
indispensable.

The maximal internal delay of a PGLB;; program concerns the delays that
takes place between successive non-auxiliary basic instructions in runs of the
program. Before we define the maximal internal delay of a PGLB;j program, we
describe what a run of a PGLB;; program is.

A run of a PGLB;j program P is a succession of primitive instructions that
may be encountered in turn on execution of P.

Because we have not formally defined the behaviour of PGLB;; programs on
execution, we cannot make formally precise what a run of a PGLB;; program is.
By the detailed informal description of the effects of the primitive instructions

! In several early papers, basic thread algebra is presented under the name basic
polarized process algebra.

of PGLB;; on execution of a PGLB;; program, the description given above is
considered sufficiently precise for the purpose of this paper.

The mazimal internal delay of a PGLB;j program P, written MID(P), is the
largest n € N for which there exist a run wuj...u; of P, an i € [1,k], and a
J € [i, k] such that ID(u;) = 0 and ID(u;) = 0 and ID(u;) + ... + ID(u;) = n,
where ID(u) is defined as follows:

D(a)=0 ifadX, ID(#]) =1,
Da)=1 ifacX, IDO\#l) =1,
ID(+a) =0 ifa ¢ X, ID(set:in) =1,
ID(+a) =1 ifa€ X, ID(i#i) =2,
ID(~a)=0ifadX, ID(I\#i) = 2,
ID(—a)=1ifacX, ID()=0.

In [5], an extension of basic thread algebra is proposed which allows for
internal delays to be described and analysed. We could formally describe the
behaviour of PGLB;; programs on execution, internal delays included, using this
extension of basic thread algebra. The notion of maximal internal delay of a
PGLB;; program has been defined above so as to be justifiable by such a formal
description of the behaviour of PGLB;; programs on execution.

The time that it takes to execute one basic instruction is taken for the time
unit in the definition of the maximal internal delay of a PGLB;; program. By
that MID(P) can be looked upon as the number of basic instruction that can
be executed during the maximal internal delay of P. As usual, the time that it
takes to execute one basic instruction is called a step.

4 Indirect Jumps and Instruction Sequence Performance

In this section, we show that indirect jump instructions are needed for instruction
sequence performance.

It is assumed that bool:1,bool:2,... € F and set:T,set:F,get € M. The
foci bool:1, bool:2, ...serve as names of services that act as Boolean cells. The
methods set:T, set:F, and get are accepted by services that act as Boolean cells
and their processing by such a service goes as follows:

— set:T: the contents of the Boolean cell is set to T, and T is produced;
— set:F : the contents of the Boolean cell is set to F, and F is produced;
— get: nothing is changed, but the contents of the Boolean cell is produced.

The notation ;?:1 P;, where P; = u} ;...;u,lcl, covy Po=ut o ug is used
1. P B R R
forup;..oyug, 5. Uy ug

Consider the following PGLB;; program:

o2k

’izl(—boolzl.get s #35set:1:2404+1 5 #(28—i)-442) ;!
o2"

,izl(—boolzl.get s #35set:2:240+1 5 #(2F—i)-442) ;!
k k
i#1; ;le(ai P (28 —i)-241) 5 2 ;le(a;).

5

First, the program repeatedly tests the Boolean cell bool:1. If T is not returned
for 2% tests, the program terminates. Otherwise, in case it takes i tests until T
is returned, the content of register 1 is set to 2 -4 + 1. If the program has not
yet terminated, it once again repeatedly tests the Boolean cell bool:1. If T is not
returned for 2% tests, the program terminates. Otherwise, in case it takes j tests
until T is returned, the content of register 2 is set to 2 - j + 1. If the program
has not yet terminated, it performs a; after an indirect jump and following this

% after another indirect jump. After that, the program terminates. The length

of the program is 12 - 2¥ 4+ 4 instructions and the maximal internal delay of the
program is 4 steps.

The PGLB;; program presented above will be used in the proof of the result
concerning the elimination of indirect jump instructions stated below.

a

Theorem 1. Suppose proj is a projection from the set of PGLB;; programs to
the set of PGLB programs with the property that the mazimal internal delay of
each PGLB;j; program is increased at most linear. Moreover, suppose that the
number of basic instructions is not bounded. Then proj is a projection with the
property that the length of some PGLBs; program is increased more than linear.

Proof. Let P be the PGLB;j; program presented above. The maximal inter-
nal delay of P is increased at most linear by proj. This means that we have
MID(proj(P)) < ¢ - MID(P) + ¢’ = ¢ -4+ ¢ for some ¢/,¢’ € N. Let
c=c -4+ . Suppose that k is much greater than c. This supposition requires
that the number of basic instructions is not bounded. If the use of auxiliary basic
instructions (such as basic instructions working on auxiliary Boolean cells) is al-
lowed, then there are at most 2¢ different basic instructions reachable in ¢ steps.
Let i € [1,2*]. Then, in proj(P), for each j € [1,2¥], some occurrence of aj is
reachable from each occurrence of a; without intermediate occurrences of a; and
ay,...,ay,.. From one occurrence of a;, at most 2¢ basic instructions are reach-
able, but there are 2¥ different instructions to reach. Therefore, there must be
at least 2% /2¢ = 2F=¢ different occurrences of a; in proj(P). Consequently, the
length of proj(P) is at least 2¥ - 2k=¢ = 22*=¢ ingtructions. This is a quadratic
increase of the length, because the length of P is 12 - 2% 4 4 instructions. ad

We conclude from Theorem 1 that we are faced with super-linear increases of
maximal internal delays if we strive for acceptable increases of program lengths
on elimination of indirect jump instructions. In other words, indirect jump in-
structions are needed for instruction sequence performance. Semantically, we
can eliminate indirect jump instructions by means of a projection, but we meet
here two challenges of projectionism: explosion of size and degradation of per-
formance.

5 Conclusions

We have shown that, in the case where the number of instructions is not bounded,
there exist instruction sequences with direct and indirect jump instructions from

which elimination of indirect jump instructions is possible without a super-linear
increase of their maximal internal delay on execution only at the cost of a super-
linear increase of their length. It is an open problem whether this result goes
through in the case where the number of instructions is bounded.

Instruction sequences with direct jump instructions, indirect jump instruc-
tions and register transfer instructions are as expressive as instruction sequences
with direct jump instructions and indirect jump instructions without register
transfer instructions. We surmise that a projection that eliminates the register
transfer instructions yields a result comparable to Theorem 1. However, we have
not yet been able to provide a proof for that case. On the face of it, a proof for
that case is much more difficult than the proof for the case treated in this paper.

For completeness, we mention that, in the line of research to which the work
presented in this paper belongs, work that is mainly concerned with direct jump
instructions includes the work presented in [3].

References

1. Bergstra, J.A., Loots, M.E.: Program algebra for sequential code. Journal of Logic
and Algebraic Programming 51(2), 125-156 (2002)

2. Bergstra, J.A., Middelburg, C.A.: Instruction sequences with indirect jumps. Sci-
entific Annals of Computer Science 17, 19-46 (2007)

3. Bergstra, J.A., Middelburg, C.A.: On the expressiveness of single-pass instruction
sequences. Electronic Report PRGO0813, Programming Research Group, Univer-
sity of Amsterdam (2008). Available from http://www.science.uva.nl/research/
prog/publications.html. Also available from http://arxiv.org/: arXiv:0810.
1106v3 [cs.PL]

4. Bergstra, J.A., Middelburg, C.A.: Instruction sequence notations with probabilistic
instructions. Electronic Report PRG0906, Programming Research Group, Univer-
sity of Amsterdam (2009). Available from http://www.science.uva.nl/research/
prog/publications.html. Also available from http://arxiv.org/: arXiv:0906.
3083v1 [cs.PL]

5. Bergstra, J.A., van der Zwaag, M.B.: Mechanistic behavior of single-pass instruction
sequences. arXiv:0809.4635v1 [cs.PL] at http://arxiv.org/ (2008)

6. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, second
edn. Addison-Wesley, Reading, MA (2000)

7. Hejlsberg, A., Wiltamuth, S., Golde, P.: C# Language Specification. Addison-
Wesley, Reading, MA (2003)

