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Abstract The notion of adequate (resp. strongly adequate) function has been recently
introduced to characterize the essentially strictly convex (resp. essentially firmly subdifferen-
tiable) functions among the weakly lower semicontinuous (resp. lower semicontinuous) ones.
In this paper we provide various necessary and sufficient conditions in order that the lower
semicontinuous hull of an extended real-valued function on a reflexive Banach space is es-
sentially strictly convex. Some new results on nearest (farthest) points are derived from this
approach.
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1 Introduction

It is known that the convexity of a lower semicontinuous (lsc) extended real-valued function
J on a Banach space X can be derived from the essential Fréchet differentiability of the
Legendre–Fenchel conjugate J∗ of J ; this is also true for a weakly lsc function J on a weakly
sequentially complete Banach space X, provided J∗ is just essentially Gâteaux differentiable
([22, Th. 2.1], [23, Th. 1], [28, Th. 3.9.2], [7, Th. 4.5.1, Cor. 4.5.2]). In the same spirit,
and for X reflexive, it has been recently proved ([25, Th. 1]) that a weakly lsc function J
is essentially strictly convex if and only if J is adequate, a property we denote here by (A).
Reinforcing the property (A), in [26, Th. 1] it is shown that a lsc function J is essentially
firmly subdifferentiable if and only if J is strongly adequate, a property we denote here by
(A+

s ). This property is linked to the so-called Tychonov well-posedness of the minimization
of the shifted functions J − x∗, where the x∗’s are appropriate continuous linear forms on
X. In this paper we consider the property (A+

w), lying between (A) and (A+
s ), obtained by

replacing the norm topology in (A+
s ) by the weak topology.

We prove that if J , non-necessarily lsc, satisfies a certain property (A0), (A0) weaker than
(A), then J satisfies (A+

w) if and only if the lsc hull of J is essentially strictly convex (Corollary
16). Other related facts (Theorems 10, 15) are also established.

The results we obtain are applied to the nearest and farthest point problems. We prove for
instance that a remotal set S (in a Hilbert space) such that the square of the largest distance
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to S is Gâteaux differentiable is a singleton (Corollary 13), a result we have not found in
the literature. We also prove that the farthest point problem is Tychonov well-posed (resp.
weakly Tychonov well-posed) if and only if S is a singleton, or, if and only if the antiprojection
mapping is norm to norm (resp. weak) continuous (Corollary 17), completing in this way well
known results ([6], [18], [14], ...). Other classical facts in this field are revisited in the light
of our conditions (A+

s ) and (A+
w) (Corollaries 12, 18). The results presented here can also be

applied to nearest and farthest point problems with respect to Bregman distances as in [25],
[27], a topic we do not tackle in this paper.

2 Notation and preliminaries

Given a Banach space X, we denote by F (X) the set of functions J : X → R ∪ {+∞} finite
somewhere (i.e., dom J := {x ∈ X | J(x) < ∞} ̸= ∅). To each J ∈ F (X) we associate its
Legendre–Fenchel conjugate J∗ defined on the topological dual space X∗ of X as

J∗(x∗) := sup
x∈X

(⟨x, x∗⟩ − J(x)) , x∗ ∈ X∗.

The biconjugate J∗∗ of J is defined on X∗∗, the bidual of X, then restricted to X by J∗∗(x) :=
supx∗∈X∗(⟨x, x∗⟩ − J∗(x∗)). As usual, we set Γ(X) := {H ∈ F (X) | H = H∗∗}. Given
J ∈ F (X), let us introduce the multifunction MJ : X∗ ⇒ X defined by:

MJ(x∗) =

{
argmin(J − x∗) if J∗(x∗) ∈ R,
∅ otherwise.

In factMJ is nothing else but the inverse of the subdifferential of the (not necessarily convex)
function J ∈ F (X): MJ = (∂J)−1, the subdifferential of J at a point x ∈ X being the set

∂J(x) := {x∗ ∈ X∗ | J(u) ≥ J(x) + ⟨u− x, x∗⟩ for all u ∈ X}.

The subdifferential of J∗ will be understood with respect to the duality between X∗ and the
bidual X∗∗ of X :

∂J∗(x∗) = {x∗∗ ∈ X∗∗ | J∗(u∗) ≥ J∗(x∗) + ⟨u∗ − x∗, x∗∗⟩ for all u∗ ∈ X∗} .

We thus have, for any x∗ ∈ X∗ :

MJ(x∗) ⊂MJ∗∗(x∗) = X ∩ ∂J∗(x∗) ⊂ ∂J∗(x∗) ⊂ X∗∗. (1)

According to [5, Def. 5.2], one says that H ∈ Γ(X) is essentially strictly convex if MH
is locally bounded and H is strictly convex on the line segments in dom ∂H; H is said to
be essentially smooth (or essentially Gâteaux differentiable) if dom ∂H is open and ∂H is
single-valued on dom ∂H. Of course, if H ∈ Γ(X) is essentially Gâteaux differentiable then
dom ∂H = int(domH) and H is Gâteaux differentiable on dom ∂H. We thus have:

Theorem 1 ([5, Th. 5.4]) Assume X is reflexive and let H ∈ Γ(X). Then H is essentially
strictly convex if and only if H∗ is essentially Gâteaux differentiable.
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We now introduce some general notions about well-posed optimization problems (see e.g.
[10]). Given I ∈ F (X), the problem minX I is said to be (weakly) Tychonov well-posed (TWP)
if I has a unique global minimizer overX toward which each minimizing sequence of I (weakly)
converges. The problem minX I is said to be (weakly) well-posed in the generalized sense
(WPGS) if argminX I is nonempty and every minimizing sequence of I has a subsequence
(weakly) converging toward some element of argminX I. Of course (see [10, p. 24]), the
problem minX I is (weakly) TWP if and only if it is (weakly) WPGS and argminX I is a
singleton. Given J ∈ F (X), the following assumption will be intensively used in the paper:

(A0) : domMJ = dom ∂J∗ is nonempty and open.

Observe that if J ∈ F (X) admits a continuous affine minorant function, then dom ∂J∗ is
necessarily nonempty. In the case when J is cofinite (i.e., J∗ is real-valued), (A0) amounts to
domMJ = X∗. If X is reflexive, any weakly lsc J ∈ F (X) such that lim∥x∥→∞ J(x)/ ∥x∥ = ∞
satisfies (A0) (because J − x∗ admits a global minimizer for each x∗ ∈ X∗).

Since J∗ is subdifferentiable at each point of int(domJ∗), the condition (A0) entails:

∅ ̸= dom ∂J∗ = int(dom J∗) = domMJ. (2)

Reinforcing (A0) for J ∈ F (X), let us consider the new assumption

(A) : J satisfies (A0) and MJ is single-valued on its domain.

In such a case we introduce the mapping

mJ : int(dom J∗) → X with MJ(x∗) = {mJ(x
∗)}.

Condition (A) amounts to the notion of adequate function introduced in [25] for reflexive
X. The main result about this notion is the following.

Theorem 2 ([25, Th. 1]) Assume X is reflexive, and let J ∈ F (X) be weakly lsc. Then J
satisfies (A) if and only if J is essentially strictly convex.

We now reinforce (A) by introducing:

(A+
s )

{
J satisfies (A0) and, for every x

∗ ∈ domMJ, the problem
minX(J − x∗) is TWP.

In fact, (A+
s ) coincides with the notion of strongly adequate function introduced in [26,

Def. 1]. In order to recall the main results in [26] we need some definitions: H ∈ Γ(X) is said
to be essentially Fréchet differentiable (see [24], [26, Prop. 2]) if H is Fréchet differentiable
on dom ∂H. Setting

Γ0 := {ψ : R+ → [0,∞] | ψ convex lsc, ψ(t) = 0 only for t = 0} ,

a mapping H ∈ Γ(X) is essentially firmly subdifferentiable ([26, Def. 4]), if for any x ∈
dom ∂H, any x∗ ∈ ∂H(x), there exists ψ ∈ Γ0 such that H(u) ≥ H(x) + ⟨u− x, x∗⟩ +
ψ(∥u− x∥), for any u ∈ X. We thus have:

Theorem 3 ([26, Prop. 3]) Let J ∈ F (X) be lsc. Then J satisfies (A+
s ) if and only if J∗ is

essentially Fréchet differentiable.
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Theorem 4 ([26, Th. 1]) Let J ∈ F (X) be lsc. If J satisfies (A+
s ), then J is essentially

firmly subdifferentiable. The converse holds for X reflexive.

Let us complete the result above with the following:

Corollary 5 Assume X is reflexive, and let J ∈ F (X) be lsc. Then the following are equiv-
alent:

(i) J satisfies (A+
s );

(ii) J is essentially firmly subdifferentiable;
(iii) J∗ is essentially Fréchet differentiable;
(iv) J satisfies (A) and mJ is (norm to norm) continuous.

Proof. Theorem 4 says that (i) ⇔ (ii), and Theorem 3 ensures that (i) ⇔ (iii). According
to (1), mJ is a selection of ∂J∗, and [20, Prop. 2.8] says that (iii) ⇔ (iv). �

We now illustrate the situation with two classical examples. For this we need to recall
further definitions. Given S ⊂ X, we denote by ιS the indicator function of S : ιS(x) := 0 if
x ∈ S, ιS(x) := +∞ if x ∈ X \S; convS stands for the convex hull of S, and S for its closure;
dS(y) := infx∈S ∥y − x∥ denotes the distance from y ∈ X to S, and ∆S(y) := supx∈S ∥y − x∥
the largest deviation from y to S. Needless to say, one has

dS = dS , ∆S = ∆S . (3)

Given f, g ∈ F (X), we denote by y 7−→ (f�g)(y) := infx∈X (f(y − x) + g(x)) the infimal
convolution of f and g. One has for instance dS = ∥·∥�ιS .

Example 6 Given a nonempty set S in a Hilbert space X, let us consider JS := 1
2 ∥·∥

2 + ιS ,
which is always cofinite. The function JS satisfies (A0) if and only if S is proximinal, which
means: any point of X admits a nearest point in S. Condition (A) amounts to saying that S is
Tchebychev: any point of X has a single nearest point in S. One says that S is approximately
compact ([11]) if for any y ∈ X, any sequence (xn) ⊂ S such that limn→∞ ∥y − xn∥ = dS(y)
contains a subsequence converging to an element of S. Thus, JS satisfies (A+

s ) if and only if
S is Tchebychev and approximately compact. For a Tchebychev S, we denote by pS(y) the
projection of y ∈ X onto S. We thus have pS = mJS .

Lemma 7 Let S be a nonempty subset in a Hilbert space X. The following then are equivalent:
(i) S is closed and convex;
(ii) JS is essentially firmly subdifferentiable;
(iii) JS is essentially strictly convex;
(iv) JS ∈ Γ(X).

Proof. (i) ⇒ (ii) By the Moreau–Rockafellar Theorem (see e.g. [28, Th. 2.8.7]) one has
J∗
S = (12 ∥·∥

2)∗�ι∗S = 1
2 ∥·∥

2�ι∗S , which is Fréchet differentiable on X ([17, Prop. 7.d]). By
Corollary 5, JS is thus essentially firmly subdifferentiable. The implications (ii) ⇒ (iii) ⇒
(iv) ⇒ (i) are obvious. �

Applying Theorem 2 and Lemma 7 to JS , we recover Klee’s Theorem ([15]): a nonempty
weakly closed subset of a Hilbert space is convex if and only if it is Tchebychev. Applying
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Corollary 5 and Lemma 7 to JS , we obtain that a Tchebychev set is approximately compact
if and only if it is convex ([11, Th. 3]).

Since J∗
S = 1

2

(
∥·∥2 − d2S

)
(see [3], [13]), J∗

S is essentially Fréchet differentiable if and only

if d2S is Fréchet differentiable on X. We thus infer from Corollary 5 and Lemma 7 that for any
nonempty closed set S it holds (see e.g. [28, Th 3.9.3], or also [12, Th. 4.3]):

d2S is Fréchet differentiable ⇐⇒ S is convex. (4)

Finally, Corollary 5 and Lemma 7 allow us to recover that a Tchebychev (hence closed)
set is convex if and only if the projection mapping pS : X → S is (norm to norm) continuous
([2, p. 237]).

Example 8 With each nonempty bounded set S in a Hilbert space X let us associate the
mapping JS := −1

2 ∥·∥
2 + ι−S , which is always cofinite. One easily sees that JS satisfies (A0)

if and only if S (equivalently −S) is remotal ([9], [18], [21], ...): any point of X admits a
farthest point in S; JS satisfies (A) if and only if S is uniquely remotal: each point of X has
a single farthest point in S; S is said to be nearly compact (or M-compact, or ∆ compact [6],
[18], [19], ...) if for any u ∈ X, any sequence (xn) ⊂ S such that limn→∞ ∥u− xn∥ = ∆S(u)
contains a subsequence converging to an element of S. Of course, a compact set is nearly
compact, but a nearly compact set does not need to be closed. Observe that JS satisfies (A+

s )
if and only if S is uniquely remotal and nearly compact. If S is uniquely remotal, we denote
by qS(u) the point of S the farthest from u and call qS an antiprojection S ([1]). We thus
have qS(u) = −mJS (u) for u ∈ X.

Lemma 9 For any nonempty bounded set S in a Hilbert space, the following are equivalent:
(i) S is a singleton;
(ii) JS is essentially firmly subdifferentiable;
(iii) JS is essentially strictly convex;
(iv) JS is convex.

Proof. (i) ⇒ (ii) If S = {a}, then JS = ι{−a} − 1
2 ∥a∥

2 is clearly essentially firmly sub-
differentiable.

(ii) ⇒ (iii) Because JS is essentially firmly subdifferentiable, S is closed (and convex);
hence JS is lsc. By Theorem 4 JS satisfies (A+

s ), and so, JS satisfies (A0). By Theorem 3 JS

is essentially strictly convex.
The implications (iii) ⇒ (iv) ⇒ (i) are easy. �

Applying Corollary 5 and Lemma 9 to the function JS we obtain that a uniquely remotal

set is a singleton if and only if it is nearly compact ([6]). Since (JS)∗ = 1
2

(
∆2

S − ∥·∥2
)
(see

[14]), (JS)∗ is essentially Fréchet differentiable if and only if ∆2
S is Fréchet differentiable on

X. We thus have by Corollary 5 and Lemma 9 that, for any nonempty closed bounded set
S ⊂ X :

∆2
S is Fréchet differentiable on X ⇐⇒ S is a singleton,

or, by (3), for any nonempty bounded set S ⊂ X :

∆2
S Fréchet differentiable on X ⇐⇒ S singleton ⇐⇒ S singleton (5)

(see [14]). Finally, Corollary 5 and Lemma 9 allow us to retrieve that a closed uniquely
remotal set is a singleton if and only if qS : X → S is (norm to norm) continuous ([6]).
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3 The main results

In this section X is a Banach space.
Given J ∈ F (X), we denote by J the lsc hull (or closure) of J.

Theorem 10 Assume J ∈ F (X) satisfies (A0) and J∗ is essentially Gâteaux differentiable.
Then J = J∗∗ and J is essentially strictly convex.

Proof. Since J∗∗ ≤ J ≤ J, it suffices to prove that J(x) = J∗∗(x) for any x ∈ dom J∗∗.
From (A0) it follows that J∗∗ is proper. By the Brøndsted–Rockafellar Theorem ([28, Th.
3.1.2]) there exists a sequence ((xn, x

∗
n))n≥1 ⊂ ∂J∗∗ such that ∥xn − x∥ → 0 and J∗∗(xn) →

J∗∗(x). Since x∗n ∈ ∂J∗∗(xn) and J
∗∗∗ = J∗, one has xn ∈ ∂J∗(x∗n), and so xn = ∇J∗(x∗n) ∈ X.

By using (A0) we get, for any n ≥ 1, ∅ ̸= MJ(x∗n) ⊂ ∂J∗(x∗n) = {xn}, whence xn ∈ MJ(x∗n)
and, consequently, J(xn) = J∗∗(xn). We thus have

J(x) ≤ lim inf
n→∞

J(xn) = lim
n→∞

J∗∗(xn) = J∗∗(x) ≤ J(x),

and finally J(x) = J∗∗(x). Hence J = J∗∗.
Let us prove that J∗∗ is essentially strictly convex. To this end we first observe that

(∂J∗∗)−1 = ∂J∗; in fact if x∗∗ ∈ ∂J∗(x∗) then x∗ ∈ dom ∂J∗ = domMJ , and there exists
x ∈ X such that x ∈ MJ(x∗) ⊂ ∂J∗(x∗). Since J∗ is Gâteaux differentiable at x∗ we have
that x = ∇J∗(x∗) = x∗∗. Therefore, (∂J∗∗)−1 = ∂J∗ is locally bounded ([5, Cor. 2.19]). It
remains to prove that J∗∗ is strictly convex on the line segments in dom ∂J∗∗ or, equivalently
([5, Lem. 5.1]), that

∂J∗∗(x) ∩ ∂J∗∗(y) ̸= ∅ ⇒ x = y.

So, assume that x∗ ∈ ∂J∗∗(x) ∩ ∂J∗∗(y) ̸= ∅. Then x and y belong to ∂J∗(x∗) and x = y =
∇J∗(x∗). �

Corollary 11 With the same hypothesis as in Theorem 10, J is strictly convex on every
convex subset of dom ∂J = dom ∂J∗∗.

Proof. We first check that dom ∂J = dom ∂J∗∗. The inclusion ⊂ is easy (see e.g. [28, Th.
2.4.1]). Conversely, for any x ∈ dom ∂J∗∗ there exists x∗ ∈ ∂J∗∗(x), and so x ∈ ∂J∗(x∗).
Since J∗ is essentially Gâteaux differentiable, we get x = ∇J∗(x∗). By (A0) we have that
x∗ ∈ domMJ and so ∅ ≠ MJ(x∗) ⊂ ∂J∗(x∗) = {x}. Consequently, MJ(x∗) = {x}, whence
x∗ ∈ ∂J(x), and so x ∈ dom ∂J.

By Theorem 10 we know that J∗∗ is essentially strictly convex, and so strictly convex on
every convex subset of dom ∂J∗∗ = dom ∂J. Since J and J∗∗ coincide on dom ∂J (see e.g. [28,
Th. 2.4.1]), we have proved that J is strictly convex on every convex subset of dom ∂J∗∗. �

Note that even for J lower semicontinuous, Theorem 10 can not be derived from [7, Cor.
4.5.2]: (a) can not be applied because J∗ is not Fréchet differentiable, while (b) can not be
applied because J is not sequentially weakly lsc. However, in the case dimX <∞ and J lsc,
Theorem 10 follows from [27, Fact 2.7] because Fréchet and Gâteaux differentiability coincide
for convex functions.

Applying Theorem 10 in the context of Example 6, we obtain the following result which
is stated in an equivalent form in [8, Cor. 4.7].
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Corollary 12 Let S be proximinal in a Hilbert space X. Then, S is convex if and only if d2S
is Gâteaux differentiable on X.

Proof. Necessity: since S is convex, we know that d2S is Fréchet (hence Gâteaux) differ-
entiable on X (see (4)).

Sufficiency: since S is proximinal, S is closed. Moreover J∗
S = 1

2

(
∥·∥2 − d2S)

)
is Gâteaux

differentiable on X. By Theorem 10 we infer that JS = JS is convex, and S = dom JS is
convex too (see also Lemma 7). �

We now apply Theorem 10 to the farthest points problem. Recall that a remotal set is
necessarily bounded but not necessarily closed. We have not found the next result in the
literature. It has to be compared with (4) and (5).

Corollary 13 Let S be remotal in a Hilbert space X. Then, S is a singleton if and only if
∆2

S is Gâteaux differentiable on X.

Proof. Necessity is clear. Sufficiency: we know that (JS)∗ = 1
2

(
∆2

S − ∥·∥2
)
is Gâteaux

differentiable on X. By Theorem 10 it follows that JS = −1
2 ∥·∥

2+ ι−S is strictly convex. This

is only possible if −S (hence S) is a singleton (see also Lemma 9). �

In order to give further applications of Theorem 10, we must now consider the following
question: given J ∈ F (X) satisfying (A0), when is J∗ essentially Gâteaux differentiable? To
this end we first state an important consequence of [4, Cor. 6] corresponding to the bornology
generated by the singletons (see also [28, Th. 3.9.1]). We adopt the same method as in [16,
Prop. 4] for the case of the Fréchet bornology.

Lemma 14 Let K ∈ F (X) be finite and weakly lsc at a given x ∈ X, and let x∗ ∈ int(domK∗).
Then the following are equivalent:

(i) The problem minX(K − x∗) is weakly TWP with solution x;
(ii) K∗ is Gâteaux differentiable at x∗ with ∇K∗(x∗) = x.

Proof. According to [4, Cor. 6], we just have to verify the condition

lim inf
λ→∞

λ−1 inf
∥v∥>λ

(K(x+ v)−K(x)− ⟨v, x∗⟩) > 0. (6)

Since K∗ is finite and continuous at x∗ ∈ int(domK∗), there exist r ∈ R and ρ > 0 such that

K∗ ≤ r + ιB∗(x∗,ρ), (7)

where B∗(x
∗, ρ) is the closed dual ball of center x∗ and radius ρ. Taking the conjugates of

both sides in (7) we get K ≥ K∗∗ ≥ ρ ∥·∥+ x∗ − r. We thus have

K(x+ v)−K(x)− ⟨v, x∗⟩ ≥ ρ ∥x+ v∥+ ⟨x, x∗⟩ − r −K(x).

Consequently,
λ−1 inf

∥v∥>λ
(K(x+ v)−K(x)− ⟨v, x∗⟩) ≥ ρ+ λ−1s,

where s := ⟨x, x∗⟩ − ρ ∥x∥ − r −K(x); hence (6) holds. �
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We now provide a necessary condition for having J∗ essentially Gâteaux differentiable.
For that we introduce the following property, which is weaker than (A+

s ) :

(A+
w)

{
J satisfies (A0) and, for every x

∗ ∈ domMJ, the problem
minX(J − x∗) is weakly TWP.

Theorem 15 Let J ∈ F (X) satisfy (A0). Then J
∗ is essentially Gâteaux differentiable if and

only if J verifies (A+
w).

Proof. Observe first that domMJ = dom ∂J∗ = int(domJ∗) because (A0) holds.
Assume that J∗ is essentially Gâteaux differentiable and take x∗ ∈ domMJ. Then ∅ ̸=

MJ(x∗) ⊂ ∂J∗(x∗) = {∇J∗(x∗)}. It follows that x := ∇J∗(x∗) ∈ dom ∂J, and so J is weakly
lsc at x. By Lemma 14 we obtain that J − x∗ is weakly TWP.

Conversely, assume that J satisfies (A+
w) and take x∗ ∈ dom ∂J∗ = domMJ. Let x ∈

MJ(x∗). Then x∗ ∈ ∂J(x), and so J is weakly lsc at x and x is a minimum point of J − x∗.
By (A+

w) we have that J − x∗ is weakly TWP with solution x. Using again Lemma 14 we
have that J∗ is Gâteaux differentiable at x∗. �

Corollary 16 Assume that X is reflexive, and let J ∈ F (X) be satisfying (A0). The following
are then equivalent:

(i) J satisfies (A+
w);

(ii) J∗ is essentially Gâteaux differentiable;
(iii) J satisfies (A) and mJ is norm to weak continuous;
(iv) J is essentially strictly convex.

Proof. (i) ⇔ (ii) comes from Theorem 15. Theorem 10 says that (ii) ⇒ (iv). Since
J∗ = (J)∗, Theorem 1 says that (iv) ⇒ (ii).

(ii) ⇒ (iii) Since J satisfies (A0) and J∗ is essentially Gâteaux differentiable, it follows
from (1) that mJ = ∇J∗, and ∇J∗ is norm to weak continuous by [20, Prop. 2.8].

(iii) ⇒ (ii) By (1), mJ is a norm to weak selection of ∂J∗, and [20, Prop. 2.8] says that
J∗ is Gâteaux differentiable on int(dom J∗) = dom ∂J∗. �

We now return to Examples 6 and 8.

Corollary 17 Let S be a nonempty subset of a Hilbert space X. Then the following are
equivalent:

(i) For any u ∈ X, the problem minx∈S ∥u− x∥ is weakly TWP;
(ii) For any u ∈ X, the problem minx∈S ∥u− x∥ is TWP;
(iii) S is closed and convex;
(iv) S is Tchebychev and pS is norm to norm continuous;
(v) S is Tchebychev and pS is norm to weak continuous.

Proof. (i) ⇒ (ii) Let (xn) be such that ∥u− xn∥ → dS(u). By (i), there exists x ∈ S such
that ∥u− x∥ = dS(s), and (xn) converges weakly to x. Now, 1

2 ∥xn − x∥2 = 1
2 ∥xn − u∥2 +

1
2 ∥u− x∥2+⟨xn − u, u− x⟩ , and, since ⟨xn, u− x⟩ → ⟨x, u− x⟩ we obtain that 1

2 ∥xn − x∥2 →
0 and, finally, limxn = x.

(ii) ⇒ (iii) Observe that S is proximinal (even Tchebychev), hence closed. The function
JS is lsc and satisfies (A+

s ). By Theorem 4 (or Corollary 5) JS is convex, and S = dom JS is
convex, too.
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(iii) ⇒ (iv) By Lemma 7, JS is essentially firmly subdifferentiable, and by Corollary 5, JS
satisfies (A+

s ) or, equivalently, the condition (iv).
(iv) ⇒ (v) is obvious.
(v) ⇒ (i) The assertion (v) amounts to saying that JS satisfies (A) and mJS = pS is norm

to weak continuous. By Corollary 16, JS satisfies (A+
w) or, equivalently, condition (i). �

Corollary 18 For any nonempty bounded set S in a Hilbert space X, the following are equiv-
alent:

(i) for any u ∈ X, the problem maxx∈S ∥u− x∥ is TWP;
(ii) for any u ∈ X, the problem maxx∈S ∥u− x∥ is weakly TWP;
(iii) S is uniquely remotal and qS is norm to weak continuous;
(iv) S is a singleton;
(v) S is uniquely remotal and qS is norm to norm continuous.

Proof. (i) ⇒ (ii), (iv) ⇒ (v), and (v) ⇒ (i) are clear. Condition (ii) amounts to saying
that JS satisfies (A+

w). By Corollary 16 we thus have: (ii) implies that qS = −mJS is norm to

weak continuous which, in turn, is equivalent to stating that JS = JS is essentially strictly
convex. By Lemma 9 this amounts to having that S is a singleton or, equivalently, that S is
a singleton. Consequently (ii) ⇔ (iii) ⇔ (iv). �
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[14] J.-B. Hiriart-Urruty, La conjecture des points les plus eloignés revisitée, Ann. Sci. Math.
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