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ABSTRACT
For low-aspect-ratio turbine blades secondary loss reduc-

tion is important for improving performance. This paper presents
the application of a viscous adjoint method to reduce secondary
loss of a linear cascade. A scalable wall function is implemented
in an existing Navier-Stokes flow solver to simulate the sec-
ondary flow with reduced requirements on grid density. The sim-
ulation result is in good agreement with the experimental data.
Entropy production through a blade row is used as the objec-
tive function in the optimization of blade redesign and endwall
contouring. With the adjoint method, the complete gradient in-
formation needed for optimization can be obtained by solving the
governing flow equations and their corresponding adjoint equa-
tions only once, regardless of the number of design parameters.
Three design cases are performed with a low-aspect-ratio steam
turbine blade tested by Perdichizzi and Dossena. The results
demonstrate that it is feasible to reduce flow loss through the
redesign of the blade while maintaining the same mass-averaged
turning angle. The effects on the profile loss and secondary loss
due to the geometry modification of stagger angle, blade shape
and endwall profile are presented and analyzed.

NOMENCLATURE
a Speed of sound
Ai Jacobian matrices,Ai = ∂ fi

∂W
B Boundaries ofξ domain

cp Constant pressure specific heat
D The computational domain (ξ domain)
f j Inviscid flux
fv j Viscous flux
I Cost function
k Turbulent kinetic energy; Thermal conductivity
Ki j Transformation functions between the physical domain and

the computational domain,Ki j = ∂xi
∂ξ j

ni Unit normal vector in theξ domain, pointing outward from
the flow field

Nj Unit normal vector in the physical domain, pointing out-
ward from the flow field

R Flow equations
s Entropy,s= cp(

1
γ ln p

p1
− ln ρ

ρ1
), p1 andρ1 are references

sgen Entropy generation per unit mass flow rate
ui Velocity components
uτ Friction velocity
W Conservative flow variables,W = {w1,w2,w3,w4,w5}

T

β̄ Mass-averaged exit flow turning angle
δy Distance from the first grid point away from wall boundary

to the solid wall
Λ Weight of the penalty function
ν Kinematic viscosity,ν = µ

ρ , µ is viscosity
ω Dissipation rate
Ψ Co-state variables,Ψ={ψ,φ1,φ2,φ3,θ}T

τw Wall shear stress
ξi Coordinates in the computational domain
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INTRODUCTION
At present, further performance improvement of turboma-

chinery is difficult through traditional design procedures because
significant efficiency gains have already been obtained. How-
ever, with the fast growth of computational power and advances
in numerical methods, Computational Fluid Dynamics (CFD)
coupled with advanced optimization algorithms provides a new
cost-effective way to improve and optimize turbomachinery de-
sign as compared to classical methods based on manual iteration.
Many design optimization approaches such as response surface
methodology [1, 2], genetic algorithms [3] and finite difference
methods [4] were applied in design development.

A flow solver which can support physically accurate flow
solutions is required in the optimization design based on CFD.
Not all turbulence models can sufficiently model complex flow.
Wilcox gave an overview of turbulence models in his paper [5]
and demonstrated that the models based on theω equation can
support satisfactory solutions for many flows. In this paper, the
flow solutions are obtained by using the turbomachinery flow
codeTurbo90 in which thek-ω SST turbulence model and a
third-order Roe scheme are used.

In the past several decades, research has been done to im-
prove the efficiency of flow solvers. However, to maintain high
accuracy of turbulent flow solution, a fine mesh with a large num-
ber of grid points is needed. Kalitzin [6] and Shih [7] proposed
the use of wall-functions and applied them to flat-plate flow and
turbomachinery flow. By using wall functions, the boundary
layer can be resolved with a relatively coarse mesh. In this paper,
a scalable wall function is implemented to correct the skin fric-
tion on the wall and to update the turbulent kinetic energy and
dissipation rate in thek-ω SST turbulence model.

In the turbulent flow with low Mach number of a low-aspect-
ratio turbine blade, the flow loss may be categorized as profile
loss and secondary loss. In a rather low aspect ratio blade, the
secondary flow can influence the entire flow field along the span-
wise direction. The theory of secondary flow was described in
Horlock’s paper [8] and much experimental work was done by
Perdichizzi and Dossena [9–12]. The effects of exit Mach num-
ber, incidence flow angle, pitch-chord ratio, endwall contouring
and stagger angle are investigated. Subsequently, Koiro [13] and
Hermanson [14] presented simulation and validation of the ef-
fects on the secondary flow at different flow conditions and ge-
ometry based on CFD. The geometry of a blade row can be mod-
ified to reduce the pressure gradient in the pitchwise direction
and consequently suppress the cross flow. The area ratio and
exit flow angle of a blade row can be influenced by a change of
stagger angle. Contoured endwall profile will accelerate or de-
celerate the flow in the axial direction and change the pressure
gradient in the pitchwise direction. All these changes influence
the secondary vortex generation, and consequently the secondary
flow features of the blade row.

Besides the flow solver, an important component in a typ-

ical Aerodynamic Design Optimization (ADO) problem is the
optimizer. Because of its high efficiency in calculating the gra-
dient information needed in the optimization procedure, much
research work has been done on the adjoint approach advocated
by Jameson [15,16]. It has been widely used in the aerodynamic
design optimization for airfoils, wings, and wing-body config-
urations [15–18]. However, there are only a few published ap-
plications to turbomachinery design optimization based on the
adjoint method [19–24]. Following previous success of an ad-
joint optimization method using the Euler equations for a three-
dimensional turbine blade by the present authors [24], a continu-
ous viscous adjoint method is adopted in this paper. With the ad-
joint method, the gradient information can be obtained by solv-
ing the Navier-Stokes equations and their corresponding viscous
adjoint equations only once, regardless the number of design pa-
rameters.

The present paper reports the redesign of a linear turbine
blade row by three different approaches: (1) restagger of the
blade profile in the spanwise direction; (2) combination of the
restagger and blade profile modification; and (3) end-wall con-
touring. The cost function is defined as the sum of the entropy
generation per unit mass flow rate and a penalty function used to
enforce the constraint of constant turning angle of the flow. The
formulations of the objective function, constraints, and design
parameters are presented The different boundary conditions and
the gradient formulae are derived and presented for the Navier-
Stokes equations. The effects of stagger angle, blade shape and
endwall profile on secondary flow are discussed.

VALIDATION OF THE FLOW SOLVER
In a fully-turbulent flow, the boundary layer can be subdi-

vided into three layers, a viscous sublayer, a buffer layer and
a logarithmic layer. The logarithmic layer plays an important
role in the mixing process. The wall shear stress cannot be com-
puted accurately with a finite-difference scheme unless the first
grid point away from the wall is within the viscous sublayer. To
remove such a stringent requirement on the computational grid,
one may make use of the log law of the velocity profile as ex-
pressed below to compute the wall shear stressuτ instead of us-
ing direct finite-differencing of the velocity.

u+ =
U
uτ

=
1
κ

log(y+)+B (1)

y+ =
uτδy

ν
(2)

where κ is the von Karman constant,B is a constant related to
the roughness of the wall, andδy is the distance from the wall.
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Eqn. (1) is implicit foruτ for a given flow velocityU at the point
y = δy. Solution foruτ may encouter difficulties in convergence.
Eqn.(1) becomes singular at separation points where the veloc-
ity U approaches zero. For the above reason, the standard wall
function is not particularly practical. Following the same im-
plementation as in the commercial CFX solver, one can use an
alternative velocity scaleu∗ instead ofu+ in the definition ofy+:

u∗ =
√

a1k (3)

y∗ =
ρu∗δy

µ
(4)

y+ = max(y∗,11.06) (5)

wherea1 is 0.31 andk is the turbulence kinetic energy away from
the wall. The abovey+ is then used in the log law to calculateuτ
explicitly

uτ =
U

1
κ log(y+)+B

(6)

The wall shear stress is then determined as

τw = ρu∗uτ (7)

This is the so-called scalable wall function. In a fully-turbulent
flow, the turbulent kinetic energy is never zero in the flow domain
away from the wall and thus by applying Eqn.(6) the friction ve-
locity uτ can be calculated evenU approaches zero. Eqn.(5) indi-
cates that should the calculatedy+ fall into the viscous sublayer,
it is restricted to the lower limit of the log region.

The corrected skin friction partly depends on the turbulent
kinetic energy as shown in Eqn.(3). Following Prandtl’s assump-
tion for the turbulent viscosity

νt = κuτδy (8)

k andω can be updated and the wall functions fork andω are
specified as

k =
u2

τ
a1

, ω =
uτ

a1κδy
(9)

y+
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Figure 1. VELOCITY PROFILES FOR THREE DIFFERENT GRIDS
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Figure 2. SHEAR STRESS DISTRIBUTIONS FOR THREE DIFFER-

ENT GRIDS

A. Demonstration of the Wall Function in Flat-Plate
Flow

In order to validate the applicability of the scalable wall
function, the flow over a flat plate is tested first. Here the flow
calculations are performed with three different grids,y+ = 0.6,
y+ = 10, andy+ = 50, respectively.

Figure 1 presents the computed velocity profiles at the 50
percent axial location of the wall along with Spalding’s formula.
The suffixorig denotes solutions without the use of the wall func-
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Table 1. Cascade geometric data

Chord length 55.2 mm

Axial chord 34.0 mm

Blade height 50.0 mm

Stagger angle 39.9 deg

Inlet blade angle 76.1 deg

tion. Figure 2 presents the skin friction distributions along the
wall. The predicted velocity profiles on the grids withy+ = 10
andy+ = 50 with the wall function agree well with Spalding’s
formula as well as that computed on the fine grid withy+ = 0.5
without the wall function. The shear stress distributions com-
puted by the method with the wall function also match well with
that computed on the fine grid without the wall function. Those
computed on the coarse grids without the wall function, how-
ever, deviates significantly from the log law and the result on the
fine grid. These results show that with the aid of the wall func-
tion, the velocity profile and the wall shear stress can be correctly
modeled even on rather coarse grids.

B. Simulation of Secondary Flow of a Cascade Blade
The test case for design optimization in this paper is the sub-

sonic linear cascade investigated experimentally by Perdichizzi
and Dossena [9, 10]. The isentropic exit Mach number is 0.7.
The geometry data of the blade are shown in Table 1.

The flow solution is calculated with thek-ω SST turbulence
model and a third-order Roe scheme. As shown in Perdichizzi’s
paper [9], the local kinetic energy loss coefficient can be defined
as:

ζ =
(ps(y,z)/pt2(y,z))

γ−1
γ − (ps(y,z)/pt1(y,z))

γ−1
γ

1− (p̄sMS/p̄t1MS)
γ−1

γ
(10)

where the subscriptMS denotes mid-span,pt1 and pt2 denote
the total pressure at inlet and exit respectively,ps denotes static
pressure at exit, and the bar indicates mass-averaging. The sec-
ondary loss in the spanwise direction is defined as the difference
between the mass-averaged kinetic energy loss on each spanwise
section and that on the mid-span.

Four different grids are studied, with the grid density of
144×40×48, 200×40×48, 144×80×96 and 144×120×144, re-
spectively. Computations on the first three grids included the
use of the wall function, whreas no wall function is used on the
fourth grid, which is extremely fine and is assumed to resolve
to the wall. Figure 3 presents the mass-averaged total pressure
from inlet to exit. Figure 4 presents the secondary loss distribu-
tions in the spanwise direction. Table 2 presents the calculated

Table 2. Calculation results on four grids

Grids 1 2 3 4

p0 0.98244 0.98279 0.98316 0.98290

β (deg) 75.1739 75.2530 75.1463 75.1397

ζ0 (%) 3.66809 3.59117 3.39072 3.46764

ζp (%) 1.85672 1.82411 1.61873 1.67342

ζs (%) 1.81137 1.76706 1.77199 1.79422

results wherep0, β, ζ0, ζp andζs denote total pressure, flow turn-
ing, total loss, profile loss and secondary loss, respectively. The
computed profile loss is close to the experimental value of about
1.75. However, the secondary loss is less than the experimental
value of about 2.35. Despite this difference in absolute value, the
computations on the four grids demonstrate an acceptable level
of grid convergence of the solutions with the wall function. The
optimization studies in the following part of this paper are per-
formed on the first grid in order to save computational time.
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Figure 3. MASS-AVERAGED TOTAL PRESSURE FROM INLET TO

EXIT

VISCOUS ADJOINT EQUATIONS
The implementation of the adjoint method was described

previously for the Euler equations [24]. The variation of the cost
function consists of two terms, one due to variation of the flow
field and the the other due to modification of boundaries. The
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Secon dary loss

Z
/H

-0.05 0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5
144*40*48
200*40*48
144*80*96
144*120*144
Experiment

Figure 4. SECONDARY LOSS COMPARISON OF CFD RESULTS

AGAINST EXPERIMENTAL DATA

variation of the flow fieldδW depends implicitly on the varia-
tion of the geometryδF through the Navier-Stokes equations.
Following the approach by Jameson [15], we multiply the flow
equations by a Lagrange multiplierΨT and adding it to the vari-
ation of cost function to eliminate the explicit dependence ofδI
on δW by setting

[
∂I

∂W
]T − [

∂R
∂W

]T = 0 (11)

which is recognized as the adjoint equation. We then have

δI = GδF (12)

whereG is the gradient and

G = [
∂I

∂F
]−ΨT[

∂R
∂F

] (13)

Theoptimization problem is then reduced to solving the Navier-
Stokes equations and their corresponding adjoint equations to
obtain the values ofΨ. The gradient can then be easily and effi-
ciently computed by using Eqn.(13) even for a large number of
design parameters because the computational cost depends only
on that for the perturbation of geometry. Once the gradient is de-
termined the steepest descent method is used as the optimization
algorithm in the present study.

In this paper, the cost function is defined as an integral at the
exit cross section. A weak form of the Navier-Stokes equations

is

∫

D

∂ΨT

∂ξi
(δFi − δFvi)dD−

∫

B
ΨT(δFi − δFvi)dB = 0 (14)

whereFi = Si j f j , Fvi = Si j fv j, andSi j = JK−1
i j , Ki j = ∂xi

∂ξ j
. Adding

Eqn.(14) to the variation of cost function, we have

δI =
∫

Bo

δCdB−
∫

B
niΨT(δFi − δFvi)dB

+

∫

D

∂ΨT

∂ξi
(δFi − δFvi)dD (15)

whereC is a scalar function of both flow variables and geometric
variables and depends on the definition of the cost function.

The termδC is divided into two terms,δCf which denotes
the flow variation term, andδCg which denotes the geometry
variation term.δCf can be used to determine the boundary con-
ditions for viscous adjoint equations and thus be eliminated in
the cost function. Finally, the variation of cost function can be
written in a simplified form:

δI =

∫

BIOF

[−ni(δSi j )ΨT f j + δCg]dB

+

∫

BW

[ni(δSi j )ψk(σ jk − pδ jk)+ δCg]dB

+ δIg (16)

whereδIg denotes the variation of cost function due to geometry
variation. The subscriptIOF denotes the inlet, outlet and far field
boundary andW denotes wall boundary. The adjoint equations
and gradient formula are given in Appendix A in detail.

In performing the derivations of the adjoint equations of the
present study, variations of the viscosityµand thermal conductiv-
ity k including their turbulent contributions are neglected. This
is acceptable since we assume the variation of the flow field is
small within each design cycle. In addition, we expect the flow
to be relatively well-behaved since we are seeking an optimized
design so that the dependence of the turbulence eddy viscosity
and heat diffusivity on the flow field is relatively weak. Notice,
that both the viscosity and thermal conductivity are updated af-
ter each design cycle when the Navier-Stokes equations and the
turbulence model equations are solved again with the updated
geometry. Therefore, the flow solutions will converge with the
correct turbulence parameters once the design reaches an opti-
mum.

RESULTS AND DISCUSSION
Three design optimization studies are performed relative to

the base reference design geometry. The inlet and outlet bound-
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ary conditions are not changed from the base design. All three
designcases seek to minimize the entropy increase through the
bladerow. The cost function is defined as a combination of en-
tropy generation per unit mass flow rate and a penalty function.

I = sgen+ Λ|β̄− β̄0|

whereβ̄ is the mass-averaged flow turning

β̄ =

∫

BO
ρu jβNjdA

∫

BO
ρu jNjdA

β̄0 is themass-averaged flow turning of the reference blade and
is here selected as the target.β is the flow turning on each cell
face at the exit, which is computed as the inverse tangent of the
tangential velocity to the axial velocity. A proper value of the
coefficientΛ in front of the penalty function must be selected to
enforce the exit flow angle constraint.

We first seek improvement by changing the spanwise dis-
tribution of the stagger angle of the base blade profile. The ap-
proach, however, is found to be of limited benefit for this blade.
Therefore, in the second case, we allow modifications in both the
stagger angle and the blade profile. Finally, we investigate the
effect of end-wall contouring.

A. Re-staggering the Blade Along Span
The stagger angle of each blade section plays an important

role in determining the flow turning at the spanwise location and
thus the secondary flow loss. We thus seek a spanwise stagger
angle distribution of the original two-dimensional blade profile
that minimizes the entropy production of the blade row while
maintaining the same average exit flow angle of the original base
design. There are 49 design parameters, representing the stagger
angles of the 49 blade sections in the grid. The coefficient of the
penalty functionΛ in the cost function is chosen to be 50 for this
case. After 20 design cycles of this case, the mass-averaged total
pressure at the exit is increased by 0.017%, corresponding to a
0.052% increase in adiabatic efficiency. The average flow turning
is kept the same. As expected the secondary loss is decreased by
about 3.99%. However, the profile loss of the redesigned blade
is increased by about 2.28%.

Figure 5 shows the change of stagger angle distribution
along the span. The stagger angle decreases from 5 to 25 percent
of the span, while it increases under 5% of the span and near the
midspan to ensure the fixed average flow turning. The exit flow
angle distributions for both the reference and redesigned blades
are shown in figure 6, which are consistent with the variation of
stagger angle distribution. Such a stagger angle distribution has
the effect of smoothing the loading in the spanwise direction and

hence inhibit the generation of secondary flow. The secondary
loss of the redesigned blade is noticeably reduced from 5 to 15
percent of the span as shown in Fig. 7.

δβ (deg)

Z
/H

-0.4 -0.2 0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

Figure 5. DESIGN CHANGE OF STAGGER ANGLE DISTRIBUTION
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Figure 6. SPANWISE FLOW TURNING DISTRIBUTION

The profile loss is defined on the assumption that the flow at
the midspan is regarded as two-dimension. The flow in this blade
row is subsonic. Therefore, the profile loss is purely due to vis-
cous losses in the boundary layer over the blade. Increased stag-
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Secon dary loss
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Figure 7. SECONDARY LOSS DISTRIBUTION IN SPANWISE

ger angle increases the local loading and thus the flow turning
at the given spanwise location. The increased loading increases
the profile loss similar to the flow around an airfoil where an in-
creased angle of attack leads to higher flow loss. Figure 8 shows
the exit total pressure distribution along the span. The total pres-
sure is slightly decreased at the midspan because of the increased
profile loss with the increased local stagger angle. The total pres-
sure across the blade row is increased from 5 to 15 percent of the
span because of the reduced secondary loss as shown in figure 7.
The reduction of secondary loss more than compensates the in-
creased profile loss, bringing about the slightly improved average
total pressure value of the redesigned blade row.

B. Modifying the Blade Shape Combined with Re-
staggering

The above subsection demonstrates positive but small gain
in performance of the blade row by only re-staggering the blade
along span. Similar to a previous work by the present authors
[24], the blade can be redesigned with both change of blade pro-
file and re-staggering. Modifying the blade shape can signifi-
cantly change the loading and therefore the development of the
secondary flow. The Hicks-Henne shape functions adopted in
our previous work [24] are used to modify the shape of the blade
sections. A value of 20 is used forΛ in the cost function.

Figure 9 presents the change of the stagger angle by the re-
design. The stagger angle increases from the hub to 5% span and
decreases from 5% to 50% span. As in the previous design case,
this trend of stagger change reduces the secondary flow loss. Un-
like the result of the above case, however, the stagger angle near
the mid span of this case is not required to increase on introduc-
ing simultaneous modification of the blade profiles. In fact, it
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Figure 8. SPANWISE TOTAL PRESSURE DISTRIBUTION

decreases near the mid span, resulting potentially reduced profile
loss. In order to examine the separate and combined effects of
the blade profile change and the stagger angle change, we com-
pute and compare the performances of four blade designs. Blade
1 is the original reference blade; Blade 2 (Designed) is the opti-
mized blade with both the profile change and the restagger; Blade
3 (Shape only) includes only the blade profile change of the re-
design without its stagger angle change; Blade 4 (Stagger), how-
ever, has the stagger angle change of the optimized blade (Blade
2) without its shape change;
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Figure 9. DESIGN CHANGE OF STAGGER ANGLE DISTRIBUTION
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Figure 10 shows the exit flow turning distribution of the four
different blades. Compared to the reference blade, The stagger
angle change increases the exit flow angle in a narrow region be-
tween the hub and about 20% blade height, but increases the flow
angle in the larger mid-height range, resulting in an increased av-
erage exit flow angle. In order to satisfy the fixed average exit
flow angle condition, the shape modifications has the effect of
decreasing flow angle from hub to 20% span and increasing it
from 20% to mid span.

Exit f low angle (deg)

Z
/H

73 74 75 76 77 78 79 80
0

0.2

0.4

0.6

0.8

1

Reference
Design ed
Shape only
Stagger only

Figure 10. SPANWISE FLOW TURNING DISTRIBUTION

Figure 11 presents the secondary flow loss distributions
along the span. Figure 12 plots the exit total pressure of the
four blades. The breakdown of the different losses for the four
blades are listed in Table 3. Both the blade shape modifications
and stagger angle change reduce the secondary flow loss, bring-
ing about a significant combined reduction of the secondary flow
loss by the re-designed blade. The stagger change slightly re-
duces the profile loss because of the overall reduced flow angle.
The profile file change, however, increases the profile loss in the
process of bringing back the exit flow angle to satisfy the con-
straint. The combined effect still increases the profile loss, but is
compensated by the larger improvement in secondary flow loss.
Overall, a 2.33% reduction in total pressure loss compared to the
reference blade is achieved with the combined optimization.

Figure 13 presents the isentropic Mach number on the blade
surface at 10%, 20%, and 30% of blade height. Compared to that
for the reference blade, the loading of the redesigned blade is de-
creased from 20% to 55% axial chord in all of the three spanwise
stations. At the 20% and 30% of blade heights, the loading in-
creases from the leading edge to about 20% axial chord because
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Figure 11. SECONDARY LOSS DISTRIBUTION IN SPANWISE
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Figure 12. SPANWISE TOTAL PRESSURE DISTRIBUTION

of the larger suction on the suction surface, and then again from
55% axial chord to the trailing edge due to the increased pres-
sure on the pressure surface. At the 10% height near the end wall,
however, the redesigned blade reduces loading in the 20% to 60%
axial chord range without increasing loading in other parts of the
blade length. The reduced loading means a smaller pressure gra-
dient near the end walls and therefore inhibits the generation of
secondary flow and consequently reduces the secondary loss. Ta-
ble 4 and Table 5 list the secondary and total losses, respectively,
at the 50%, 100%, and 150% axial chord locations from the lead-
ing edge for the reference and the redesigned blades. At 50%
axial chord, the secondary loss is reduced by 11.3% because of
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Table 3. THE EFFECTS OF STAGGER AND BLADE SHAPE TO FLOW

Blade 1 2 3 4

p0 0.98153 0.98199 0.98132 0.98211

β (deg) 75.1095 75.1398 75.2776 74.9834

ζ0 (%) 3.91191 3.82079 3.92877 3.79726

ζp (%) 2.01999 2.11563 2.17037 2.01264

ζs (%) 1.89192 1.70517 1.75840 1.78462

the reduced sectional loading near the end walls. However, the
reduced loading resulted reduced flow turning, which must be
compensated by increased loading away from the end walls, giv-
ing rise to increase profile loss. The total loss decreases for the
designed blade except at the location of 50% axial chord. At this
location, the secondary loss decreases due to the reduced pres-
sure gradient in the pitchwise direction. However, the profile
loss increases due to the increased loading at mid-span. As the
flow goes further downstream, the reduction in secondary flow
loss catches up with the increase of profile loss.
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Figure 13. ISENTROPIC MACH NUMBER DISTRIBUTION ON BLADE

SURFACE

Table 4. Secondary loss (%) at three different axial locations

Locations 50% 100% 150%

Reference 0.30492 0.72224 1.89192

Designed 0.27034 0.55722 1.70517

Table 5. Total loss (%) at three different axial locations

and
Locations 50% 100% 150%

Reference 1.98375 2.68232 3.91191

Designed 2.13722 2.65578 3.82079

C. Endwall Contouring
For low aspect ratio blades, the secondary loss involves a

considerable part of the total loss. Much research has already
shown that non-axisymmetric contouring of the endwall profile
is effective in reducing the secondary loss. The basic mechanism
is to modify the pressure gradient in the pitchwise direction, as
discussed by Dossena [11] and Sonoda [3]. This test case demon-
strates the use of the optimization method in determining the best
end wall contours for the given flow conditions. No blade shape
nor stagger angle changes are considered at present. The value
of Λ in the cost function is 5 for this case.

Perturbations are added on the base endwall contours in the
form of a Fourier summation of 4 harmonics:

δz(x,s) =
4

∑
i=1

[Ai(x)sin(iπ
s
s0

)+Bi(x)cos(iπ
s
s0

)]+C(x) (17)

where s0 is the local pitch. Compared with the perturbation
adopted by Corral [26], an equivalent perturbation is not required
for the blade surfaces and consequently there are more potential
profiles for the redesigned endwalls. The endwall contours are
applied symmetrically at the hub and casing for this linear cas-
cade test case.

Figure 14 shows the total pressure and entropy generation
of the blade row versus design cycles. Within 16 design cycles,
the total pressure increases by about 0.09 of a percentage point.
Figure 15 shows that the exit flow angle keeps very close to that
of the reference blade and the maximum difference is only 0.04
degree. It means that the constraint is strictly enforced in the
design process. The mass flow rate, however, is increased by
about 0.25 of a percentage point due to the reduced loss and thus
viscous blockage. This is an added benefit of the optimized blade
row.
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Figure 16 and figure 17 show the total pressure and adia-
batic efficiency distributions in the spanwise direction for both
the reference and designed blades at the outlet plane. The total
pressure of the designed blade increases at the spanwise loca-
tions from 5 to 10 percent and from 25 to 50 percent. Notice that
the total pressure of the designed blade remains nearly the same
at the midspan. This implies that the profile loss is the same as
that of the reference blade. Figure 18 shows the exit flow angle
distributions along the span at the outlet. The exit flow angle is
decreased from 5 to 20 percent but is increased in the rest of the
blade height to maintain an unchanged average exit flow angle.
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Figure19 shows the secondary loss distribution along the
span. Compared with the reference blade, the secondary vortex
of the redesigned blade migrates to the endwalls and the sec-
ondary loss decreases on the blade sections where the designed
total pressure increases as presented in figure 16.

Figure 20 shows the three dimensional contoured endwall
profile of the hub from the leading edge to the trailing edge.
Figure 21 shows the modified endwall profile on five different
specified pitchwise locations. The J=01 line corresponds to the
pressure surface, while the J=41 line corresponds to the suction
surface of the blade. The other grid lines are distributed in the
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flow passage between the pressure and suction surfaces. The ef-
fect of the endwall contouring results in an effective converging-
diverging channel for the flow passage between the blades. The
channel convergence accelerates the flow from the leading edge
to the mid chord station. After that point, the flow is deceler-
ated because of the channel divergence. In the circumference
direction, the endwall profile near the suction side is contoured
upward from leading edge to mid chord, while it is contoured
downward on the rear portion. Such a modification of endwall
profile leads to reduced cross-passage pressure gradient towards
the trailing edge. As shown in figure 22, the pressure gradient
in the pitchwise direction increases from 30% to 70% of axial
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chord on the hub, while it decreases from 70% of axial chord
to the trailing edge. The reduction of secondary flow loss might
be argued by the fact that the endwall contouring increases front
load on the blade where the endwall boundary layer is still thin
but increases the loading in the rear part of the passage where the
endwall boundary layer becomes thicker. The influence of con-
toured endwalls weakens as one moves towards the mid span.
The loading at 5% span of the redesigned blade is closer to that
of the reference blade.

In order to visualize the development of the secondary flow
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for both the reference and designed blades, the contours of
streamwise vorticity and secondary loss in the planes located at
three different axial locations are presented in the following pic-
tures. These planes are normal to the axial direction. Figure 23
and figure 24 present the contours on the planes located at 50%
axial chord for both the reference. The subfigures (a) and (b)
are for the reference and the redesigned cases, respectively.P.S.
andS.S. in the figures denote the pressure and suction sides, re-
spectively. The positive vorticity in figure 23 identifies the pas-
sage vortex, while the negative vorticity identifies the suction-
side leg of the horseshoe vortex, which is usually swept by pas-
sage vortex [10]. The size and strength of passage vortex for the
redesigned blade are almost the same as those of the reference
blade. In figure 24, the peak value of the secondary loss for the
redesigned blade is slightly increased compared with that of the
reference blade. However, as previously defined, the secondary
loss is referenced to the flow loss at the midspan. In reality, from
the results listed in Table 6, the secondary loss is slightly reduced
for the redesigned blade and the reduction is mainly contributed
by the acceleration of the flow.

Figure 25 and figure 26 present the contours on the planes
located at the trailing edge, where the contoured endwall pro-
file is blended back to the original shape. The secondary flow is
fully developed at this location. The passage vortex moves to-
ward the suction side along with the cross flow in the boundary
layer and totally sweeps the horseshoe vortex. From figure 25,
the passage vortex migrates toward the endwall and the size is re-
duced for the redesigned blade. The reduced pressure gradient in
the pitchwise direction, corresponding to the deceleration of the
flow contributes to the reduction of secondary flow. As shown in
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figure 26, the peak value of secondary loss is much less and the
secondary flow is significantly confined. As shown in Table 6,
the secondary loss for the redesigned blade decreases by about
19.8%.

Figure 27 and figure 28 present the contours on the planes
located at 150% axial chord, which is the measurement location
in the experiments. Since it is far away from the trailing edge,
the secondary kinetic energy has been considerably dissipated
at this location. As shown in figure 27, the strength of the pas-
sage vortex for both the reference and designed blades decreases.
However, the size of the passage vortex of the redesigned blade
is still reduced, compared with that of the reference blade. The
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vortexidentified by the negative vortictity and located above the
passage vortex originates from the trailing edge and is named as
the trailing shed vorticity [10] or it is originates from the suction
side and is named as the wall induced vortex [27]. In this design
case, it is difficult to reduce the strength of this vortex. There
is only a little improvement in vortex size and strength for the
redesigned blade. The two cores indentified by the negative vor-
ticity and located near the endwall are recognized as the corner
vortices, which extend in both pitchwise and spanwise directions.
The strength of these vortices are significantly decreased for the
redesigned blade. At the measurement location, the secondary
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loss decreases by about 11.7% as shown in Table 6.
Table 7 presents the total pressure loss at the selected three

different axial locations. The reduction of the total loss, which
consists of mainly profile loss and secondary loss, at all the three
locations show that the contoured endwall profiles can effectively
confine the secondary flow with the constraint on flow turning.

CONCLUSION
A continuous adjoint method based on the Navier-Stokes

equations is presented for the aerodynamic design optimization
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Table 6. Secondary loss (%) at three different axial locations

Locations 50% 100% 150%

Reference 0.30492 0.72224 1.89192

Designed 0.20561 0.57925 1.67061

Table 7. Total loss (%) at three different axial locations

Locations 50% 100% 150%

Reference 1.98375 2.68232 3.91191

Designed 1.84981 2.57003 3.68803

of turbomachinery blade rows. Gradient information of the cost
function is obtained by solving the Navier-Stokes equations and
their corresponding adjoint equations only once, independent of
the number of design parameters. A base flow solver incor-
porates thek-ω SST turbulence model uses a third order Roe
scheme for the Euler part of the equations. A scalable wall func-
tion method is implemented in order to relieve the stringent grid
requirement near walls. The flow solver with the use of the
wall function is validated for the turbulent flow over a flat-plate
and also for the flow through the linear cascade under consid-
eration for optimizatin by comparing the computed profile and
secondary flow losses with measured data from experiments and
the solutions on successively finer grids with and without the
wall function. Optimization studies are performed on a grid that
shows near grid independent solutions.

Three design optimization cases are performed with the
common objective of minimizing entropy production through the
blade row while maintaining a fixed average turning angle. The
first design cases attempts to do so by restaggering the original
blade profile in the spanwise direction. An optimal spanwise dis-
tribution of the blade stagger angle is determine, which gives a
slight reduction in the overall total pressure loss. The optimiza-
tion attempts to reduce the turning in the near wall region but
increases turning at the mid-span in order to maintain the same
average exit flow angle. The over-turning in the mid-span region
increases the profile loss, but for this low-aspect ratio blade, the
reduction in secondary flow due to restaggering dominates and
therefore brings about a positive gain on overall efficiency.

The second design case allows changes both in stagger an-
gle and blade profiles. The separate and combined effects of the
stagger angle and blade profile changes are investigate. The stag-
ger angle changes of the redesigned blade is responsible for a
large portion of the reduction in secondary flow loss, but it re-

duces the overall turning angle of the flow. The modification of
the blade shape, however, counter-acts the flow turning changes
due to restagger. In addition, the shape modification decreases
the loading near the hub and hence inhibit the generation of sec-
ondary flow. The combined effect of the restagger and profile
change significantly reduces the secondary flow loss with only a
small increase in profile loss.

Finally, optimization by using endwall contouring is studied
for this blade row. The automatic design optimization code pro-
duces a three-dimensional endwall shape that raises the endwall
near the suction side of the blade before mid chord but lowers it
after the mid chord position. This has the dual effect of acceler-
ating the flow and increasing the pitchwise pressure gradient in
the front portion of the blade passage while doing the opposite
in the after portion of the passage. The reduction in secondary
flow loss is achieved by incresing flow turning when the endwall
boundary layer is still thin and the flow speed is high and then re-
ducing the turning in the rear part of the blade where the endwall
boundary layer is thick and flow speed is low.
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Appendix A: Boundary Conditions, Adjoint Equa-
tions and Variation of Cost Functions

Boundary Conditions of Flow Solver
Inlet boundary conditions:

The total pressurep0, total temperatureT0, the two inflow
angles are specified.

Outlet boundary conditions:
The back pressurep is specified.

Viscous Wall boundary conditions:
The velocity on the viscous wall is zero:

u1 = 0, u2 = 0, u3 = 0

Periodic boundary conditions:

wi,B2 = wi,B1, i = 1,2,5

w3,B2 = w3,B1cosθ−w4,B1sinθ

w4,B2 = w3,B1sinθ+w4,B1cosθ

whereB1 andB2 are two periodic boundaries; andθ is the pitch
angle of annular cascade. For a linear cascade blade,θ = 0

Adjoint Equations
The final expression of the adjoint equations in unsteady

form is

∂Ψ
∂t

−AT
i

∂Ψ
∂xi

− [M−1]T
Y
J

= 0 (18)

whereY = L̄Ψ andL̄ is the primitive adjoint operator.M is the
transformation matrix because the variation of viscous stresses
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depend on the velocity gradient∂ui
∂xj

and a transformation to prim-

itive variables must be introduced.

δW̄ = M−1δW (19)

[M−1]T =
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(20)

Y = J































− a2µ
(γ−1)Pγρ

∂2θ
∂x2

j

∂
∂xj

[µ( ∂φi
∂xj

+
∂φ j
∂xi

)+ λδi j
φk
∂xk

]

+ ∂
∂xj

[µ(ui
∂θ
∂xj

+u j
∂θ
∂xi

)+ λδi j uk
∂θ
∂xk

]−σi j
∂θ
∂xj

a2µ
(γ−1)Pγρ

∂2θ
∂x2

j































(21)

where

σi j = µ(
∂ui

∂x j
+

∂u j

∂xi
)+ λδi j

∂uk

∂xk

Inlet a nd Outlet Boundary Conditions of Adjoint Equa-
tions

Since the cost function is selected as the same as that in the
paper of present authors [24], the inlet and outlet boundary con-
ditions are the same.

Viscous Wall Boundary Conditions

φk = 0, k = 1,2,3 (22)

Resultant Variation of Cost Functions due to Geometry
Variation

δIg =

∫

D

∂ΨT

∂ξi
(δSi j )( f j − fv j)dD

−

∫

D
kSi j

∂θ
∂ξi

δ(
Sl j

J
)

∂
∂ξl

(
p

ρR
)dD

−
∫

D
Si j (

∂φl

∂ξi
+

∂θ
∂ξi

ul )(δσ∗
jl )dD, l = 1,2,3 (23)

where

δσ∗
jl = µ{δ(

Sk j

J
)

∂ul

∂ξk
+ δ(

Skl

J
)

∂u j

∂ξk
}+ λδ jl δ(

Skm

J
)

∂um

∂ξk

f j =























ρu j

ρu1u j + pδ j1

ρu2u j + pδ j2

ρu3u j + pδ j3

ρu jE























, fv j =























0
σi j δi1

σi j δi2

σi j δi3

uiσi j +k ∂T
∂xj






















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