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The Effects of Surface 
Irregularities on the 
Elastohydrodynamic Lubrication of 
Sliding Line Contacts. Part I— 
Single Irregularities 
A full line contact solution, under isothermal conditions, is obtained in which the 
effects of single stationary surface irregularities on the EHD lubrication process are 
studied under pure sliding conditions. The irregularities studied are furrows, 
furrows with built-up edges, and asperities. The effects of these irregularities on 
film thickness, pressure, and subsurface octahedral shear stress are presented. The 
pressure and film thickness resulting from such surface irregularities are 
significantly changed from their smooth surface values. These changes alter the 
state of stress in the subsurface region by increasing the maximum value of oc­
tahedral shear stress and bringing the location of this maximum stress closer to the 
surface. The film thickness in the contact is significantly changed from the smooth 
surface value only when the irregularities are located in the inlet region while the 
maximum value of the octahedral shear stress increases to the greatest extent when 
the irregularities are located in the outlet half of the contact. 

Introduction 

The topography of the surfaces in concentrated contact 
influences the lubrication process and the associated stress 
field in the solids, which can significantly contribute to both 
surface-initiated fatigue failures and scuffing failures of 
mechanical elements. Surface-initiated fatigue failures can 
take place as the result of asperity interactions that cause 
plastic deformation and subsequent micropitting and 
microcracking of the surfaces. Such failures can also take 
place as the result of manufacturing processes or service 
related surface defects. Surface topography is also intimately 
connected to the events initiating scuffing. The localized 
surface damage is caused by the solid-phase welding of in­
teracting asperities and the consequent tearing of these welds 
due to the relative motion of the surfaces. The dominating 
importance of both surface-initiated fatigue failures and 
scuffing failures in concentrated contacts has served to in­
crease interest in the study of the effects of surface roughness 
and surface defects on the lubrication mechanics as it relates 
to these failures. 
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One approach that has been taken in studying surface 
roughness effects is to use models that provide information on 
the lubrication process only in an average sense. Stochastic 
roughness models have been used in hydrodynamic 
lubrication by Tzeng and Saibel [1] and Christensen [2, 3], 
while Patir and Cheng [4, 5] have proposed a three-
dimensional surface model for calculating average flow and 
average pressure. The line contact EHD lubrication problem 
with random surface roughness has been solved by Chow and 
Cheng [6]. 

With the stochastic approach discussed above, information 
about the influence of individual surface irregularities cannot 
be extracted. Thus, important quantities such as peak 
pressures, maximum values of stress, and minimum film 
thicknesses caused by these irregularities are not known. This 
limitation of the stochastic approach can be avoided by 
studying the effects of a single irregularity on the pressure, 
subsurface stress, and film thickness profile in EHD 
lubrication. Such studies have been analytically conducted by 
Fowles [7], and Cheng and co-workers [8-11]. 

Experimental studies of rough surfaces under EHD 
lubrication conditions are very difficult to perform. The rapid 
changes in surface profile due to random surface irregularities 
can cause problems in determining the true film profile. 
Recent experimental studies have concentrated on single and 
multiple irregularities produced on smooth surfaces. Among 
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these studies have been those of Jackson and Cameron [12], 
Kaneta and Cameron [13], Wedeven [14], Wedeven and 
Cusano [15], and Cusano and Wedeven [16, 17]. With the 
exception of [14], where the irregularity was previously 
formed by debris, all other experimental studies mentioned 
above were conducted by using artificially produced surface 
irregularities. 

The purpose of this study is to present data on the effects of 
geometrically simple surface irregularities on the film 
thickness, the pressure distribution, and the subsurface shear 
stress field in sliding EHD line contact lubrication under 
isothermal conditions. The data presented in Part I of this 
study are an extension of the data presented by Cheng and 
Bali [11]. They used a Grubin-type solution to study single 
stationary irregularities in line contact under pure sliding 
conditions. A full line contact solution is presented in this 
paper. As in [11] only the pure sliding case with stationary 
irregularities is considered. Based on the results presented in 
Refs. [13, 17], these kinematic conditions lead to results that 
represent an upper bound on film thickness changes for a 
given irregularity. Such an upper bound implies an upper 
bound on the changes in pressure and subsurface shear 
stresses. 

Governing Equations 

A brief description of the governing equations and their 
solution will be given. These equations and the technique used 
for their solution are thoroughly discussed in [18]. 

The line contact EHD lubrication problem (two elastic 
rollers) under steady state operating conditions is considered. 

To obtain steady state conditions, the irregularities are 
located on the stationary surface (top surface in this study). 
The x-axis is taken along the moving surface (bottom surface 
in this study) and the z-axis is taken normal to and directed 
outward from this surface. The origin of the coordinate 
system is located at the center of the Hertzian contact. 

For the problem under consideration, the Reynolds 
equation is given by 

d / ph3 dp 

dx\n dx 
/ph^ dp_\ = 

V i j dx ) 
\2u~{ph) 

dx (1) 

The description of the film profile between two elastic 
rollers in EHD contact depends on the rigid body separation 
of the two surfaces and the surface displacements caused by 
interfacial hydrodynamic pressures. For smooth cylinders, 
this film profile may be expressed as: 

h = h0 + (x2/2Rl) + (x2/2R2) + t1(x) + t2(x) (2) 

The expressions for the displacements t\{x) and t2(x), 
caused by a line pressure distribution along an elastic half-
space are given by Timoshenko and Goodier [19]. With the 
geometry of a surface irregularity described by a function 
d(x), the film profile between two elastic rollers is given by 
[18]: 

' • > ! h = h0 + (x2/2R)-(2/TrE')\ p(s)ln((x-s)/s)2ds + d(x) (3) 

The surface irregularity d(x) is described by periodic 
functions and can be represented by the generalized geometry 
shown in Fig. 1. In terms of the x' —d axes given in this 
figure, d{x') is defined as 
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Fig. 1 Generalized geometry of a single surface irregularity 

Fig. 2 Two-slope pressure-viscosity model of Allen, Townsend, and 
Zaretsky [20] 
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Note that the origin of the x' —d axes is located at x* with 
the x' axis along a line which coincides with the smooth 
geometry of the upper surface. The position of x*, on the pr­
axis, coincides with the summit of an asperity or the deepest 
part of a furrow. In this paper the following irregularities are 
considered: a simple symmetric furrow without a built-up 
edge, a symmetric furrow with a built-up edge on the outlet 
side (right side), a symmetric furrow with a built-up edge on 
the inlet side (left side) and a simple symmetric asperity. Using 
the symbols given in Fig. 1, these irregularities are described 
as follows: 

1. Simple symmetric flow without a built-up edge has 
dl=d3=li = l4=0J2=l3>0andd2<0. 

2. A symmetric furrow with a built-up edge only on the 
outlet side has dl=l]=0, / 2 = / 3 > 0 , / 4 >0, t f 3 >0 and 
rf2<0. 

3. A symmetric furrow with a built-up edge only on the 
inlet side has d3 =/4 =0, l2 =/3 >0 , l{ >0, dx >0and 
d2<0. 

4. A simple symmetric asperity is the same as a simple 
furrow except d2 >0 . 

Since isothermal conditions are considered in this paper, 
the viscosity, r/, in equation (1) is a function of pressure alone. 
The pressure viscosity model is a modified version of the two 
slope exponential model proposed by Allen, Townsend and 
Zaretsky [20]. The model proposed in [20] is stated 
mathematically as: 

f Voea'p 
P^P\ 

(5) 

7i0e
aipi +a2<J>-p\) P>P\ 

Equation (5) is represented by the solid shown in Fig. 2. 
The behavior of oils under pressure does not suddenly 

change at p=P\. There must be a smooth transition between 

the two regions where the differing exponents apply. This 
concept is illustrated by the dashed line in Fig. 2. The tran­
sition may be accomplished by fitting a cubic polynomial to 
the exponent between points p„ and pb on the two slopes of 
the pressure-viscosity model. The general form of this 
modified pressure-viscosity model then becomes: 

Voea'p P^Pa 

Voe 
[a0+alp + a2p + a3p ) 

Pa <P <Pb (6) 

Vo?' a\P\ +i2\p-px) P^Pb 

The coefficients a0 through a3 are found by requiring 
continuity of ln(?j) and d(ln iq)/dp atpa a.ndpb. For the results 
presented in this paper p„ and/?/, are arbitrarily fixed at 0.75 
Pi and 1.4/?!, respectively. 

The density, p, in equation (1) is also a function of pressure. 
A model which closely matches experimental data was 
proposed by Dowson and Higginson [21]. This model is 
expressed mathematically by 

p = p/PQ = l + [Ap/(l+Bp)] (7) 

To obtain a solution to the line contact problem, equation 
(1) is first discretized using standard second order finite 
difference forms for variable grid spacing. After 
discretization, equation (1) is written in residual form at each 
finite difference grid point. If the pressure and film thickness 
distribution represent a solution, the residual is zero. A 
residual expression representing the integral of the pressure 
over the solution region minus the specified load is appended 
to the system of residual equations. The central film thickness 
is used as a variable to control the integral of the pressure 
(load capacity). In obtaining a solution, an initial pressure 
distribution and central film thickness are assumed. An 
iterative scheme, based on the Newton-Raphson procedure 
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Fig. 3(a) Pressure distribution and film thickness 
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Fig. 3(b) Subsurface octahedral shear stress contours 

Fig. 3 Reference smooth surface solution 

for a system of equations, is used to drive the residuals to 
zero. 

Data on the subsurface shear stresses are obtained by 
calculating the octahedral shear stress which, in terms of 
principal stresses, is given by: 

roa = j [(a, - o2f + (a2 - a3)2 + (0-3 - <r, f]'A . (8) 

The stress calculation is based on the work of Dowson, 
Higginson, and Whitaker [22]. 

Results 

Solutions to the line contact EHD lubrication problem are 
presented in this section for the surface irregularities 
described previously. These solutions were obtained in order 
to investigate the effects of location (within and around the 
Hertzian region) and geometry of the irregularities on film 
thickness, pressure distribution and subsurface octahedral 
shear stresses. 

The results to be presented are given in terms of the 
following nondimensional parameters: W, U, Gx, G2, P\, A, 
and B. 

This set of nondimensional parameters is sufficient to fully 
specify the solution of the smooth surface EHD line contact 
problem. The groupings for load, speed, material, and density 
parameters are those used by Dowson and Higginson [21]. 
The nondimensional parameters used for computational 
purposes were different from the parameters listed above and 
were chosen to insure a computational technique that would 
result in a minimum of round-off error. 

The geometry of the irregularities is described in terms of 
dimensionless height and width parameters given by: 

d,/h0im and l/b; i= 1,2,3; j= 1,2,3,4 

For all the surface irregularities considered in this paper, the 
Parameter d2/hosm is given the symbol A while the parameter 
k/b = l3/b is given the symbol C. All the results to be 
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Fig. 4(a) Pressure distribution and film thickness 
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Fig. 4(b) Subsurface octahedral shear stress contours 

Fig. 4 Effect of furrow located in the Inlet, A = - 5.34, x*/b = - 0.9 

presented have the following common nondimensional 
parameters: W=0.15 x 10~4, £7=0.31 x 10~ u , G,=5000, 
G2 =600, .4 = 132, £ = 383, and C = 0.3. Various values of 
G[, G2, A, and B have been used or suggested in the past for 
steel lubricated with mineral oils [11, 20, 21]. The values used 
in this paper are representative of those used in these earlier 
investigations. Because of limited space, only some 
representative results are given. Additional results can be 
found in [18]. 

For the data presented in Figs. 3 through 7, in addition to 
the parameters given above, a value of Pi =0.76 x 10 ~3 is 
used. This value of P\ is somewhat lower than that used in 
[11]. However, because of the higher initial slope for the 
pressure-viscosity model used in this paper relative to the 
pressure-viscosity model used in [11], the lubricant viscosity at 
the break points is approximately the same for the two 
models. In Figs. 3 through 7, the figures labeled "a" show the 
EHD pressure distribution and the dry contact Hertzian 
pressure distribution both normalized by the Hertzian peak 
pressure. In addition, these figures show the film thickness 
which is normalized by the central film thickness (hmm) ob­
tained from the EHD lubrication of two smooth surfaces in 
pure sliding. This film thickness is further scaled by a factor 
of four to more appropriately position the profile in the 
figures. The figures labeled "b" in Figs. 3 through 7 show a 
map of the lines of constant values of octahedral shear stress 
in the subsurface region directly beneath the contact area. 
These stresses are normalized on the peak Hertzian pressure. 

Figure 3 shows the film thickness profile, pressure 
distribution, and octahedral shear stress field for two smooth 
surfaces in pure sliding. These plots are used as a reference in 
discussing the results to be presented for the simple furrow. 
The stress contours follow those predicted by Poritsky [23] 
for the Hertzian contact, deviating slightly at the outlet region 
where the contours are drawn closer to the surface near the 
outlet pressure rise. The maximum value of the subsurface 
octahedral shear stress is 0.2608 p0 and it occurs on the line 
x = 0 at the depth of z/b = - 0.70. 

In Figs. 4 through 7, a furrow having A= -5 .34 is shown at 
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Fig. 5 Effect of a centrally located furrow, A = - 5.34, x*/b = 0.0 

various locations in and around the Hertzian contact zone. 
The furrow center location is specified by the nondimensional 
parameter x*/b. For l.2<x*/b and x*/b< -1.7, the 
solutions are the same as if no furrow were present. 

Figure 4(a) shows the film thickness and pressure 
distribution for the furrow positioned at x*/b = -0.9. For 
this location, the central film thickness increases 31 percent 
when compared with the reference case (Fig. 3(a)). As ex­
pected, the pressure distribution is modified by the presence 
of the furrow. The shallow pressure of the inlet sweep now 
extends to within the Hertzian region and there is a steep 
pressure rise on the outlet edge (right side) of the furrow. The 
remaining portion of the Hertzian zone remains similar to 
that of the reference case. When compared to the reference 
case, the corresponding stress contours shown in Fig. 4(b) are 
closer to the surface in the area around the outlet side (right 
side) of the furrow. The maximum value of octahedral shear 
stress has increased only slightly from the reference case and 
is located at about the same depth but about one-quarter of a 
Hertzian halfwidth toward the inlet side when compared to its 
location for the reference case. 

With the same size furrow centrally located, the change in 
the central film thickness is small as shown in Fig. 5(a). The 
central film thickness in this case was taken to be the average 
of the film thicknesses at x*/b= ±0.5. The notable point 
about the film thickness profile is the constriction at the 
leading edge of the furrow and the compression of the furrow 
depth to about one fourth its initial depth (from an un-
deformed depth of 5.34 hosm to about 1.15 hosm. The pressure 
distribution changes dramatically when compared with the 
reference case. The contact is essentially divided into two 
separate but coupled EHD solutions. 

The stress contours shown in Fig. 5(b) have a distinctly 
different pattern than the reference case. There are two local 
maxima of stress values located at the inlet and outlet edges of 
the furrow. The largest value of octahedral shear stress is 
located at the inlet edge and is about 36 percent higher than 
the value of the octahedral shear stress in the reference case. 
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Fig. 6(a) Pressure distribution and film thickness 
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Fig. 6(b) Subsurface octahedral shear stress contours 

Fig. 6 Effect of a furrow located in the outlet, A = - 5.34, x'lb = 0.3 

The location of the maximum value of the octahedral shear 
stress has changed considerably, now it is located at a depth of 
about z/b= -0.06 and shifted laterally to the left to a 
position below the inlet edge of the furrow. The octahedral 
shear stress moves closer to the surface because of the high 
pressure peaks and pressure gradients occurring over a 
smaller contact area relative to the reference case. 

Placing the furrow center at x*/b = 0.3 results in the 
solution shown in Fig. 6. This case shows many of the same 
attributes of the case presented in Fig. 5. The film thickness 
constricts at the inlet side of the furrow as well as the overall 
outlet. The central film thickness is essentially the same as the 
reference case, varying by only 4 percent. The octahedral 
shear stress contours, shown in Fig. 6(b), show two local 
maxima as in the previous case. The maximum value oc­
tahedral shear stress occurs at a depth of z/b= -0.07 and is 
below the inlet edge of the furrow. The value of the maximum 
stress is about 40 percent larger than the reference case. 

Figure 7 shows the solution for the furrow center located at 
x* /b = 0.8. The pressure rises to a peak on the inlet side o f the 
furrow in a similar manner to the previous two cases 
presented. The pressure drops to near zero within the furrow, 
begins to rise again at the outlet side of the furrow and drops 
back to zero just outside the dry contact Hertzian zone. 

The film profile resembles the reference case throughout 
much of the contact up to the inlet side of the furrow. The 
central film thickness is about 4 percent less than that of the 
reference case. Also there is a constriction on the inlet edge of 
the furrow but the outlet edge of the furrow prevents the 
forming of the usual constriction at the exit. 

The octahedral shear stress contours, shown in Fig. 1(b), 
again have local maxima below the inlet and outlet edges of 
the furrow. The overall maximum octahedral shear stress is 
below the inlet edge of the furrow at the depth of z/b = - 0.06 
and is 25 percent larger than the maximum found in the 
reference case. 

The furrow with a non-dimensional depth of A= -5.34 is 
chosen to illustrate the change in location of the maximum 
octahedral shear stress as the furrow center takes on various 
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Fig. 7 Effect of furrow located in the outlet, A = - 5.34, x*/b = 0.8 
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positions in the contact. Figure 8 shows the octahedral shear 
stress maxima for various values of x"/b. Each symbol in the 
subsurface region indicates the location of the maximum 
stress while the corresponding symbol on the line z/b = 0 
indicates the location of the center of the furrow. The arrows 
connecting the symbols indicate the movement of the 
maximum stress as the furrow is moved from inlet to outlet. 
With the furrow outside the inlet region (x*/b< -1.5), the 
maximum value of the octahedral shear stress occurs at the 
same location as for the reference case. This location moves 
slightly to the left and then toward the surface for x*/b= -
1.0 and -0.9, respectively. For -0.3 <**/&< 1.0, the 
maximum value of the octahedral shear stress occurs at the 
depth of less than z/b= -0.10 and is located below the inlet 
edge of the furrow where the pressure peaks occur. With the 
furrow located at x*/b>\.2, the position of the maximum 
octahedral shear stress returns to the same location as the 
reference case. The maximum value of octahedral shear stress 
is located closest to the surface (z/b = - 0.06) when the groove 
center is at x*/b = 0.0 and 0.8. 
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Fig. 10 Central film thickness ratio as a function of furrow position for 
three furrow depths 

The influence of the depth of centrally located furrows on 
the film thickness and pressure distribution is shown in Fig. 9. 
As expected, Fig. 9(a) shows that, as A increases, the pressure 
peaks on both sides of the furrow become higher and the 
pressure at the furrow center approaches zero. The film 
thickness shown in Fig. 9(b) is essentially the same outside the 
furrow area for all three furrow depths considered. 

To illustrate how film thickness is influenced by the 
presence of a furrow, a graph synthesizing the results for the 
central film thickness obtained from 65 solutions is shown in 
Fig. 10. The data for this graph are for three non-dimensional 
furrow depths of A= - 1.06, -3.20, and -5.34. The region 
of influence for the furrow is within the range 
-2.0<x*/b<0.5. The general trend for all furrows con­
sidered is the same. For furrow locations approaching the 
inlet side of the Hertzian region, there is a central film 
thickness reduction below that of the reference case. Within a 
narrow range near the inlet edge of the Hertzian zone, there is 
a film thickness increase above that of the reference case. In 
all cases the film thickness ratio approaches 1.0 as the center is 
located toward the exit side of the Hertzian contact. 

The same phenomenon of film reduction, increase and 
subsequent approach to a lower value was observed by 
Cusano and Wedeven [17] as a surface irregularity was moved 
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through the inlet and central region of an EHD point contact. 
Since their data were obtained for a ball with a dent in contact 
with a plate, the present results and those in [17] are not 
directly comparable. However, the flow in the center of an 
EHD point contact is mainly velocity-induced and a single 
dent of diameter small enough compared to the Hertzian 
circle would not allow significant side leakage. The film 
thickness in a band upstream and downstream of the dent 
would be expected to behave much like that of a furrow in line 
contacts. 

The effects of furrow location and depth on the maximum 
value of octahedral shear stress are shown in Fig. 11. The 
stress ratio is defined as the ratio of the maximum value of the 
octahedral shear stress of the case indicated to that of the 
reference case. Figure 11 shows this stress ratio as a function 
of furrow center location for each furrow depth presented. 
The stress is not significantly influenced by the furrow with 
the smallest depth (A = -1.06). The magnitude changes by 
less than 4 percent and the location of the maximum oc­
tahedral shear stress remains at about the same location as 
that of the reference case. There is a more significant change 
in stress when the dimensionless furrow depth is increased to 
A= -3 .20 . The maximum value of octahedral shear stress 
increased 12.5 percent above the reference value when this 
furrow is located at x*/b-0.&. As expected, the largest in­
crease in the maximum value of the octahedral shear stress 
occurs with the deepest furrow considered (A= -5.34). The 
stress ratio curve for this furrow depth peaks when the furrow 
is located at x*/b = 0.3. At this location the maximum value 
of the octahedral shear stress is 40 percent greater than the 
smooth surface reference. Note that for all cases considered, 
the only significant increase in the stress ratio occurs when the 
center of furrows is located within the Hertzian zone. 

If a furrow is produced in a metal surface due to debris, 
machining or assembly damage, the metal flow will frequently 
cause a small protrusion at one or both edges of the furrow. 
In [17], these protrusions or built-up edges were found to 
cause large local film thickness variations in the areas where 

Fig. 13 Central and minimum film thickness ratios for a furrow with an 
outlet side built-up edge, A = -1.06 
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Fig. 14 Effect of furrow with an inlet side built-up edge on pressure 
distribution and film thickness, x*/b = 0.0, A = -1.06 

they were located which also implied very large pressure 
variations in these areas. In addition to furrows with built-up 
edges, another surface irregularity which has practical 
significance is the asperity. Limited data will be given on the 
effects of furrows with built-up edges and asperities on both 
film thickness and pressure distribution in line contacts. 

In obtaining the following data, the breakpoint, P\, was 
increased from 0.76 x 10~3 to 0.91 x 10"3 . This change will 
bring the breakpoint to a value closer to that suggested in [20] 
and used in [11]. It should be noted that as long as P\ 
represents a pressure which is larger than the pressure in the 
inlet region of the Hertzian contact, moderate changes in P\ 
will not appreciably change the results presented in this paper. 

In Fig. 12 the pressure distribution and film profile are 
shown for the furrows with an outlet (right side) built-up 
edge. The furrow is located at x*/b = Q.0. Using the notation 
of Fig. 1, the geometric parameters used to obtain these data 
are: / , / 6 = 0.0, l4/b = 0.20, d\/hoim=0.0, & = d2/hosm = 
- 1.06 and d3/hosm =0.21. The pressure distribution shown in 
Fig. 12 is similar to that shown in Fig. 11 for the same value of 
A except that, because of the built-up edge, the pressure peak 
on the outlet side of the furrow is both wider and higher 
compared with the pressure peak on the inlet side. The film 
shape has been deformed in such a way as to essentially 
eliminate both the furrow and built-up edge, leaving an 
almost constant film thickness in the central region. The 
pressure distribution and film profile remain essentially the 
same as the smooth surface case both upstream and down­
stream of the defect. 

Figure 13 shows the changes in both central and minimum 
film thicknesses as the defect is positioned at various locations 
in the Hertzian contact region. The only significant changes in 
central and minimum film thicknesses occur with the defect 
positioned in the inlet region. 

Film thickness and pressure distributions for a centrally 
located furrow with an inlet built-up edge are shown in Fig-
14. The nondimensional geometric parameters for this defect 
are: It/b = 0.20, l4/b = 0.0, d{/hmm =0.21, A = d2/hosm=: 
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being negative. From Fig. 16(a) it is seen that the decrease in 
pressure at the edges of the asperities is larger for the larger 
asperity. This decrease is caused by the relatively large surface 
deformation at the edges of the asperities. The film thickness 
profiles, shown in Fig. 16(b), are nearly the same throughout 
the inlet and central regions. For A=1.06 and 2.14, the 
central film thickness values are, respectively, 2.2 percent and 
3.3 percent smaller than the smooth surface case, while the 
minimum film thickness values are, respectively, 4.2 percent 
and 18 percent smaller than the smooth surface case. 

For A =1.06, both central and minimum film thicknesses 
do not vary substantially from the smooth surface value as the 
asperity is located at various positions in the Hertzian region. 
The central film thickness is never more than 2.5 percent 
greater than the smooth surface case and up to 14 percent 
smaller. The minimum film thickness is never more than 1 
percent greater than the smooth surface case and up to 14.5 
percent smaller. The central film thickness is primarily in­
fluenced by the presence of the asperity in the inlet region at 
x*/b~ - 1 . 0 . The minimum film thickness is influenced by 
the asperity located near the inlet, in the same manner as the 
central film thickness, and at the outlet where there is an 
interaction between the asperity and the outlet constriction. 

The maximum value of the octahedral shear stress for the 
asperity follows the same trends as the simple furrow as the 
asperity height is increased relative to the central film 
thickness. For an asperity with A = 2.14, the maximum value 
of the octahedral shear stress is 25 percent larger than the 
smooth surface case and it is located at z/b= -0 .15 com­
pared to z/b = - 0.70 for the smooth surface case. 
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Fig. 16 Effect of asperity height on EHD lubrication for a centrally 
located asperity 

-1.06 and di/hosm=0.0. As expected, the shapes and am­
plitudes of the pressure peaks on each side of the furrow are 
opposite to those shown in Fig. 12. Again the film thickness 
distribution is approximately the same as the smooth surface 
case. The film thickness as a function of the position of the 
furrow is shown in Fig. 15. The changes seen are similar to 
that shown in Fig. 13. A notable point in this case is that the 
presence of the furrow in the vicinity of the usual location of 
the outlet constriction has increased the minimum film 
thickness above the smooth surface values by about 14 
percent. 

Built-up edges were observed to cause large film thickness 
variations from the smooth surface value in [17]. The reason 
for not observing such large variations in this study is because 
the height of the built-up edges and depths of the grooves 
(normalized on the smooth surface central film thickness) are 
smaller than the heights and depths considered in [17]. 

The pressure distributions and film thickness profiles for 
two centrally located asperities are shown in Fig. 16. Note 
that, geometrically, these asperities are described by the same 
parameters as a simple furrow except A is positive instead of 

Discussion 

The results presented in this paper show the effects of single 
surface irregularities on the film thickness profile, pressure 
distribution and octahedral shear stress in sliding line contacts 
under isothermal conditions. Similar results have been ob­
tained by Cheng and Bali [11] for defects located in the inlet 
region. The values of Gu and U in this study differ from 
those used by Cheng and Bali and, therefore, prevent a 
meaningful direct comparison of results. The kinematic 
conditions analyzed in this study as well as those in [11] 
should result in an upper bound on both film thickness and 
pressure variations. This upper bound has been implied by the 
experimental results given in [13, 17]. Therefore, any other 
kinematic conditions such as pure sliding in which the defects 
are moving, combined rolling and sliding or pure rolling 
should have less influence on film thickness and pressure, for 
the same operating conditions and defect geometry, than the 
influence observed in this paper. 

The results presented show that surface irregularities can 
significantly influence the lubrication process in lubricated 
concentrated contacts. These irregularities can cause high 
peak fluid pressures which influence the octahedral shear 
stresses in the metal. These stresses tend to increase locally in 
the region directly below a pressure peak and high pressure 
gradient caused by the irregularities. If the localized pressure 
is high enough, the location of the maximum value of the 
octahedral shear stress will move from approximately the 
location of the dry Hertzian maximum octahedral shear stress 
to a location much closer to the surface and directly below the 
localized pressure peak. A similar phenomenon is apparent in 
the data presented by Dowson, Higginson and Whitaker [22] 
for the maximum shear stress. The increase in and movement 
closer to the surface of the maximum value of the octahedral 
shear stress due to localized pressure peaks and large pressure 
gradients caused by surface irregularities can shorten the 
fatigue life of machine elements. 

Surface irregularities can also influence scuffing failures in 
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machine elements. All the surface irregularities studied have 
caused position-dependent changes in the film thickness 
within the contact. In many cases, the central film thickness 
decreased significantly from the smooth surface values, some 
as much as 32 percent (see Fig. 10). Such film thickness 
reductions can lead to increased scuffing failures. 

The effects of surface irregularities on the EHD lubrication 
process can depend on a number of factors which have not 
been analyzed in this study. Some of these factors are dif­
ferent kinematic conditions of the contacting surfaces, 
geometry of irregularities which could produce much larger 
variations in film thickness and pressure (including 
cavitation), and a more realistic rheological model for the 
lubricant which, could show less drastic changes in pressure 
and pressure gradients in the neighborhood of the 
irregularities. However, the results presented in this paper are 
useful in estimating the influence of surface irregularities on 
the EHD lubrication process and the resulting subsurface 
stress distributions. 

Summary 

Some of the more important observations which can be 
made about the effects of surface irregularities on the. 
lubrication process in line EHD contacts under pure sliding 
conditions are: 

1. Surface irregularities can significantly alter both 
pressure and film thickness distribution from their 
smooth surface values. These changes alter the state of 
stress in the subsurface region mainly by increasing the 
value of the maximum octahedral shear stress and 
bringing the location of this maximum closer to the 
surface. 

2. The position of the converging or diverging portion of 
an irregularity in the critical inlet region respectively 
causes an increase or decrease in the film thickness in the 
contact. 

3. The minimum film thickness is affected both by the 
general increase or decrease caused by changes in the 
inlet geometry, as mentioned above, and by local 
geometry deviations from the smooth surface at outlet 
constriction. 

4. Film thickness constrictions within the contact area are 
observed with furrows when the pressure within the 
furrows approaches zero. 

5. Subsurface stress levels increase to the greatest extent 
when irregularities are located in the outlet half of the 
contact. 
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