
PHYSICAL REVIEW A 86, 033822 (2012)

Delay feedback induces a spontaneous motion of two-dimensional cavity solitons in driven
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We consider a broad area vertical-cavity surface-emitting laser (VCSEL) operating below the lasing threshold
and subject to optical injection and time-delayed feedback. We derive a generalized delayed Swift-Hohenberg
equation for the VCSEL system, which is valid close to the nascent optical bistability. We first characterize the
stationary-cavity solitons by constructing their snaking bifurcation diagram and by showing clustering behavior
within the pinning region of parameters. Then, we show that the delayed feedback induces a spontaneous
motion of two-dimensional (2D) cavity solitons in an arbitrary direction in the transverse plane. We characterize
moving cavity solitons by estimating their threshold and calculating their velocity. Numerical 2D solutions of the
governing semiconductor laser equations are in close agreement with those obtained from the delayed generalized
Swift-Hohenberg equation.
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I. INTRODUCTION

During the past two decades, the study of localized
structures, often called dissipative solitons or cavity solitons,
has attracted considerable attention in many areas of natural
science, such as chemistry, plant ecology, and optics (see
recent overviews [1–5]). They attract growing interest in optics
due to potential applications for all-optical control of light,
optical storage, and information processing [6–12]. These
stable localized objects arise in a dissipative environment
and belong to the class of dissipative structures found far
from equilibrium. Cavity solitons are stationary localized
intensity peaks that appear in a subcritical regime, involving
a homogeneous background of radiation and a self-organized
periodic pattern, which are both linearly stable. They can be
manipulated individually by the process of writing or erasing
through an external control beam when they are sufficiently
well separated from each other. When, however, the distance
between peaks decreases, they start to interact through their
oscillating exponentially decaying tails. This interaction then
leads to the formation of clusters. Therefore, the number of
peaks and their spatial distribution in the transverse plane can
be either independent and randomly distributed or clustered
forming a well-defined spatial pattern [13]. Recently, the
relative stability analysis of different clusters of closely packed
localized peaks has been performed [14].

Cavity solitons are not necessarily stationary objects.
They can be time dependent, e.g., moving or oscillating. In
particular, different mechanisms leading to the motion of
dissipative solitons have been described in the literature. It has
been shown that uniform motion of solitons can be induced
by a vorticity [15], finite relaxation rates [16–18], a phase
gradient [19], an Ising-Bloch transition [20–22], a walk-off, a
symmetry breaking due to off-axis feedback [23], a resonator
detuning [24], or a Hopf-Turing interacting bifurcation [25].

More recently, it has been shown that inclusion of delayed
feedback in the dynamics of spatially extended systems can

lead to a drift instability in cavity solitons [26]. This behavior
has been identified first in the case when the delayed feedback
is frequency selective [27–30]. Spontaneous motion of a
single-cavity soliton in the case of non-frequency-selective
(i.e., regular) feedback has been predicted in Ref. [26]. This
result has been obtained with a model of a passive nonlinear
cavity filled with two-level atoms without population inversion
and driven coherently by an external injected beam. Other
studies of various spatially extended systems with time delays
have motivated further investigation of this subject [31].

In this paper, we investigate the effect of a regular delayed
feedback on the mobility properties of two-dimensional (2D)
cavity solitons in a broad area vertical-cavity surface-emitting
faser (VCSEL). The delayed feedback is provided by an
external mirror located at a distance Lext from the output
facet of the VCSEL. The structure of the considered device
is schematically illustrated in Fig. 1. We assume that the
laser operates in a single-longitudinal mode, the diffraction
in the external cavity is fully compensated, and the feedback
field is sufficiently attenuated so that it can be modeled by a
single delay term with a spatially homogeneous coefficient.
We show that this device can admit both stationary dissipative
solitons and solitons moving in the transverse direction. Unlike
a previous paper where the analysis is performed in strictly one
transverse dimension [32], here, we consider the case of two
transverse dimensions. We show that stationary-cavity solitons
exhibit a clustering behavior, which has been experimentally
observed in Ref. [33]. This behavior corresponds to back and
forth oscillations of the laser output energy curve inside the
pinning region. We explore the mechanism of the formation of
localized structures by constructing their bifurcation diagram
with changing amplitude of optical injection. We show that,
when the strength of the delayed feedback exceeds some
threshold value, two-dimensional cavity solitons exhibit a
spontaneous motion in the laser transverse section.

The paper is organized as follows: In Sec. II, we introduce
and discuss the VCSEL model. In Sec. III, in the neighborhood
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FIG. 1. Schematic setup of a Fabry-Pérot cavity with delayed
optical feedback and driven by a coherent external injected beam.
The nonlinear medium consists of a vertical-cavity surface-emitting
laser. To compensate the diffraction in the external cavity, we use two
lenses in a self-imaging configuration.

of the second-order critical point marking the onset of the
hysteresis loop, we derive the generalized Swift-Hohenberg
(SH) equation with time delays and perform a linear stability
analysis of the spatially homogeneous stationary solutions of
this equation. In Sec. IV, we describe the snaking bifurcation
diagram associated with stationary-cavity solitons. Analytical
calculations of the drift instability threshold as well as the
velocity of moving solitons are obtained in this section. Finally,
numerical simulations of the generalized Swift-Hohenberg
equation with time delays are presented in Sec. IV together
with the results of numerical integration on the original laser
model. Concluding remarks are given in Sec. V.

II. MEAN-FIELD MODEL OF A VCSEL
WITH A TIME DELAY

The laser model under consideration is obtained from the
scalar Maxwell-Bloch equations using the slowly varying
envelope and paraxial approximations. We assume that the
laser operates in a single-longitudinal mode. Under these
approximations, the mean-field model describing the space-
time evolution of the electric-field envelope E and the
normalized carrier density Z in a broad area VCSEL subject to
optical injection and delayed optical feedback is given by the
following set of dimensionless partial-differential equations
[32]:

∂t ′E = −(1 + iθ )E + 2C(1 − iα)(Z − 1)E

+Ei + ξeiψE(t ′ − τ ′) + i∇′2
⊥E, (1)

∂t ′Z = −γ ′[Z − I + (Z − 1)|E|2 − d∇′2
⊥Z], (2)

where Ei is the amplitude of the injected beam. The parameter
θ is the cavity detuning, C is the bistability parameter, and α

is the linewidth enhancement factor. The feedback is charac-
terized by the time delay τ ′ = 2Lext/c, the feedback strength
ξ = kf /κ , and phase ψ . Here, Lext is the external cavity length;
c is the speed of light, and kf = (1 − r2)rext/(rτin) with r

and rext, respectively, are the VCSEL output mirror and the

external mirror amplitude reflectivities. τin = 2LCnC/c is the
VCSEL cavity round-trip time with LC and nC as the VCSEL
effective cavity length and refractive index, respectively. The
parameter γ ′ is the carrier decay rate, I is the injected current
(we assume that the laser operates below the lasing threshold),
and d is the diffusion coefficient. The diffraction of light and
diffusion of the carriers is described by the Laplace operator
∇′2

⊥ = ∂2
x ′x ′ + ∂2

y ′y ′ , acting on the transverse plane (x ′,y ′). In the
absence of delayed feedback ξ = 0, we recover the mean-field
model of Ref. [34]. The linear stability analysis of the spatially
homogeneous steady states of Eqs. (1) and (2) as well as the
numerical analysis of stationary- and moving-cavity solitons
have been performed in Ref. [32] in a strictly one-dimensional
setting.

In order to reduce the number of free parameters, we
introduce the following change in variables: n = [2C(Z −
1) − 1]/2 and e = E∗/

√
2. The model equations (1) and

(2) of the semiconductor laser driven by an injected field
Y = Ei/(2

√
2) take the following form:

∂te = iθ ′e + (1+iα)ne + Y + η′e−iψe(t − τ ) − i∇2
⊥e, (3)

∂tn = γ [P − n − (1 + 2n)|e|2 + D∇2
⊥n]. (4)

The pump parameter P is P = C(I − 1) − 1/2, γ =
γ ′/2, D = 2d, η′ = ξ/2, and θ ′ = (θ + α)/2. The new time
and space scales are (t,τ ) = 2(t ′,τ ′) and ∇2

⊥ = 2∇′2
⊥ . Let

us assume, for simplicity, that the detuning is θ ′ = 0 and
the feedback phases are ψ = 0 or ψ = π . The homo-
geneous steady states are solutions of the two coupled
equations Y = −es(1 + iα)(P − |es |2)/(1 + 2|es |2) and ns =
(P − |es |2)/(1 + 2|es |2). It is well known that the dynamics
of a driven semiconductor cavity exhibits Turing instability
and hysteresis, the former giving rise to either periodic or
localized patterns consisting of localized intensity pulses in the
transverse plane. In order to obtain a qualitative picture of the
dynamics of this system, we focus our analysis on the regime
which is (i) close to the nascent bistability threshold where
the phenomenon of slowing down occurs, i.e., ∂Y/∂|es | =
∂2Y/∂|es |2 = 0 and (ii) close to the long-wavelength pattern-
forming instability. In this regime, the space-time dynamics is
governed by the well-known Swift-Hohenberg equations [35].

III. DERIVATION OF THE GENERALIZED
SWIFT-HOHENBERG EQUATION

WITH A TIME DELAY

In this section, we explore the nascent optical bistability
regime near the critical point where the output intensity as a
function of the injection parameter Y has an infinite slope, i.e.,
∂Y/∂|es | = ∂2Y/∂|es |2 = 0. The coordinates of the critical
point are ec = (1 − iα)

√
3/2(1 + α2), nc = −3/2, Pc =

−9/2, Dc = 8α/[3(1 + α2)], and Yc = (3/2)(3/2)(1 + α2)1/2.
We consider the large time-delay regime, and we assume
that the amplitude of the feedback strength is small:
η′e−iψ = ηε2 and τ → (1/γ + Dc/α)τ/ε2, where ε is a small
parameter and η,τ = O(1). The strength of the feedback
η is positive for ψ = 0 and is negative for ψ = π . We
seek corrections to the steady-state solution at the criticality
that depend on time and space via the slow variables
t → (1/γ + Dc/α)ε2t and (x,y) → (ε/Dc)1/2(x,y). We
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expand the input field amplitude Y , the parameter P ,
and the variables e and n around their critical values,
e = ec(1 + εu + ε2e2 · · ·), n = nc(1 + εn1 + ε2n2 · · ·), Y =
Yc(1 − ε2p2/2 + ε3y · · ·), P = Pc(1 + 3ε2p2 + · · ·), and
D = Dc(1 + εd + · · ·). We substitute these expansions and
the space-time scalings in Eqs. (3) and (4). We get u = −n1 in
the leading-order problem, i.e., O(ε) where u has to be real. At
the O(ε2), we obtain e2 = −i{∇2

⊥u/(4α) + 2ηα/[3(1 + α2)]}
and n2 = u2 − p2/2 − ∇2

⊥n1/4. Finally, the solvability
condition at O(ε3) leads to the following delayed
partial-differential equation:

∂tu = y − u(p + u2) + ηu(t − τ )

+
(

d − 5u

2

)
∇2

⊥u − a∇4
⊥u − 2(∇⊥u)2, (5)

where a is a = (1 − α2)/(4α2). Note that y is the deviation
from the injected field amplitude and denotes the transverse
coordinate at the same time. The real variable u, the parameters
p and d are the deviations of the electric field, the pump pa-
rameter, and the carrier diffusion coefficient from their values
at the onset of the critical point, respectively. In the absence of
delay, i.e., η = 0, Eq. (5) is the generalized Swift-Hohenberg
equation that has been derived for many far-from-equilibrium
systems [35,36]. The Eq. (5) model differs from the usual
delayed Swift-Hohenberg equation [26,36] in two significant
ways. First, the presence of nonlinear diffusion terms u∇2

⊥u

breaks the symmetry u �→ −u and allows Eq. (5) to exhibit
modulational instabilities with different wavelengths. Second,
in the absence of delay, Eq. (5) is nonvariationally devoid of
gradient form, and therefore, it does not admit a Lyapunov
functional or a free energy to minimize. As a consequence, the
cavity soliton could move with a constant velocity even in the
absence of delayed feedback [36].

The homogeneous stationary solutions us of Eq. (5)
are given by y = us(p − η + u2

s ). For p < η (p > η), the
transmitted intensity as a function of the input intensity is
monostable (bistable). We now perform the linear stability
analysis of the homogeneous steady states. The linear deviation
from the steady state is proportional to exp (λt + iq · r),
where r = (x,y) stands for the transverse coordinates and the
transverse wave vector is q. The transcendental characteristic
equation reads

λ = −(p + 3u2
s ) − q2

(
d − 5us

2

)
− (1 − α2)

4α2
q4 + ηe−λτ .

(6)

Modulational instabilities correspond to the occurrence of
the zero real root (λ = 0) and ∂qλ = 0. Our calculations show
that there can be zero, one, or two modulational instabilities.
The critical wave number associated with both instabilities is
as follows:

q2
T ± = α2(5uT ± − 2d)

(1 − α2)
. (7)

The threshold uT ± associated with these instabilities is as
follows:

uT ± = 2[5α2d ±
√

(1 − α2)[α2(12d2 − 37) + 12](p − η)]

12 − 37α2
.

(8)

FIG. 2. Stability curves associated with traveling-wave instability
in the monostable regime. The characteristics: (a) output field (us)
as a function of input field (y), (b) wave number q2, and (c)
angular frequency ω are plotted as a function of output field (us).
The full and the broken lines correspond to stable and unstable
homogeneous steady states, respectively. Parameters are p = 5,

d = −1, a = 0.1, η = −0.1, and τ = 15.

The classifications of different scenarios leading to the
instability of the homogeneous steady state are summarized
in Ref. [37].

The linear stability analysis shows that there exists a Hopf
bifurcation with a finite wave number often called traveling-
wave instability. This instability occurs if a pair of complex
conjugate roots of Eq. (6) has a vanishing real part and a
nonzero imaginary part, i.e., λ = ±iω. This instability occurs
when

η cos(ωτ ) = (3u2 + p) +
(

d − 5u

2

)
q2 + aq4, (9)

η sin(ωτ ) = −ω. (10)

Two examples of stability curves are shown in Figs. 2
and 3 where we plot the homogeneous steady states in the
monostable and in the bistable regimes, the unstable wave
numbers, and the unstable frequencies associated with the
traveling-wave instability.

FIG. 3. Stability curves associated with traveling-wave instability
in the bistable regime. The characteristics: (a) output field (us)
as a function of input field (y), (b) wave number q2, and (c)
angular frequency ω are plotted as a function of output field (us).
The full and the broken lines correspond to stable and unstable
homogeneous steady states, respectively. Parameters are p = −2,
d = −1, a = 2, η = −0.1, and τ = 15.
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IV. STATIONARY AND MOVING LOCALIZED
STRUCTURES

A. Light clustering and moving-cavity solitons

In the case of one spatial dimension, stationary dissipative
solitons correspond to the solutions of the Swift-Hohenberg
equation homoclinic in space and stationary in time. The
existence of an infinite set of homoclinic solutions in the
variational Swift-Hohenberg equation has been demonstrated
[38]. This behavior is referred to as the homoclinic snaking
phenomenon [39]: The system exhibits a high degree of
multistability in a finite range of parameters often called the
pinning region. In this region, a stable homogeneous steady
state coexists with a stable spatially periodic solution, and there
is an infinite set of patterns comprising different numbers of
cavity solitons. Each of them is characterized by either an odd
or an even number of peaks. The configuration that maximizes
the number of cavity solitons in the pattern corresponds to the
spatially periodic distribution of the field amplitude. Examples
of localized patterns having odd and even numbers of peaks are
shown in Fig. 4. All localized patterns shown in these figures
are obtained for the same parameter values and differ only by
the initial condition. In the pinning region, the wavelength of
the localized patterns is close to that of the periodic structure,
i.e., λT + ≈ 2π/qT +. Since the peak amplitudes of localized
patterns comprising different numbers of solitons are close to
each other, it is convenient to plot the “L2 norm” defined by the
relation N = ∫

dx|u − us |2 instead of the peak amplitudes. A
typical bifurcation diagram, illustrating the dependence of N

on the input field amplitude y, is shown in Fig. 5. It consists of
two snaking curves: one corresponding to localized patterns
with an odd number of peaks and the other—to patterns
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FIG. 4. Stationary localized patterns formed with one through
five cavity solitons in the amplitude of the intracavity field. The
parameters are y = −0.35, p = −0.7, d = −1.2, a = 0.75, τ = 1,
and η = 0.1.

FIG. 5. Snaking bifurcation diagram of Eq. (5) showing two
interweaved snaking curves: The branches (a)–(e) correspond to
one through five cavity solitons, respectively (see Fig. 3). The full
and the broken lines correspond to stable and unstable localized
branches of solutions, respectively. The parameters are p = −0.7,

d = −1.2, a = 0.75, and τ = η = 0.

with an even number of peaks. The two interweaved snaking
curves emerge from the modulation instability point located
at u = uT +. For each curve, as N increases, at every turning
point where the slope becomes infinite, a pair of additional
peaks appears in the pattern. From Fig. 5, it is seen that this
growth is associated with back and forth oscillations around the
pinning region. In the case of a fiber ring resonator, diffraction
is replaced by chromatic dispersion. In this context, localized
structures are often called temporal-cavity solitons, which can
also exhibit the homoclinic snaking phenomenon [40].

In the absence of feedback, all localized patterns, involving
odd or even numbers of cavity solitons, are stationary. As
we see in the next subsection, when the delayed feedback
strength passes through the threshold value given by ητ = −1,
localized patterns start to move spontaneously in an arbitrary
direction. This is due to the isotropy of space (x,y). Examples
of 1D and 2D moving patterns consisting of one or two
bounded-cavity solitons are illustrated in Figs. 6 and 7,
respectively. When two cavity solitons are separated initially
by a distance on the order of the wavelength associated
with the modulational instability, they repel each other, and,

FIG. 6. Space-time map of a moving-cavity soliton solu-
tion of Eq. (5) in 1D. Left: single-cavity solitons; right: two-
cavity solitons. Parameters are p = −0.9, d = −1.5, a = 0.75,

y = −0.5, η = −0.15, and τ = 15.
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FIG. 7. Moving 2D cavity soliton solution of Eq. (5). Parameters
are the same as in Fig. 6. The size of the system is 128 × 128.

therefore, start to move with equal but opposite velocities as
shown in Fig. 8. Localized patterns consisting of a larger
number of cavity solitons exhibit a similar behavior (see
Fig. 9). The results shown in Figs. 6–9 have been obtained
by numerical simulations of the generalized delayed Swift-
Hohenberg equation (5) with periodic boundary conditions.

B. Drift instability threshold and the velocity
of the moving-cavity soliton

We have shown that below the drift instability threshold,
the modified SH equation Eq. (5) admits stationary localized
patterns involving either an odd or an even number of cavity
solitons. In this section, we discuss the spontaneous motion of
cavity solitons induced by the delayed feedback. We calculate
the threshold value of the feedback strength above which cavity
solitons start to move in an arbitrary direction and derive an
expression for the velocity of the cavity soliton. By presenting
the results of the numerical simulations of the full dynamical
model Eqs. (1) and (2), we demonstrate that the existence
of 2D moving-cavity solitons is not restricted to the nascent
bistability regime but can also occur far from that regime.

The analytical expression for the drift instability threshold
was derived in Ref. [26] in the case of the variational Swift-
Hohenberg equation with the delay describing the passive
nonlinear cavity. Let us first rewrite Eq. (5) in the form

∂tu = y − u(p′ + u2) + η[u(t − τ ) − u]

+
(

d − 5u

2

)
∇2

⊥u − (1 − α2)

4α2
∇4

⊥u − 2(∇⊥u)2, (11)

FIG. 8. Moving 2D cavity solitons solution of Eq. (5). Parameters
are the same as in Fig. 6. The size of the system is 128 × 128.

FIG. 9. Moving 2D localized pattern formed by four cavity
solitons. Time sequence (t1 < t2 < t3 < t4) of the amplitude of
the intracavity field solutions of the generalized delayed Swift-
Hohenberg Eq. (5). Parameters are the same as in Fig. 6.

with p′ = p − η. We assume that Eq. (11), without the term
η[u(t − τ ) − u], has a stable stationary radially symmetric
soliton solution u = u0(|r|). Stability of this solution means
all the solutions � of the following eigenvalue problem:

L⊥φ = �φ, (12)

with the self-adjoint operator,

L⊥ = −
(

p′ + 3u2
0 + 5

2
∇2

⊥u0

)
+

(
d − 5u0

2

)
∇2

⊥ − a∇4
⊥

are real and negative except for a pair of zero eigenvalues,
corresponding to the translational invariance of Eq. (11),
�1,2 = 0. Since the term η[u(t − τ ) − u] vanishes at any
stationary solution, the stationary soliton u0(|r|) is also
a solution of Eq. (11) with η 
= 0. Let us substitute the
slightly perturbed soliton solution u(r,t) = u0(|r|) + φeμt into
Eq. (11). Then, linearizing it with respect to small perturbation
φ, we obtain

L⊥φ = [μ + η(1 − eμτ )]φ. (13)

From Eqs. (12) and (13), we see that, for η 
= 0, the stability
of cavity soliton solution u0 requires that the real parts of all
the solutions μ of the equation,

μ + (1 − eμτ )η = � (14)

must be nonpositive for all � satisfying Eq. (12). In particular,
for the twofold degenerate eigenvalue �1,2 = 0, assuming that
|μ| � 1 and expanding Eq. (14) up to the second-order terms
in μ, we get two real solutions,

μ1,2 = 2(ητ + 1)

ητ 2
, μ3,4 = 0, (15)
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where zero solutions μ3,4 are associated with the translational
symmetry of the model equations and μ1,2 change their sign
at the drift instability point ητ = −1. At this point, where
Eq. (14) has the fourfold degenerate solution μ1,2,3,4 = 0, the
stationary soliton solution loses stability, and the uniformly
moving soliton solution bifurcates from the stationary one.
According to Eq. (15), the stationary soliton is stable for
−1/τ < η < 0 and becomes unstable for ητ < −1. The
velocity of the moving single-cavity soliton can be estimated
by performing an expansion in terms of a small parameter ζ ,
which measures the distance from the drift instability threshold
ητ = −1 − ζ 2. Let us look for a solution to Eq. (11) in the
form of a uniformly moving-cavity soliton,

u(r,t) = u0(R) + ζ 3δu(R) + · · · , R = r − vt,

where u0 is the stationary soliton solution evaluated at
the drift instability point, v = ζV is the soliton veloc-
ity, and δu is the correction to the soliton shape due
to its motion. Plugging this expression into Eq. (5),
using the expansion u0(R − ζV τ ) = u0(R) − ζV τu1(R) +
(ζV τ )2u2(R)/2 − (ζV τ )3u3(R)/6 + · · ·, where V = |V| and
up = (V · ∇⊥up−1)/V (p = 1–4), and collecting third order
in ζ , we obtain the following inhomogeneous problem:

L⊥δu = −V u1 + η

6
(V τ )3u3. (16)

According to the solvability condition, the right-hand side of
this equation should be orthogonal to the translational neutral
modes φx,y = ∂xu0,∂yu0. By multiplying Eq. (16) with the
linear combination of these modes V · ∇⊥u0/V ≡ u1 and
integrating over 2D space, we obtain the equation for the cavity
soliton velocity,

V

(∫ +∞

−∞
u2

1dx dy − η

6
V 2τ 3

∫ +∞

−∞
u1u3dx dy

)
= 0. (17)

A nontrivial solution of Eq. (17) is given by

v = ζV = Q

τ

√
−(1 + ητ ), with Q=

√√√√6

∫ +∞
−∞ u2

1dx dy∫ +∞
−∞ u2

2dx dy
,

(18)

where the relation
∫ +∞
−∞ u1u3dx dy = − ∫ +∞

−∞ u2
2dx dy is

used, which is obtained by integration by parts. The expression
for the soliton velocity (18) coincides with that obtained earlier
for the case of the variational Swift-Hohenberg equation [26],
which describes a driven passive nonlinear cavity filled with
two-level atoms. This expression is valid not only for a
single-cavity soliton, but also for any localized patterns. The
spatial form of the pattern affects only the factor Q in Eq. (18),
which can be calculated numerically. In particular, for the
parameter values y = −0.35, p = −0.7, d = −1.2, and
a = 0.75, we obtain Q = 1.44. The dependence of the soliton
velocity on the time delay calculated using Eq. (18) is plotted
for a fixed value of the feedback strength in Fig. 10. It is seen
that the curve of the velocity has a maximum at τ = −2/η,
which corresponds to the maximal velocity vmax = −Qη/2.

Moving-cavity solitons can be observed not only in the
nascent optical bistability regime, but also far away from this
regime. This is illustrated by Fig. 11, which was obtained
by numerical integration of model Eqs. (1) and (2) using the
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FIG. 10. Velocity of the moving-cavity soliton as a function
of the time delay τ for different values of the delayed feedback
strength η.

Runge-Kutta method together with the fast Fourier transform.
The boundary conditions were periodic in transverse direc-
tions. From Fig. 11, it is seen that a single-cavity soliton
exhibits a motion in an arbitrary direction in the (x,y) plane
due to the presence of delayed feedback. Noteworthy is the
fact that, in the absence of delayed feedback, cavity solitons
were observed experimentally in broad area VCSELs both
below [7,41] and above [42] the lasing threshold.

V. CONCLUSIONS AND PERSPECTIVES

In conclusion, we have shown that close to the nascent
bistability threshold, the space-time dynamics of a broad area
VCSEL, operating below the lasing threshold and subject
to optical injection, is described by a generalized delayed
Swift-Hohenberg equation. We showed that, in one transverse
dimension, stationary-cavity solitons exhibited a clustering
behavior in the pinning range of parameters where spatially
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FIG. 11. Time evolution of the spatially localized 2D solution
|E(x,y,t)|2 of Eqs. (1) and (2). (a) Time evolution of the radius
vector Rmax of the peak of the cavity soliton. (b)–(d) Snapshots of the
optical power distribution at the points indicated in (a). The parameter
values are as follows: θ = −2, α = 5, C = 0.45, I = 2, and γ ′ =
0.05, Ei = 0.8. The feedback strength and phase are given by ξ = 3
and ψ = 0.1, respectively.
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homogeneous and periodic solutions were both linearly stable.
In this range, we constructed a snaking bifurcation diagram
associated with stationary-cavity solitons. We demonstrated
that one- and two-dimensional cavity solitons exhibited a drift
instability, leading to a spontaneous motion in an arbitrary
direction. We estimated the threshold of this instability and
the velocity of the moving-cavity solitons. In two dimensions,
the motion of two-cavity solitons was studied numerically.
Finally, numerical simulations of the original models (1) and
(2) showed that the described behavior was not limited to the
nascent optical bistability regime but can also exist far away
from this regime.
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