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Abstract. In several pattern recognition problems, particularly in image recognition 
ones, there are often a large number of features available, but the number of training 
examples for each pattern is significantly less than the dimension of the feature space.  
This statement implies that the sample group covariance matrices often used in the 
Gaussian maximum probability classifier are singular.  A common solution to this 
problem is to assume that all groups have equal covariance matrices and to use as 
their estimates the pooled covariance matrix calculated from the whole training set.  
This paper uses an alternative estimate for the sample group covariance matrices, here 
called the mixture covariance, given by an appropriate linear combination of the sam-
ple group and pooled covariance matrices. Experiments were carried out to evaluate 
the performance associated with this estimate in two biometric applications: face and 
facial expression. The average recognition rates obtained by using the mixture covari-
ance matrices were higher than the usual estimates. 

Keywords. Face recognition; facial expression recognition; Gaussian maximum prob-
ability classifier; mixture covariance matrix. 

1   Introduction 

A critical issue for the Gaussian maximum probability classifier is the inverse of the sam-
ple group covariance matrices.  Since in practice these matrices are not known, estimates 
must be computed based on the observations (pattern examples) available in a training set.  
In some applications, however, there are often a large number of features available, but 
the number of training examples for each group is limited and significantly less than the 
dimension of the feature space.  This implies that the sample group covariance matrices 
will be singular. 

This problem, which is called a “small sample size problem” (Fukunaga, 1990), is quite 
common in pattern recognition, particularly in image recognition where the number of 
features is very large. One way to overcome this problem is to assume that all groups have 
equal covariance matrices and to use as their estimates the weighting average of each 
sample group covariance matrix, given by the pooled covariance matrix calculated from 
the whole training set. 



 
The aim of this work is to investigate another estimate for the sample group covariance 

matrices, here called mixture covariance matrices, given by a linear combination of the 
sample group covariance matrix and the pooled covariance matrix.  The mixture covari-
ance matrices are based on the Hoffbeck and Landgrebe (1996) approach and have the 
property of having the same rank as the pooled estimate, while allowing a different esti-
mate for each group.  Thus, the mixture estimate may result in higher accuracy.  

In order to evaluate this approach, two biometric applications were considered: face 
recognition and facial expression recognition. The evaluation used different image data-
bases for each application. A probabilistic model was used to combine the well-known 
dimensionality reduction technique called Principal Component Analysis and the Gaussian 
maximum probability classifier, and in this way we could investigate the performance of 
the mixture covariance matrices on the recognition tasks referred to above. Experiments 
carried out show that the mixture covariance estimates attained the best performance in 
both applications. 

2   Dimensionality Reduction 

One of the most successful approaches to the problem of creating a low dimensional im-
age representation is based on Principal Component Analysis (PCA).  PCA generates a set 
of orthonormal basis vectors, known as principal components, which minimizes the mean 
square reconstruction error and describes major variations in the whole training set con-
sidered. 

Instead of analysing the maximum probability classifier directly on the face or facial 
expression images, PCA is applied first to provide dimensionality reduction.  As the num-
ber of training samples is limited and significantly less than the number of pixels of each 
image, the high-dimensional space is very sparsely represented; making the parameter 
estimation quite difficult – a problem that is called the curse of dimensionality (e.g., 
Bishop, 1997).  Furthermore, many researchers have confirmed that the PCA representa-
tion has good generalization ability especially when the distributions of each class are 
separated by the mean difference (Kirby and Sirovich, 1990; Turk and Pentland, 1991; 
Zhao et al., 1998; Liu and Wechsler, 2000). 

3   Maximum Probability Classifier 

The basic problem in the decision-theoretic methods for pattern recognition consists of 
finding a set of g discriminant functions )(,),(),( 21 xdxdxd g� , where g is the number of 
groups or classes, with the decision rule such that if the p-dimensional pattern vector x  
belongs to the class i ( gi ≤≤1 ), then )()( xdxd ji ≥ , for all ji ≠  and gj ≤≤1 . 

The Bayes classifier designed to maximize the total probability of correct classifica-
tion, where equal prior probabilities for all groups are assumed, corresponds to a set of 
discriminant functions equal to the corresponding probability density functions, that is, 

)()( xfxd ii =  for all classes (Johnson and Wichern, 1998).  The most common probability 
density function applied to pattern recognition systems is based on the Gaussian multi-
variate distribution 
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where iµ  and iΣ  are the class i population mean vector and covariance matrix respec-
tively.  The notation “ | |”  denotes the determinant of a matrix. 

In practice, however, the true values of the mean and the covariance matrix are seldom 
known and must be estimated from training samples.  The mean is estimated by the usual 
sample mean 
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where jix , is observation j from class i, and ik  is the number of training observations from 
class i. The covariance matrix is commonly estimated by the sample group covariance 
matrix defined as 
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From replacing the true values of the mean and the covariance matrix in equation (1) by 
their respective estimates, the Bayes decision rule achieves optimal classification accuracy 
only when the number of training samples increases toward infinity (e.g., Hoffbeck and 
Landgrebe, 1996).  In fact for p-dimensional patterns the sample covariance matrix is 
singular if less than 1+p  training examples from each class i are available, that is, the 
sample covariance matrix can not be calculated if ik  is less than the dimension of the 
feature space. 

One method routinely applied to solve this problem is to assume that all classes have 
equal covariance matrices, and to use as their estimates the pooled covariance matrix.  
This covariance matrix is a weighting average of each sample group covariance matrix 
and, assuming that all classes have the same number of training observations, is given by 
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Since more observations are taken to calculate the pooled covariance matrix pooledS , this 
one will potentially have a higher rank than iS  and will be eventually full rank.  Although 
the pooled estimate does provide a solution for the algebraic problem arising from the 
insufficient number of training observations in each group, pooledS  is theoretically a con-
sistent estimator of the true covariance matrices only when gΣ==Σ=Σ �21 . 

4   Mixture Covariance Matrix 

The choice between the sample group covariance matrix and the pooled covariance one 
represents a limited set of estimates for the true covariance matrix.  A less limited set can 
be obtained using the mixture covariance matrix. 



 
4.1   Definition 

The mixture covariance matrix is a linear combination between the pooled covariance 
matrix pooledS  and the sample covariance matrix of one class iS .  It is given by 

iipooledii
mix
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where the mixture parameter iw  takes on values 10 ≤< iw  and is different for each class.  
This parameter controls the degree of shrinkage of the sample group covariance matrix 
estimates toward the pooled one. 

Figure 1 illustrates the geometric idea of the mixture covariance matrix on a two-
dimensional feature space containing three hypothetical classes.  The constant probability 
densities contours of iS  and pooledS  are represented by the dashed and dotted gray ellip-
ses respectively.  The mixture covariance estimates assume that the ellipses corresponding 
to the true covariance matrices are placed somewhere in between iS  and pooledS  contours, 
as shown by the solid black ellipses. 

Figure 1. Geometric idea of the mixture covariance matrix. 

Each mix
iS  matrix has the important property of admitting an inverse if the pooled es-

timate pooledS  does so (Magnus and Neudecker, 1999 (p. 21-22)).  This implies that if the 
pooled estimate is non-singular and the mixture parameter takes on values 0>iw , then 
the mix

iS  will be non-singular. 
Therefore the remaining question is: what is the value of the iw  that gives a relevant 

linear mixture between the pooled and sample covariance estimates ?  A method that de-
termines an appropriate value of the mixture parameter is described in the next section. 

4.2   The mixture parameter 

According to Hoffbeck and Landgrebe (1996), the value of the mixture parameter iw  can 
be appropriately selected so that a best fit to the training samples is achieved.  Their tech-
nique is based on the leave-one-out-likelihood (L) parameter estimation (Fukunaga, 1990). 

In the L method, one observation of the class i training set is removed and the mean and 
covariance matrix from the remaining 1−ik  examples is estimated.  After that the likeli-
hood of the excluded sample is calculated given the previous mean and covariance matrix 
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estimates.  This operation is repeated a further 1−ik  times and the average log likelihood 
is computed over all the ik  observations.  The strategy is to evaluate several different 
values of iw  in the range 10 ≤< iw , and then choose iw  that maximizes the average log 
likelihood. 

The mean of class i without observation r may be computed as 
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The notation \r conforms to the Hoffbeck and Landgrebe (1996) work.  It indicates that the 
corresponding quantity is calculated with the r-th observation from class i removed.  Fol-
lowing the same idea, the sample covariance matrix and the pooled covariance matrix of 
class i without observation r are 
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Thus the average log likelihood of the excluded observations can be calculated as follows: 
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where ( ))(,| \\, i
mix

ririri wSxxf  is the Gaussian probability function defined in equation (1) 
with rix \ mean vector and )(\ i

mix
ri wS covariance matrix defined as 
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As Hoffbeck and Landgrebe (1996) pointed out, this approach, if implemented in a 
straightforward way, would require computing the inverse and determinant of 
the )(\ i

mix
ri wS for each training sample.  Since the )(\ i

mix
ri wS is a p by p matrix and p is typi-

cally a large number, this computation would be quite expensive. 
Hoffbeck and Landgrebe (1996), using the Sherman-Morrison-Woodbury formula 

(Golub and Van Loan, 1989 (p. 51)), showed that it is possible to significantly reduce the 
required computation by writing the log likelihood of the excluded samples in an analo-
gous form as follows: 
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Finally, when the parameter iw  is selected, the mixture covariance matrix estimate de-
fined in equation (5) is calculated using all the training examples and replaced into the 
maximum probability classifier. 

5   Experiments 

Two biometric experiments with two different databases were performed. 
In the face recognition experiment the Olivetti Face Database (ORL) containing ten im-

ages for each of 40 individuals, a total of 400 images, were used.  The Tohoku University 
has provided the database for the facial expression experiment.  This database is com-
posed of 193 images of expressions posed by nine Japanese females (Lyons, Budynek and 
Akamatsu, 1999).  Each person posed three or four examples of each six fundamental 
facial expression: anger, disgust, fear, happiness, sadness and surprise.  The database has 
at least 29 images for each fundamental facial expression.  For implementation conven-
ience all images were first resized to 64x64 pixels. 

The experiments were carried out as follows.  First PCA reduces the dimensionality of 
the original images and secondly the Gaussian maximum probability classifier using one 
out of the three covariance estimates iS (or Sgroup), pooledS (or Spooled) and mix

iS (or 
Smix) was applied.  Each experiment was repeated 25 times using several PCA dimen-
sions.  Distinct training and test sets were randomly drawn, and the mean and standard 
deviation of the recognition rate were calculated. 

The face recognition classification was computed using for each individual 5 images to 
train and 5 images to test.  In the facial expression recognition, the training and test sets 
were respectively composed of 20 and 9 images.  The size of the mixture parameter 
( 10 ≤< iw ) optimisation range was taken to be 20, that is ]1,,15.0,10.0,05.0[ �=iw . 

6   Results 

Tables 1 and 2 present the training and test average recognition rates (with standard devia-
tions) of the face and facial expression databases, respectively, over the different PCA 
dimensions.  Also the optimised mixture parameters iw  over the common PCA compo-
nents of both applications are shown in Table 3. 

Since only 5 images of each individual were used to form the face recognition training 
set, the results relative to the sample group covariance estimate were limited to 4 PCA 
components.  Table 1 shows that in all but one experiment the mix

iS (or Smix) estimate led 
to higher accuracy than did both the pooled covariance and sample group covariance ma-
trices.  In terms of how sensitive the mixture covariance results were to the choice of the 
training and test sets, it is fair to say that the mix

iS  standard deviations were similar to the 
pooled estimate. 



 
Table 2 shows the results of the facial expression recognition. For more than 20 com-

ponents when the sample group covariance estimate became singular, the mixture covari-
ance estimate reached higher recognition rates than the pooled covariance estimate.  
Again, regarding the computed standard deviations, the mix

iS  estimate showed to be as 
sensitive to the choice of the training and test sets as the other two estimates. 

Table 1. Face Recognition Results 

 

Table 2. Facial Expression Recognition Results 

Another result revealed by these experiments is related to the optimum mixture pa-
rameters iw .  Table 3 shows the average (with standard deviations) of the selected mix-
ture parameter iw  over the common face and facial expression PCA components.  It can 
be seen that as the dimension of the feature space increases, the average and standard 
deviation of the mixture parameter iw  in all but one experiment increases and decreases 
respectively, making the mixture covariance of each class ( mix

iS ) more similar to the 
pooled covariance ( pooledS ) than the sample group one ( iS ).  Although this behaviour 
depends on the applications considered, it suggests that in both pre-processed image clas-
sification tasks the sparseness of the sample group covariance matrix could influence its 
linear combination to the pooled covariance matrix.  In other words, it seems that when 
the group sample sizes are small compared with the dimension of the feature space, the 
pooled information is more reliable than that provided sparsely by each group.  Research 

 

PCA Sgroup Spooled Smix 

Components Training Test Training Test Training Test 

4 99.5 (0.4) 51.6 (4.4) 73.3 (3.1) 59.5 (3.0) 90.1 (2.1) 70.8 (3.2) 
10   96.6 (1.2) 88.4 (1.4) 99.4 (0.5) 92.0 (1.5) 
20   99.2 (0.6) 91.8 (1.8) 100.0 (0.1) 94.5 (1.7) 
30   99.9 (0.2) 94.7 (1.7) 100.0 (0.0) 95.9 (1.5) 
40   100.0 (0.0) 95.4 (1.5) 100.0 (0.0) 96.2 (1.6) 
50   100.0 (0.0) 95.7 (1.2) 100.0 (0.0) 96.4 (1.5) 
60   100.0 (0.0) 95.0 (1.6) 100.0 (0.0) 95.8 (1.6) 
70   100.0 (0.0) 94.9 (1.6) 100.0 (0.0) 95.4 (1.6) 

 

PCA Sgroup Spooled Smix 

Components Training Test Training Test Training Test 

5 41.5 (4.2) 20.6 (3.9) 32.3 (3.0) 21.6 (3.8) 34.9 (3.3) 21.3 (4.1) 
10 76.3 (3.6) 38.8 (5.6) 49.6 (3.9) 26.5 (6.8) 58.5 (3.7) 27.9 (5.6) 
15 99.7 (0.5) 64.3 (6.4) 69.1 (3.6) 44.4 (5.3) 82.9 (2.9) 49.7 (7.7) 
20   81.2 (2.6) 55.9 (7.7) 91.4 (2.8) 61.3 (7.1) 
25   86.9 (2.8) 64.9 (6.9) 94.8 (2.2) 68.3 (5.1) 
30   91.9 (1.7) 70.1 (7.8) 96.8 (1.3) 72.3 (6.2) 
35   94.3 (1.7) 72.0 (7.4) 97.7 (1.1) 75.6 (5.5) 
40   95.9 (1.4) 75.6 (7.1) 98.3 (1.1) 77.2 (5.7) 
45   96.7 (1.3) 78.4 (6.5) 98.6 (0.8) 79.1 (5.4) 
50   97.6 (1.0) 79.4 (5.8) 99.2 (0.7) 81.0 (6.6) 
55   98.5 (0.9) 81.6 (6.6) 99.5 (0.6) 82.8 (6.3) 
60   99.1 (0.8) 82.1 (5.9) 99.6 (0.6) 83.6 (7.2) 
65   99.5 (0.6) 83.3 (5.5) 99.8 (0.4) 84.5 (6.2) 

 



 
is currently being done in order to understand and prove this behaviour under certain 
constraints (Thomaz, Gillies and Feitosa, 2001). 

Table 3. The average (with standard deviations) of the optimum mixture parameters. 

7   Conclusions 

This paper used an estimate for the sample group covariance matrices, here called mixture 
covariance matrices, given by an appropriate linear combination of the sample group co-
variance matrix and the pooled covariance one.  The mixture covariance matrices have the 
same rank as the pooled estimate, while allowing a different estimate for each group. 

Extensive experiments were carried out to evaluate this approach on two biometric rec-
ognition tasks: face recognition and facial expression recognition.  A Gaussian maximum 
probability classifier was built using the mixture estimate and the typical sample group 
and pooled estimates.  In both tasks the mixture covariance estimate achieved the highest 
classification performance.  Regarding the sensitiveness to the choice of the training and 
test sets, the mixture covariance matrices presented similar performance to the other two 
usual estimates. 

The results presented in this work suggested that in both pre-processed image classifi-
cation tasks the sparseness of the sample group covariance matrix could influence its lin-
ear combination to the pooled covariance matrix.  Further work is being undertaken to 
study this relationship. 
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