
Comparing Privacy Control Methods for

 Smartphone Platforms
Mohammed Alhamed Khalid Amir Mansoor Omari Wei Le

B. Thomas Golisano College of Computing and Information Sciences

Rochester Institute of Technology

 Rochester, USA

{ maa1515, kxa2185, mmo2912, wei.le }@rit.edu

Abstract—Nowadays, many important applications are

performed through mobile phones. It is essential to ensure that

users’ private information is not leaked through those

applications. In this paper, we perform a comparison on privacy

control methods implemented on the Android and iOS platforms

based on the Bellotti and Sellen’s framework. The comparison

helps understand the discrepancies existent between the users’

expectations for privacy and the privacy control methods

currently implemented in Android and iOS. To better address

users’ privacy concerns, we propose a programming model for

platform designers to improve privacy. Our initial study on 60

privacy bugs show that using the proposed programming models,

14 Android and 5 iOS privacy bugs can be eliminated.

Index Terms—privacy, privacy control methods, smartphone,

mobile, iOS, Android.

I. INTRODUCTION

A large number of applications like social networking and

travel advising applications enjoy their access to resources

from smartphones that enable them to make context-aware

intelligent decisions. However, these applications have always

been a target of criticism for privacy issues. In 2011 a bug was

discovered in iOS devices, which was storing users’ one year

location tracking data in an unencrypted file [18]. An example

of privacy issue discovered with Android is that the phone was

sending users’ location data to Google [19].

Researchers have been spending a good amount of effort on

this topic. The previous literature, which we studied, can be

divided into three main categories. The first suggests technical

solutions for privacy issues in mobile devices. For example,

centralizing the location information releases to be done by one

application [3]. The second tries to solve privacy problems by

forcing policies such as regulating the usage of smartphones in

the company campus [4]. The last category, which this paper

fell into, assesses privacy situations in mobile environment

from different perspectives [5].
1

In our research, we perform a preliminary study on

identifying and assessing how smartphone platforms control

user privacy and whether such methods are problematic and

causes information leak. We limit our research on two

smartphone platforms: iOS, and Android. Based on the

.

problems found, we propose a programming model derived

from the Bellotti and Sellen’s framework of information flow

for improving privacy for both platforms. Our initial results

show that the proposed programming models can address about

30% of the privacy bugs found in Android and iOS platforms.

Our research consists of three steps. We first identify a

theoretical framework regarding privacy requirements, based

on which, we perform a comparison of privacy control methods

for the Android and iOS platforms. In this preliminary study,

we use location service as an example. Based on the

inconsistencies found between the theoretical requirements and

the existing implementation of the privacy control methods in

Android and iOS, we present an improved design for privacy

control methods for both Android and iOS. Finally, we study a

set of privacy bugs and determine whether the bugs can be

addressed using the suggested programming models.

In this paper, we made the following contributions: 1) we

revealed the deficiency of the privacy control methods

currently implemented on the Android and iOS platforms; 2)

we suggested an improvement for these methods that may help

remove many of the privacy bugs; and 3) we provide an initial

evidence to show that the programming models proposed based

on the Bellotti and Sellen’s framework is helpful for improving

privacy for both platforms.

Our initial results potentially provide advice for platform

designers to better address users’ privacy concerns. Although

in this study, we focus on only location service and use only

the Bellotti and Sellen’s framework which provides minimum

standards of information privacy for ubiquitous environments,

our methodologies of studying privacy problems and solutions

on smartphone platforms can be extended by incorporating a

more complete set of privacy requirements and studying more

privacy bugs found from a more variety of mobile apps.

Therefore, our future work include 1) identifying a full set of

privacy requirements, 2) comparing existing implementation of

privacy control methods with the requirements on a more

variety of mobile apps, and 3) performing a more in depth

study on existing privacy bugs to understand whether the bugs

can be fixed if the platform implements the privacy control

methods as indicated in the privacy requirements. We are also

interested in exploring the tradeoffs a platform designer makes

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357525085?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

in balancing between privacy and other software qualities, such

as performance and usability.

II. RELATED WORK

As we mentioned before, our research fell in the third

category, assessing privacy situations in mobile environment,

so we focused our literature review in this direction. Gambs et

al. conducted their research on privacy issues in geolocation

applications [12]. They examine social networking applications

such as Facebook, Foursquare and Gowalla that exploit the

user’s location information. Based on the results, a smartphone

operating system has a large role in managing users’ privacy.

Kang et al. shows that Android stores the users’ sensitive

information in a log file, which can be exploited by a malicious

user [10]. Security vulnerabilities also affect the user privacy.

Xu et al. found security vulnerabilities in 3G smartphones,

which can allow a malicious user to gain access to the user’s

videos [11].

Vidas et al. investigates the way permissions are managed

in Android. It states that because the developers do not have an

easy way to determine which of the 130 application

permissions their application needs, they end up specifying

more permissions than they need. This results in the violation

of least privilege principle [17].

Smith [15] researched on tracking UDID in iPhones and

iPad and how can it be used to track users. Egele [16] used

their privacy bug detection tool PiOS and examined 1047 iOS

applications for information leak. The tool reveals that an

application with the name Gowalla accesses the address book

and sends all the names and email addresses to a server.

Another application with the name smartphone uploads the

history of Safari and photo gallery to Mobile-Spy server (a

server used by people to spy on others).

Xiao at el. mentioned that the current privacy models are

still in a basic form where features such as how an app uses

private data are not enabled [20]. This paper developed more

sophisticated privacy model that grantees user awareness about

how an app will use private information. However, Bellotti at

el's framework is more general and covering other areas that

are not covered in Xiao et al's proposal, e.g., where such

information is stored and how actions are taken on the

information after its release.

Our research identifies the privacy control methods for both

Android and iOS. We use the Bellotti and Sellen’s framework

to analyze these methods and understand the weakness of the

existing privacy control methods in smartphone platforms. The

identified weakness in the models is correlated with the privacy

bugs collected from the smartphone communities.

III. METHODOLOGY

A. Identifying a Framework for Comparison

In order to compare and evaluate privacy control methods

in the targeted subjects, we need a methodology to help us, and

to make it possible for other researcher to replicate it in the

future. We use Bellotti and Sellen’s framework of information

flow [6] to help us identify the interesting points from the

privacy point of view.

In the Bellotti and Sellen’s framework, there are four main

components that we should consider while examining the

privacy control for a certain app. These components are :

a) Capture component: it discusses the information being

acquired or services being inquired. This component asks

“what” questions about the information. For example, what are

the information being acquired?

b) Construction component: it cares about the actions that

follow the information acquisition and impact it, such as

sending, storing, or publishing the information.

c) Accessibility component: it talks about who is going to

access the information, and what are the required permission

for that. We can ask this question: who is able to access the

information after they are acquired?

d) Purposes component: it justifies the capture

component by giving a reason why the information is being

acquired. By justifying the information acquisition actions,

users can decide whether to give permission or not.

B. Comparing and Improving Privacy Control Methods

Privacy control methods are APIs a system provides to the

apps to control the access of user’s private information. Each

OS has many different services that are connected to the user

privacy. Our main purpose is to examine the privacy control

methods implemented in these services. In our initial study, we

focused on user location service. Examples of other possible

services could be user contacts information, photos, schedule,

and emails.

In order to understand the privacy control methods in iOS

and Android location service, we examined both OS APIs and

the usage of these APIs through a third party app. We selected

Facebook Messenger as the third party application to realize

what is described in the API level. During the study, we

examined the apps by responding to the four components in the

Bellotti and Sellen’s framework illustrated above. The

identification process is done by one researcher and reviewed

by another. Based on the inconsistencies identified between the

theoretical framework and the current privacy control methods,

we suggest an alternative design of privacy control methods in

the systems that potentially can give the user a better control

over her/his information.

C. Assessing Privacy Bugs

To further understand the problems of current privacy

control methods on the Android and iOS platforms, we conduct

bug studies for Android and iOS. In our initial work, we

gathered 60 bug posts from platform’s bug repositories and

community forums [13][14]. We use the key words information

leak, privacy problems/issues to find likely privacy bugs.

Among the 60 posts, 34 are iOS and 26 are Android related.

We studied 48 posts that are understandable, 24 for iOS and 24

for Android respectively.

We analyzed these posts by reading them and trying to

identify the location and cause of the bug. In order to make

sure that our data is valid, we obtained the bug posts from the

official bug repositories and development communities of iOS

and Android. Moreover, we analyzed the bugs by two different

members of our team and the conclusions are drawn when the

agreement is made.

In the bug study, we focus to understand why the Android

and iOS platforms or apps fail to address the users’ privacy

concerns, how many problems are related to the current privacy

control methods implemented on the platforms, and whether

we can fix the problems by improving the privacy control

methods supported by the platforms.

IV. RESULTS

Here, we provide our results on identifying and analyzing

privacy control methods and also on assessing privacy bugs.

A. Privacy control methods

 Our results are collected by analyzing Facebook Messenger

location service.

1) Privacy Control Methods of Android

In Android, location service is provided by the

“LocationManager” class, and it works via callbacks. In

order to receive location updates, you need to pass a listener,

“LocationListener”, as a parameter to location manager

through the “requestLocationUpdates” function [8].

In order to acquire user location, you need to ask for user

permission. Typically, it is done in a preferences or settings

context inside AndroidManifest.xml located in the

application root folder [7].

In terms of the process and how Android acquires the user

permission, Android does it once during the application

installation, after it inspects the manifest file [8]. After that, it is

the application job to let user know or to ask the user the

permission to use the location information. In case if the

application doesn’t provide this kind of control, the user will

not be able to prevent a certain application from using location

information, unless turning off the whole location service from

Android settings.

To abstract the view and to understand the process of how

privacy controls are implemented in Android platform, we

create the following code to describe how Android privacy

control method is working.

01 // get LocationManager instance

02 LocationManager locationManager = (LocationManager)

03 this.getSystemService(Context.LOCATION_SERVICE);

04 // Define a location listener to receive location updates

05 LocationListener locationListener = defineListener();

06

07 // add the location listener to the Location Manager

08 locationManager.requestLocationUpdates(LocationManager.NET

09 WORK_PROVIDER, 0, 0, locationListener);

Figure 3: Current Privacy Control method in Android. The code snippet

shows how to acquire a location information

As it illustrated in Figure 3, Android doesn’t requires the

application to ask for user permission. It is done only once

during the application installation, and once the permission is

issued, the user can’t control it later. It assumes that you

already give the application the required permission during the

installation, and in case you don’t, the app will fail during the

run time [8].

Figure 4: Android Privacy Control Model of location service.

In Figure 4, we compare the privacy control methods in

Android with the four components proposed in the Bellotti and

Sellen’s framework. We found that the Access component for

Android is coarse-grained, as the permission is given once at

the app installation time. In the Capture component, Android

helps the application to get the required information by

providing the appropriate APIs. However, Android did not

export APIs to support the implementations of the Construction

and Purposes components, and it leaves them to the app

developers.

Figure 5 shows a suggestion for what the privacy control

method supposed to be based on the Bellotti and Sellen’s

framework.

01 // Define the action that will applied on the location

02 // information

03 String actionArray[]={“sendToOurserver”,”StoreItFor10Days”};

04

05 // get LocationManager instance

06 LocationManager locationManager = (LocationManager)

07 this.getSystemService(Context.LOCATION_SERVICE);

08

09 // Define a location listener to receive location updates

10 LocationListener locationListener = defineListener();

11

12 // (Purpose Component) tell android about the purpose of

13 // this request

14 locationManager.requestPurpose(“to update the map”);

15

16 // (construction Component) tell Android about the action

17 // you will apply to the info

18 locationManager.actionWillApplied(actionArray);

19

20 // (Accessibility Component) Check if the user has given the

21 // app the right permission to

22 // get the user location

23 if(locationManager.checkUserPermission(AppID)){

24 // (Capture Component) add the location listener

25 // to the Location Manager

26 locationManager.requestLocationUpdates(LocationManager.NET

27 WORK_PROVIDER, 0, 0, locationListener);

28 }

Figure 5: Suggested Privacy Control method for Android. The code snippet

shows how to acquire a location information in the suggested method

The improved programming model in Figure 5 addresses all

the four components of the Bellotti et al. framework. First, the

app should tell Android the purpose of the information request,

and the actions that will be applied on that information. Then, it

asks for user permission. At this point Android is capable to

generate a full informative popup to ask for user permission.

Finally, if the user gives the required permission, the app

should continue and capture the information, otherwise the app

should stop.

2) Privacy Control Methods of iOS

On the iOS platform, location service is provided by the

“CLLocationManager” class, and it works in two modes,

delegation mode and direct call mode. Delegation mode is used

when there is no information about the current location. In this

case, you call the “startUpdatingLocation” method after

assigning a "delegate" object to the “CLLocationManager”

object [9]. Then, your "delegated" object will be called back

and updated with the new information about the current

location. In the direct call mode, an app can query the

"location" property to get the most recently user location.

 In order to acquire user location, we need to check if the

location service is enabled for our application. We can do that

by inquiring the permission component by calling the

“locationServicesEnabled” method in the

“CLLocationManager” class. If the application doesn't have the

permission yet, it still can call the “locationServicesEnabled”

method. The system will then ask for the permission from the

user each time the app asks for location information. iOS stores

user decision about whether or not to give a certain application

a permission to access location service. A user can manage

these settings for each app.

To abstract the view and get more understanding of how

privacy controls are implemented in iOS platform, we create

the following code to describe how iOS privacy control method

is working.

01 // get CLLocationManager instance

02 locationManager = [[CLLocationManager alloc] init];

03

04 // Define a location delegate object to receive location

05 // updates

06 locationManager.delegate = self;

07

08 // (Accessibility Component) check if the user enable the

09 // service

10 if(locationManager.locationServicesEnabled()){

11 // start receiving the location information updates

12 locationManager.startUpdatingLocation();

13 }

Figure 6: Current Privacy Control method in iOS. The code snippet shows

how to acquire location information.

 Figure 6 shows that iOS will ask for user permission every

time an application tries to get the user location information.

Compared to Android which only asks for user permission

once at the app installation time, this mechanism is more fine-

grained.

Figure 7: iOS Privacy Control Model of location service.

In Figure 7, we analyze the iOS privacy control methods in the

context of four components from the Bellotti et al. framework.

The figure shows that in the capture component, the application

asks for location information. The access component will then

get user permission if it’s not acquired before. iOS will asks

user permission every time an application tries to get the user

location. Based on our study, iOS did not provide APIs for

constructing the purposes and construction components in the

apps.

Figure 8 shows the suggested method for iOS that handles all

the four components of the Bellotti et al. framework.

01 // Define the action that will applied on the location

02 // information

03 String actionArray[]={“sendToOurserver”,”StoreItFor10Days”};

04

05 // get CLLocationManager instance

06 locationManager = [[CLLocationManager alloc] init];

07

08 // Define a location delegate object to receive location

09 // updates

10 locationManager.delegate = self;

11

12 // (Purpose Component) tell iOS about the purpose of

13 // this request

14 locationManager.requestPurpose(“to update the map”);

15

16 // (construction Component) tell iOS about the action

17 // you will apply to the info

18 locationManager.actionWillApplied(actionArray);

19

20 // (Accessibility Component) Check if the service is enabled

21 // for the current app

23 if(locationManager.locationServicesEnabled())){

24

25 // start receiving the location information updates

26 locationManager.startUpdatingLocation();

27

28 }

Figure 8: Suggested Privacy Control method for iOS. The code snippet

shows how to acquire a location information in the suggested method

3) Comparing Android and iOS Privacy Control Methods

We have shown that for location service, the iOS app asks the

user for permissions each time application requests information

from the service. This implies that iOS allows users to change

permissions without uninstalling the application. On the other

hand, Android asks for the user permission only once during

application installation. This permission cannot be changed

after app installation.

Compared to the Bellotti and Sellen’s framework, both

Android and iOS have the weakness on not providing the

purpose and construction components. For example, iOS tells

you that App A needs an access to your location service

without telling you the purpose or what will happened to the

released information. In such situation the user can’t make a

clear decision of giving the required permission.

B. Bug assessment results

Among the 48 bugs that we classified, we found that 14

Android and 5 iOS privacy bugs are caused by the weakness of

the privacy control methods identified above, shown under

Column Privacy Control Method in the following table. We

manually analyzed these bugs and found that with our

suggested programming models, these privacy issues can be

fixed.

Platform\Cause Privacy Control Method Others

Android 14 10

iOS 5 19

Table 7: Causes of Privacy Bugs

Here, we provide two examples of such bugs. In Android

bug# 10340 [14], the user complained that he/she cannot

revoke a permission that is already given to an app. As we

show in Section IV, in the current Android privacy model, the

user is not able to revoke a permission that is given to any app

unless the app explicitly provides that for him/her. With the

suggested privacy model, the user will be able to revoke the

permission even after app is installed. Moreover, he/she will be

able to get more information, e.g., why the app needs the

information and where it will be stored, to help them decide

whether he/she should give the permission.

In iOS bug# 15940113 [13], the user asks why the location

service is always running in iPhone. In the current iOS model,

the user has no idea why a certain service is running even if the

user already gave some apps the permission to access his

location. If iOS applies the suggested privacy model, iOS will

provide a place where the user will be able to browse all the

location service requests and know why these requests are

being invoked. Such logging systems help users know why a

certain service is running.

In addition to the privacy issues caused by the weak privacy

control methods currently implemented in Android and iOS,

we also find privacy bugs that are caused by the OS

components. See Column Others. Studies of these bugs will be

our future work.

V. LIMITATIONS AND FUTURE WORK

This work has the following limitations. First, we have

compared the privacy control methods currently implemented

on the Android and iOS platforms against the Bellotti and

Sellen’s framework. This framework describes minimum

standards of information privacy for ubiquitous environments.

To more systematically evaluate privacy control methods for

different platforms, we need to identify a more complete set of

privacy requirements.

Second, our preliminary study only focuses on location

service. The weakness found in the privacy control methods

might not be able to be generalized across different types of

mobile apps. For example, iOS may ask for user permissions

for location, but the permission mechanism maybe work

differently for accessing other information such as address

books. Therefore, we need to study a more variety of apps from

different platforms to gain a more comprehensive view on how

permission works for different mobile phone platforms.

Third, analyzing privacy control methods provides a simple

angle for addressing privacy challenges. In fact, there are other

determined factors that can impact the decisions of platform

designers for solving privacy problems. For example, there are

tradeoffs between privacy and other software qualities such as

usability. Android platform designers may choose to sacrifice

the flexibility of privacy controls for simpler user experiences.

Similarly, the process of launching the mobile phone apps

should also be considered when designing privacy solutions.

For example, iOS app has application admitting process in

Apple iTunes Store. The restricted process validates and checks

for app bugs before an application gets introduced to the

market. Contrarily, Google has a more loose process than

Apple. Thus, to evaluate privacy for smartphone platforms and

understand the privacy bugs, we should perform a

comprehensive analysis on all factors that potentially impact

the privacy.

VI. CONCLUSIONS

In this paper, we studied privacy control methods, i.e., how

privacy at application level is controlled, for the Android and

iOS platforms. Our findings indicate that neither the iOS nor

the Android platforms implemented the four components

indicated by the Bellotti and Sellen’s framework of information

flow. We found privacy bugs related to such weakness of the

platforms. We proposed an improved privacy control methods

for both Android and iOS. The initial evidence shows that the

programming model we proposed would be helpful for

addressing users’ privacy concerns. Our future work includes

considering a full set privacy requirements, studying more

varieties of mobile applications and performing a more in depth

investigation on privacy bugs reported on the Android and iOS

platforms.

REFERENCES

[1] Rong Tan; Junzhong Gu; Jing Yang; Peng Chen; , "Designs of

privacy protection in location-aware mobile social networking

applications," Pervasive Computing and Applications (ICPCA),

2010 5th International Conference on , vol., no., pp.62-68, 1-3

Dec. 2010

[2] Guanling Chen; Rahman, F, "Analyzing Privacy Designs of

Mobile Social Networking Applications," Embedded and

Ubiquitous Computing, 2008. EUC '08. IEEE/IFIP International

Conference on , vol.2, no., pp.83-88, 17-20 Dec. 2008

[3] Jian Liao; Peiwei Huang; , "Improved mechanism for mobile

location privacy," Mobile Adhoc and Sensor Systems

Conference, 2005. IEEE International Conference on , vol., no.,

pp.4 pp.-810, 7-7 Nov. 2005

[4] G. Russello, M. Conti, B. Crispo, and E. Fernandes, “MOSES:

supporting operation modes on smartphones,” in Proceedings of

the 17th ACM symposium on Access Control Models and

Technologies, 2012, pp. 3–12.

[5] Renegar, B.D.; Michael, K.; Michael, M.G.; , "Privacy, Value

and Control Issues in Four Mobile Business Applications,"

Mobile Business, 2008. ICMB '08. 7th International Conference

on , vol., no., pp.30-40, 7-8 July 2008

[6] V. Bellotti and A. Sellen. “Design for privacy in ubiquitous

computing environments.” Proceedings of the Third Conference

on European Conference on Computer-Supported Cooperative

Work, pp. 77–92, Milan, Italy, 1993.

[7] The AndroidManifest.xml File ,

http://developer.android.com/guide/topics/manifest/manifest-

intro.html

[8] Location Strategies,

http://developer.android.com/guide/topics/location/strategies.ht

ml

[9] Getting the User’s Location,

https://developer.apple.com/library/ios/#documentation/UserExp

erience/Conceptual/LocationAwarenessPG/CoreLocation/CoreL

ocation.html#//apple_ref/doc/uid/TP40009497-CH2-SW1

[10] Joon-Myung Kang; Sin-seok Seo; Hong, J.W.-K.; , "Usage

pattern analysis of smartphones," Network Operations and

Management Symposium (APNOMS), 2011 13th Asia-Pacific ,

vol., no., pp.1-8, 21-23 Sept. 2011

[11] Nan Xu, Fan Zhang, Yisha Luo, Weijia Jia, Dong Xuan, and Jin

Teng. 2009. “Stealthy video capturer: a new video-based

spyware in 3G smartphones.” Proceedings of the second ACM

conference on Wireless network security (WiSec '09). ACM,

New York, NY, USA, 69-78

[12] Sébastien Gambs, Olivier Heen, and Christophe Potin. 2011. “A

comparative privacy analysis of geosocial

networks”.Proceedings of the 4th ACM SIGSPATIAL

International Workshop on Security and Privacy in GIS and LBS

(SPRINGL '11). ACM, New York, NY, USA, 33-40

[13] iOS Discussion Board: https://discussions.apple.com

[14] Android Bug Post: http://code.google.com/p/android/issues/

[15] E. Smith, “iPhone applications & privacy issues: An analysis of

application transmission of iPhone unique device identifiers

(UDIDs),” pp. 1–19, 2010.

[16] M. Egele and C. Kruegel, “PiOS: Detecting privacy leaks in iOS

applications,” 2011.

[17] T. Vidas, N. Christin, and L. Cranor, “Curbing android

permission creep,” Proceedings of the Web, 2011.

[18] “Apple On iPhone Location Tracking: It's A Bug!”. [Online].

Available: http://www.huffingtonpost.com/2011/04/27/apple-

on-iphone-location-tracking_n_854252.html. [Accessed: 29-

October-2012]

[19] “Google Is Tracking Android Users' Location Data, Say

Researchers”. [Online]. Available:

http://www.huffingtonpost.com/2011/04/22/google-android-and-

apple-track-your-location_n_852529.html [Accessed: 2-

November-2012

[20] Xusheng Xiao, Nikolai Tillmann, Manuel Fahndrich, Jonathan

De Halleux,and Michal Moskal. 2012. User-aware privacy

control via extended static-information-flow analysis. In

Proceedings of the 27th IEEE/ACM International Conference on

Automated Software Engineering.

