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ABSTRACT

We present a new educational software tool for robust
control design based on the Quantitative Feedback Design
(QFT) method. This is a graphical design methodology for
systems with large parametric uncertainty, which has been
successfully applied to many complex practical problems.
The software tool is implemented in Matlab and may be
used to introduce students to robust control methods via
small and medium-size design applications. The software
is a library of programmable M-files with open access to
users and is intended as a test-bed for developing new
techniques in this area and for automating parts of the
design procedure, such as loop-shaping. A simple design
problem is used to illustrate the main features of the
software.

1. INTRODUCTION

Quantitative Feedback Theory (QFT) is a systematic
robust control design methodology for systems subject to
large parametric or unstructured uncertainty. QFT is
a graphical loop-shaping procedure, traditionally carried
out on the Nichol’s chart, which can be used for the
control design of either SISO or MIMO uncertain systems,
including the non-linear and time-varying cases [5, 8, 11].
The main advantage of QFT relative to alternative design
methodologies is that it relies on classical-control concepts
and employes simple loop-shaping techniques. Additional
advantages include: (i) The ability to assess quantitatively
the “cost of feedback” [6], (ii) the ability to use phase-
uncertainty information, and (iii) the ability to provide
“transparency” in the design, i.e. clear trade-off criteria
between controller complexity and the feasibility of the
design objectives. Note that (iii) implies in practice that
QFT often results in simple controllers which are easy to
implement.

The QFT design procedure is based on the two-degree
of freedom feedback configuration shown in Figure 1. In
this diagram G(p, s) denotes the uncertain plant, while
K(s) and F (s) denote the feedback compensator and pre-
filter, respectively, which are to be designed. Note that
model uncertainty is described by the r-parameter vector
p ∈ P ⊆ Rr taking values in the set P; it is further assumed
that G(p, s) has the same number of RHP poles for all

p ∈ P. Translating the uncertainty into the frequency
domain, gives rise to the plant’s “uncertainty templates”
which are the sets:

Gω = {G(p, jω) : p ∈ P}
For each fixed frequency ω, Gω defines a “fuzzy region”
on the Nichol’s chart which describes the uncertainty of
the plant at frequency ω in terms of magnitude (in dB’s)
and phase (in degrees). For design purposes, we construct
N uncertainty templates corresponding to a discrete set
of frequencies {ω1, ω2, . . . , ωN} chosen to cover adequately
the system’s bandwidth.

The robust performance objectives of the design include
good tracking of reference input r(s) and good attenuation
of the disturbance signal d(s) entering at the system’s
output, despite the presence of uncertainty. The robust
tracking objectives are captured by the set of inequalities:

max
p∈P

∆
∣∣∣∣

G(p, jωi)K(jωi)
1 + G(p, jωi)K(jωi)

∣∣∣∣
dB

≤ δ(ωi)

:= Bu(ωi)|dB − Bl(ωi)|dB

for each i = 1, 2, . . . , N , i.e. if, for each frequency ωi,
the maximum variation in closed loop gain as p ∈ P does
not exceed the maximum allowable spread in specifications
δ(ωi), typically specified via two appropriate magnitude
frequency responses Bu(ω) = |Bu(jω)| and Bl(ω) =
|Bl(jω)|. Note that it is not necessary to bound the actual
gain (but only the gain spread) since we assume that, (i) no
uncertainty is associated with the feedback controller K(s),
and (ii) the pre-filter F (s) can provide arbitrary scaling
to the closed-loop gain. The robust disturbance-rejection
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Figure 1: Feedback Configuration

objective can be satisfied by bounding the sensitivity
function, i.e. by imposing constraints of the form

max
p∈P

∣∣∣∣
1

1 + G(p, jωi)K(jωi)

∣∣∣∣ ≤ D(ωi)

for a (subset) of the design frequencies {ω1, ω2 . . . , ωN}.
Again these are typically specified via an appropriate
magnitude frequency-response D(ω) = |D(jω)|.
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Robust stability is enforced by ensuring that: (i) no
unstable pole-zero cancellations occur between the plant
and the controller (for every p ∈ P), (ii) the nominal
open-loop frequency response Lo(jω) = G(po, jω)K(jω)
(defined for any po ∈ P) does not cross the −1 point (i.e.
the (−180◦, 0) point on Nichol’s chart) and makes a total
number of (anti-clockwise) encirclements around it equal
to the number of unstable poles of Lo(s) = G(po, s)K(s),
and (iii) That no (perturbed) open-loop response crosses
the −1 point, i.e.

−1 /∈
⋃

ω∈R
K(jω)Gω

Note that condition (i) is automatically satisfied if K(s)
is restricted to be stable and minimum-phase, while
conditions (ii) and (iii) can be easily tested graphically
[4, 3]. In practice, a more severe condition than (iii) is
imposed: To establish a minimum amount of damping, it
is required that the nominal open-loop frequency response
does not penetrate a closed contour in the Nichol’s chart
(U-contour); this is constructed from an appropriate M -
circle and information about high-frequency uncertainty of
the plant [5, 8].

2. QFT SOFTWARE DESIGN TOOL

In this section we outline the main features of the developed
software tool. We illustrate some of these features with
a simple “benchmark” problem taken from [9]. The
uncertain plant G(p, s) is defined as G(p, s) = ka

s(s+a) with
P = {(a, k) : 1 ≤ a ≤ 10, 1 ≤ k ≤ 10}. For simplicity,
only robust tracking bounds are considered, with

Bu(s) =
0.6585(s + 30)

s + (2± j3.969)
, and, Bl(s) =

3520

(s + 4)2(s + 4.4)(s + 50)

Seven design frequencies have been selected, i.e. {ωi} =
{0.5, 1, 2, 3, 5, 15, 100} rads/s. The M -circle defining the U -
contour was taken as M = 1.2. The design proceeds via
the following steps:

2.1 Uncertainty templates

For the purposes of the design, system uncertainty needs
to be translated from parameter-space to the frequency-
domain (Nichol’s chart). This is normally performed by
discretising the uncertainty intervals for each unknown
parameter and calculating the frequency response for all
possible combinations at each design frequency, giving
rise to a number of “fuzzy” regions in Nichol’s chart
(“uncertainty templates”). Although this method is clearly
impractical for highly complex systems it works reasonably
well in practice for small/medium-complexity problems, i.e.
when the number of independently varying parameters is
small (no more than 5 say).

To reduce the complexity of the QFT algorithm, a
computational routine may be used at this stage to
substitute the templates by their convex hull. In many
cases this can be performed without introducing significant
conservativeness in the design.

The uncertainty templates of the system given in
the above example at the seven design frequencies are
plotted in Figure 2, along with their computed convex
hull. Additional graphical tools have also implemented
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Figure 2: Uncertainty Templates with Convex Hull

for displaying multiple frequency responses on the Nichol’s
chart, defining a grid of M and N circles on the chart with
default or user-specified values, etc.

2.2 Generation of Horowitz bounds and U-contour

The robust tracking and disturbance rejection objectives
have been formulated as gain inequalities of the closed-loop
transfer functions (sensitivity and complementary sensitiv-
ity) at the design frequencies. For the purposes of QFT de-
sign, these inequalities must be translated into constraints
on the nominal open-loop response Lo(jω). This proce-
dure results into a number of contours (“Horowitz tem-
plates” f t

i (φ) and “disturbance-rejection templates” fd
i (φ))

for each frequency ωi, i = 1, 2, . . . , N ; these are functions
of the phase variable φ ∈ (−360◦, 0◦]. Thus, robust track-
ing is satisfied at frequency ωi if |Lo(jωi)|dB ≥ f t

i (φi) where
arg Lo(jωi) = φi; similarly, robust disturbance-rejection is
attained at frequency ωi if |Lo(jωi)|dB ≥ fd

i (φ).
The routines for generating the robust tracking and

disturbance-rejection templates are based on a simple
bisection algorithm over a suitably discretised phase grid.
In the case of tracking bounds, the phase of the nominal
open-loop system is first fixed, and the open-loop gain
is varied until the maximum variation in closed-loop
gain over the corresponding uncertainty template is equal
(within a small specified gain tolerance) to the “spread”
in closed-loop specifications δ(ωi). Particular care must
be taken when the template encloses the critical (−1)
point, since uncertainty templates are normally specified
by points at their boundary. (This condition may be
easily checked by a simple routine that estimates the angle
variation of the vector connecting the critical point to a
point on the boundary of the template). Repeating the
procedure over the discretised phase grid at each frequency



of interest results in N Horowitz templates (one for each
design frequency), specifying the minimum open-loop gain
required to meet the robust tracking specifications at each
frequency. A similar approach is used to construct the
robust disturbance-rejection bounds at the N frequencies of
interest. Note that the complete procedure for generating
the robust-performance templates is completely automated
and need not be visible to the user. Since their generation
is fairly complex computationally, these are calculated
only once and saved in the workspace (or the disk) for
the remaining parts of the design, unless the performance
specifications need to be altered.

The U-contour is obtained automatically by extending
vertically the lower part of the M -circle specified by the
designer by an amount equal to the gain-spread between
the maximum-gain point and the nominal point in the
uncertainty template at a very high (theoretically infinite)
frequency. (Note that under the assumption that the plant
is only subject to parametric uncertainty, the uncertainty
templates tend to vertical lines at high frequencies). The
U-contour approach, originally proposed in [7], is a simple
way of shaping the high-frequency characteristics of the
system, although clearly restrictive since it does not take
into account the typical loss of phase information at
high frequencies (e.g. due to unmodelled high-frequency
dynamics). Future versions of the software will address the
problem of mixed types of uncertainty (both structured and
unstructured).

Having obtained the robust-performance (tracking,
disturbance-rejection) and robust stability bounds (U -
contour) the overall bounds of the design can be calculated,
by combining appropriately the individual bounds for each
point of the phase-grid. Again, this is a purely automatic
procedure which need not be visible to the viewer. If the
design of the feedback controller is performed manually,
the overall bounds need to be clearly displayed on the
Nichol’s chart. Alternatively, if an optimisation technique
is used to design the feedback controller, the overall bounds
may need to be translated to appropriate mathematical
relations (e.g. linear or nonlinear inequalities) which are
then automatically supplied to the optimisation algorithm
at the next phase of the design.

2.3 Design of feedback controller (loop-shaping)

The design of the feedback controller is the most important
step of the QFT design procedure. It is traditionally
performed manually, i.e. via a trial and error procedure.
The objective is to shape the nominal open-loop frequency
response of the system so that:

• It lies above the robust-performance contours,

• It avoids the robust stability region (U-contour), and

• It encircles the critical point in the anti-clockwise
direction p times, where p is the number of open-loop
unstable poles.

It is implicitly assumed that the whole family of uncertain
plants has the same number of unstable poles, and that

no unstable pole/zero cancellations occur between the
feedback controller and G(p, s) for every p ∈ P. Although
this last condition requires independent verification, it is
rarely an issue in practice designs since only stable and
minimum-phase controllers are typically employed.

Among all possible controllers which meet the above re-
quirements, the “best” design is considered to be the one in
which the open-loop frequency response at the design fre-
quencies lies as close as possible to the robust perfor-
mance templates. This is in order to avoid “over-designing”
the system by using excessively large gains, which may lead
to noise amplification, instability due to unmodelled dy-
namics, etc. Very sensibly, the QFT design philosophy de-
mands the use of “as little feedback as possible” consis-
tent with the robust performance specifications.

The software provides an interactive design tool to help
with manual loop-shaping and three optimisation algo-
rithms for automatically designing “optimal” controllers
which meet the QFT constraints described above. These
are:

• An algorithm for designing optimal fixed-structure
controllers (PID, first-order lead/lag, second-order
with complex poles),

• An algorithm for designing controllers in the frequency-
domain via linear programming, and

• An convex optimisation algorithm for designing the
optimal controller indirectly by shaping the closed-
loop transfer function

The manual loop-shaping tool and the three optimisa-
tion algorithms are described in more detail in the follow-
ing four sections.

2.3.1 Manual loop-shaping tool

This is an interactive graphical design tool for shap-
ing the open-loop characteristics of the system accord-
ing to the QFT constraints described above. By click-
ing on two points on the Nichol’s chart, the required fre-
quency and phase/gain differences are calculated and an
appropriate first-order phase lead/lag controller is auto-
matically designed. Alternative options include the addi-
tion of integral, derivative, proportional or second-order
terms with complex roots. The uncompensated and com-
pensated frequency responses are next displayed on the
Nichol’s chart. Based on this graphical output the de-
signer can proceed with the design by adding a new factor
in the compensator, back-step by deleting the last compen-
sator factor designed, etc. The overall logic of the tool sum-
marising the options available to the designer at each stage
are shown in the flow-diagram of Figure 3. Note that usu-
ally the initial controller Karg = 1.

Clearly, there is not a unique way for designing a
compensator using this method, and often a successful
design requires a considerable amount of experience. When
the specifications are tight, the design procedure may
require a large number of cascade terms, resulting in a
high-order overall controller. To help with this potential
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Figure 3: Lead/Lag-network manual loop shaping tool

rise in complexity, a controller model-reduction tool is
supplied. The effectiveness of this reduction procedure
may be checked by displaying the frequency responses
of the designed (high-order) system and its low-order
approximation on the Nichol’s chart. The tool was used
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Figure 4: Control Design with Lead/Lag Network,

to design a feedback controller for the system introduced
in the first paragraph of section 2. The resulting frequency-
response of open-loop system (with the designed 7-th
order controller (shown as -◦-)), along with the nominal
plant are displayed in Figure 4. It may be seen that
all robust stability and performance specifications are
satisfied; in addition the open-loop frequency response
points at the seven design frequencies are reasonably close
to the corresponding robust performance templates. When
controller approximation was performed (via the Schur
balanced model-reduction method) it was found that up to

3 states could be removed without affecting significantly
the controller’s frequency response. The corresponding
nominal open-loop response using a 4th-order (shown as
-•-) and a 3rd-order controller are also shown in Figure 4
for comparison.

2.3.2 Fixed-structure controller optimisation

The algorithms described in this section are implementa-
tions of the methods in [12] and [10]. The optimisation
is carried out over the parameters of fixed-structure con-
trollers (PID, first-order lead/lag, second-order). The main
idea behind the algorithm is that, for selected control struc-
tures, fixing the phase of the controller at two distinct fre-
quencies, determines completely the phase response of the
controller over all frequencies and thus also the phase of
the nominal open-loop system. Thus, using the robust sta-
bility and performance bounds on the Nichol’s chart, it is
straightforward to determine the minimum controller gain
(if it exists) so that all robust stability and performance ob-
jectives are satisfied. (Note that if the phase of the nomi-
nal open-loop system is fixed, varying its gain corresponds
to shifting the response vertically in the Nichol’s chart).
Repeating the procedure over all phase combinations (suit-
ably discretised) will produce the optimal controller param-
eters. Optimality in this context may be defined in terms of
asymptotic open-loop gain, nominal/worst-case cross-over
frequency or closed-loop bandwidth, or some other appro-
priate measure consistent with the general QFT philoso-
phy penalising system “over-design”.

The numerical techniques used to implement the algo-
rithm include: (a) Singular value decomposition (for phase-
lead/lag compensation only), and (b) A robust stabil-
ity gain margin calculation. This can be performed via ei-
ther a numerical algorithm (when the nominal transfer
function is known) or via purely graphical means (i.e. di-
rectly from the frequency response) by counting the cross-
ings on a certain line on the Nichol’s chart and its direc-
tions (see [4], [3] for details).

The nominal open-loop frequency response correspond-
ing to the optimal PID controller for the example in sec-
tion 2 is shown in Figure 5 below. Note that the gain for all
design frequencies lies above the corresponding robust per-
formance bounds, with one lying exactly on the robust sta-
bility boundary (U-contour). The asymptotic phase of the
loop is −90◦ since the controller includes a pure deriva-
tive term. A simple modification to the algorithm is re-
quired if one wishes to limit the derivative action at high
frequencies (see [12] for details).

The algorithms described in this section may be used to
design simple controllers or as a first step in a more com-
plex design. Note that every rational controller of ar-
bitrary complexity can be constructed from cascade in-
terconnections of the types used here (i.e. integrator,
phase lead/lag, second-order denominator or numerator
term). Thus, it is possible to improve the design con-
tinuously by building high-order controllers in a step-
by-step procedure: At each step the optimisation algo-
rithm is carried out (for one of the above three struc-
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Figure 5: Design with Optimal PID controller

tures) and the resulting optimal controller K(s) is accu-
mulated into the nominal open-loop system by redefin-
ing Lo(s) ← Lo(s)K(s). This process may continue un-
til a satisfactory design is obtained, or until the “cost”
fails to decrease significantly. Of course, the controller re-
sulting from this procedure will not, in general, be opti-
mal over the higher-order controller set!

2.3.3 Frequency-domain controller optimisation via
linear programming

The algorithms described in this section is based on [1].
The optimisation is carried out directly over the fre-
quency response characteristics of the controller (equiv-
alently the nominal open-loop) at the design frequen-
cies. The robust stability and performance bounds (re-
stricted to appropriate phase-ranges) are approximated by
linear inequalities and define the constraints of the result-
ing Linear Programming optimisation problem. The ob-
jective function which is minimised involves the asymp-
totic open-loop gain or a weighted average of the con-
troller gains over all design frequencies. To ensure that
the optimised frequency response can be realised by a sta-
ble and minimum-phase transfer function, Bode’s gain-
phase integral relationship is discretised over a suitable fre-
quency grid and is augmented to the constraints of the
Linear Programme (in the form of linear equality con-
straints). The transfer function of the controller is fi-
nally fitted from the optimised frequency-response data via
a weighted least-squares approximation technique. A prac-
tical design example which employs this method will be pre-
sented at the Conference.

2.3.4 Loop shaping via closed-loop convex program-
ming

This algorithm, based on [2], relies on algebraic factorisa-
tion theory and convex optimisation techniques. Rather
than optimising the open-loop frequency response, the

QFT problem is posed directly in terms of the complemen-
tary sensitivity function T , at a discrete set of design fre-
quencies. Closed-loop stability is imposed via “interpola-
tion constraints”, involving the value of the complemen-
tary function (and its derivatives) at every unstable pole
and non-minimum phase zero of the nominal plant. The
robust performance specifications (involving disturbance-
rejection only at this stage) are formulated as regions in
the complex plane in which T (jωi) must lie at each de-
sign frequency ωi. Since these are not convex, in gen-
eral, they are approximated by an appropriate convex poly-
gon or ellipsoid. A convex optimisation problem is fi-
nally formulated and solved in terms of the free numera-
tor parameters of T (s), and the optimal controller is recov-
ered from the optimal T (s). The main draw-back of this ap-
proach is that the closed-loop poles are fixed at arbi-
trary locations via a stable polynomial to make the op-
timisation problem tractable. However, a careful selec-
tion of these poles often produces good QFT designs which
may be further improved via open-loop shaping. Alterna-
tively, the closed-loop poles corresponding to an initial de-
sign may be used in the optimisation to improve it fur-
ther.

2.4 Design of pre-filter

This is a simple exercise in filter design which may be per-
formed manually or via an optimisation-based tool which
fits the magnitude frequency response of the filter at a dis-
crete set of frequencies. A pre-filter is only necessary
when the design includes robust tracking objectives. Pro-
vided the QFT specifications have been met, the worst-case
spread in closed-loop gains |∆T (p, jωi)| is guaranteed to be
less than δ(ωi) for each design frequency ωi. Thus, the pur-
pose of the pre-filter is to scale the closed-loop gains so that
they all lie within the specified bounds Bl(ω) and Bu(ω).
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Figure 6: Closed Loop Frequency Response and Tracking
Bounds

Figure 6 shows the shaped closed-loop frequency re-
sponses FGK(1 + GK)−1(s) for the example in of sec-



tion 2, with K(s) the optimal PID controller of sec-
tion 2.3.2. The designed pre-filter is a second-order fil-
ter given by

F (s) =
1

( s
3.5 + 1)( s

7.0 + 1)

A wide range of parameter pairs (a, k) have been selected
for the plot, including the four extreme combinations (1, 1),
(1, 10), (10, 1) and (10, 10). As expected, all responses lie
in the region between the two bounds, which verifies that
the design has been successful.

5. CONCLUSIONS

The paper has presented the main features of a new CAD
tool for robust control design using the QFT method. The
software may be used as an educational tool for introducing
the topics of QFT and robust control via small/medium-
size design problems and as a test-bed for developing new
techniques in this area. Most algorithms presented in the
paper have been implemented and tested. It is hoped that
a full working version of the software will be ready by the
end of the year and will become available to the academic
community via the net.
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