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ABSTRACT 
 

Using the stochastic transport theory formalism developed by Muñoz-Cobo for a radioactive 
source and for a spallation source, we derive an expression for the Cross Power Spectral Density 
(CPSD) for a subcritical system driven by an external pulsed neutron source. The derivation of 
this expression has been done in a rigorous and general way including the energy and spatial 
dependency. The CPSD shows some peaks at the source frequency together with its harmonics. 
The final expression containing some approximations (fundamental mode analysis; Dirac delta 
pulses for the source) is compared with calculations using a Monte Carlo code. In the future, 
comparisons with measurements in the MUSE project are planned. 
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1. INTRODUCTION 

The control of Accelerator Driven Systems (ADS) requires the development of methods to 
monitor the reactivity of the reactor while not interfering with its normal operation. Because 
the ADS presents many challenges for fluctuation based measurements, the MUSE project 
was proposed to study these methods, Gandini and Salvatores [1]. In order to do so, a 
deuterium accelerator (GENEPI) that can operate with either a deuterium or tritium target has 
been coupled to a subcritical reactor core containing MOX fuel (MASURCA). In this paper, a 
deuterium target producing neutrons with energy of 2.45 MeV at a maximum frequency of 
5KHz has been considered. 

Several authors, Pazsit and Ceder [3]; Kuang and Pazsit [4]; Degweker [2], and Rugama et al 
[5] proposed the use of random noise techniques in ADS, which differ from the classical 
noise techniques because of the non-Poissonian neutron source. In this paper, a theoretical 
framework to compute the covariance between two neutron detectors has been derived. The 
method is based on the stochastic neutron transport theory and determines various kinetics 
parameters through the analysis of neutron detector signals. From these parameters the value 
of the effK  can be extracted. Although at the end, the fundamental mode approximation has 
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been considered, the derivation includes the spatial and energy dependency in order to have a 
general expression. 

In this work, we first analyse the stochastic transport theory for subcritical reactivity 
measurements and give its main limitations. The results is an analytical expression for the 
Cross Power Spectral Density, CPSD, based on previous developments of Pal [6], Bell [7], 
and Muñoz-Cobo et al [8] and [9]. Monte Carlo simulations have been performed with the 
MCNP-DSP code [13] to compare the analytical expression with the calculation results for 
the CPSD between pairs of detectors located in the reflector region of MASURCA. Finally, 
we give some recommendations for further applications. 

In the future, measurements will be performed within the framework of the EC-supported 
MUSE project in order to check the applicability of this technique together with other noise 
techniques like Feynman-α  and Rossi-α  methods. 

2. THE CROSS CORRELATION FUNCTION WITH A TIME DEPENDENT 
SOURCE 

Usually, zero power noise is described by the master equations, which define the probability 
distribution that can be used to calculate the correlation between two neutron detectors 
located in the reactor region. The analytical derivation contains two steps. First, we derive the 
distribution of the number of neutrons or its generating function due to one single source 
neutron. Secondly, we derive a formula that connects the generating function of the single-
particle-induced distribution with that induced by an external source. Contributions of 
delayed neutrons are neglected . 

The source considered in this paper corresponds to a pulsed neutron source at 0r
�

 with 

characteristics similar to those of the source used in the MUSE project and with statistical 
properties defined by Pazsit and Ceder [3]: 

0
0

(1, ) ( ) ( , ) ( ) ( ( ))
N

o
s p p w

nw

S
S t r r f v H t nT H t nT T

T
δ

=

= − Ω − − − +∑� �
              (1) 

The source probability generating function can be described by: 
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Where 2 3( )NcMcP D D  is the joint probability to have Nc counts in detector D2 when Mc counts 

are obtained in detector D3 after a neutron source pulse at time ot . The expression of this 

probability can be written as: 
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After some mathematical manipulations, the source probability generating function (2) 
obtained from the probability described by equation (3) writes: 
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We define ( )2 3 , , ,D D
kG r v tΩ�

 as the kernel probability generating function from the definition 

of ( ), 2 3, , , | ,
c cn mK r v t d dΩ�

, the probability having cn  counts in detector D2 and cm  counts in 

D3 after a neutron has been injected at the phase space point ( ), , ,r v tΩ�
: 
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The product 2 3D Ds
k kT G  writes: 
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From the first and second moment of the source probability generating function described in 
equation (4), the following expressions can be obtained: 
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Using the definition for the covariance ( 2 3( , ) C C C CCov D D N M N M= − ) and applying 

1 2 1z z= =  to equations (7), (8) and (9), the expression we get for the covariance of a time-
dependent source reads: 
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Here ( )0 2 3, , , | ,c cn m r v t d dΩ�
 is the second moment of the kernel probability generating 

function, which equals the average of the number of simultaneous counts in detectors D2 and 
D3 after injection of one neutron at the phase space point 0( , , , )r v tΩ�

. 

Note that ( )0 2 3, , , | ,c cn m r v t d dΩ�
 obeys the equation gives by Muñoz-Cobo et al [8]: 
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iI r v t d
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 of detector Di is defined as the spectral averaged number of 

counts produced by a neutron source at point r
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The neutron flux transport equation including an external time-dependent source writes: 

1
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where L is the transport operator defined by: 
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               (14) 

Using the definitions (11) and (13), the covariance equation described in (10) can be recasted 
into a function of the importances: 

32

32

2 3 2 3

3
2 3

( , ) (1, ) ( 1) ( , ) ( , , ) ( , , )

                    ( 1) ( , ) ( , , ) ( , , )

DD
f

tf DD

to

Cov D D t r v I r t d I r t d

dt d rF r t I r t d I r t d

ν ν

ν ν

= Φ − Σ

= − ∫ ∫

� � �

� � �
           (15) 

The fission rate density at time t, ( , )F r t
�

, is defined by: 
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              (16) 

The descriptor used will be the cross-correlation function ( )3223 ,tftfΨ , which is defined in 

terms of the instantaneous count rates as the following limit of the covariance function for 
infinitely small gate lengths 2cAt  and 3cAt : 
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The limits of equation (17) give the importance functions and write: 
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2( , , , )Cn r v tf tΩ −�
 and 3( , , , )Cm r v tf tΩ −�

 are the count rates at 2tf  and 3tf  produced by a 

single neutron injected at (1, t) . They are described as a displacement kernel. 

3. CROSS POWER SPECTRAL DENSITY USING A PULSED NEUTRON SOURCE 

The external time-dependent source produces a time-dependent neutron flux (1, )tΦ . To 

obtain the CPSD, we operate exp( )d iwτ τ−∫  on both sides of the equation (17). Introducing 

3 2tf tf τ= + , we get:  
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In equation (20) the upper limit can be considered as +∞  because 2 2
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while the lower limit can be extended to −∞  when we assume that the neutron pulse 
generator (GENEPI) was turned on in the remote past. 

To simplify the calculations in equation (20) we assume that the periodic source, considered 
at the beginning of section 2, has the form of a series of Dirac delta pulses: 
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Introducing the angular source frequency 2
pT

πΘ =  with pT  the source period and oS  the 

number of neutrons per pulse, the Fourier transform of the source described in equation (21) 
yields the source spectrum: 

0

(1, ) ( ) ( , ) ( ) ( ) ( , ) exp( )
N

o o s o o s p
n n

S w S r r f v w n S r r f v inwTδ δ δ
=

= − Ω Θ − Θ = − Ω∑ ∑� � � �
     (22) 

The Fourier transform of the transport equation defined in equation (13) yields: 
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Considering that the eigenvalueα −  equation is given by: 
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we obtain an expression for the transport equation in the frequency domain as a function of 
the eigenvalueα − : 
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The frequency-dependent function ( )nT w  can be obtained from the scalar multiplication by 

the adjoint eigenfunction (1)n
+Φ : 
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It has been considered that the adjoint and direct eigenfunctions satisfy the biorthogonal 
relationship: 
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The expansion of the kernel displacement, (1, ) ( ) (1)C n n
n

n w T w+ += Φ∑ , in modesα −  is done in 

a similar way. During this derivation we use the expression for the adjoint source operator 
given by Muñoz-Cobo et al [8]. From both considerations we arrive at the expansion of the 
adjoint transport equation in modesα −  described by the eigenvalues and the detector 
location and its characteristics: 
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Therefore, the Fourier transform of the spectrally and directionally weighted importance for 
detector D2 and D3 can be rewritten as: 
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Once that the source and the flux has been expanded in alpha modes, we can rewrite the 
expression of the CPSD given in equation (20) as a function of the source frequency and the 

eigenvaluesα −  and eigenfunctionsα − : 
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Limiting us to the fundamental mode, the formula for the CPSD given in equation (30) 
simplifies considerably, and will still be valid for slightly subcritical systems. In case of 
highly subcritical systems the higher harmonics should be included as has been done by 
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Rugama et al [5]. A study to the applicability of the fundamental mode approximation should 
be done for each particular system. The result of the fundamental-mode approximation 
writes: 

{ }
32

N
3 2

23 2
n=0

000 0 0
3
0 2 0 2 0 0

1
( ) ( 1) (1) ( ) (1) (1) exp ( )( )

2

( , )( , )S ( )
                  

( ( ( )) ) ( ( ) ) ( )

f k n m p

DD

p p

CPSD w d r dv d v i w tf nT

I r

N i w tf nT i tf nT iw

ν ν χ
π

ηη
α α α

+ += − ΩΣ Φ Φ Φ −

Σ ΦΣ Φ
− + − − − − −

∑∫ ∫ ∫
�     (31) 

The fundamental-mode approximation will be denoted with the subindex 0. To simplify the 
calculation, the pulsed source has been considered as a point source at or

�
. The expression for 

the source importance used in the equation above follows the scalar product 

( )0 0( ) (1), ( , ) ( )o s oI r f v r rδ+= Φ Ω −� � �
. From the expression (31) we can conclude that the 

CPSD23 depends on the source frequency ( 2
pT

πΘ = ) and the reactor frequency ( 0α  for the 

fundamental mode approximation). 

Figure 1 illustrates expression (31) for a source frequency of 500 Hz and a reactivity of  –400 
pcm, which corresponds to a reactor frequency of about 2050 Hz. Peaks corresponding to the 
source frequency of 500 Hz and its harmonics are observed. From the shape of this CPSD we 
can derive the reactor transfer function as is being done for a critical reactor. 
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Figure 1 CPSD23 from expression (31) 



Rugama Y, Muñoz-CoboJ.L. and Kloosterman J.L. 

 8 

4. CPSD CALCULATED WITH MCNPDS-DSP 

The Monte Carlo code MCNP-DSP (where DSP stand for digital signal processing) [13], has 
been used to simulate the CPSD. MCNP-DSP is a modified version of MCNP-4A that, 
besides other parameters used in noise techniques, can calculate the auto and cross power 
spectral density functions. The calculations are performed in an analogue way. This code 
provides a tool to design and study the experimental methods that can be applied in 
subcritical driven systems. All calculations have been done for a subcritical configuration 
using a simplified model of the MASURCA reactor and fission chambers (U-235) with high 
efficiency. 

In order to check the expression obtained by the stochastic transport theory for the CPSD, 
equation (31), we performed MCNP-DSP calculations at the same conditions presented in 
figure 1. A pulsed deuterium source (D-D reaction) was assumed operating at a frequency of 
500 Hz coupled to the MASURCA reactor in a slightly subcritical state (-400 pcm, Rugama 
et al [10]). The U-235 fission chambers modelled in the calculations were located in the 
reflector where the reaction rates are highest. In the calculations, the starting time for a pulse 
is randomly sampled between t=0 and t= pT , with pT  being the source period. This is 

equivalent to considering the source as quasi-Markovian. 

Figure 2 shows the comparison between the calculated and the theoretical curves. Clearly, a 
dependency on the source frequency predicted by equation (31) is observed in the Monte 
Carlo calculations as well as in the theoretical expression. The agreement between both 
curves gives us some confidence in the equation derived. Comparisons with future 
measurements in MASURCA will be performed to confirm the results from figures 1 and 2. 
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5. CONCLUSIONS 

A general expression has been derived for the Cross Power Spectral Density, 23( )CPSD w , 

between two detectors 2D  and 3D  in a pulsed source-driven system. As expected, the results 

depends on the frequency of the source. The general expression includes a full space, energy 
and time dependency, which has been simplified using only the fundamental mode. Because 
of the operating characteristics of the source driven systems, the influence of the higher 
harmonics will be studied in the near future. 

A method to obtain the reactivity in a subcritical reactor driven by a time-dependent source is 
presented. At high source frequencies, the fundamental mode eigenvalue can be easily 
obtained, while at low frequencies a primary tendency should be calculated. However, the 
frequency range to which the method can be applied is wide enough, say from 100 Hz in the 
present case. At source frequencies higher than the fundamental mode the transfer function 
can be treated as independent of the source frequency.  

The comparisons with MCNP-DSP calculations give confidence in the expression developed. 
MCNP-DSP has shown to be a useful tool to define noise techniques in pulsed source-driven 
systems. In the future, a comparison with measurements will be made. 

6. NOMENCLATURE 

 

( )Ω=
�� ,,1 vr  Phase space co-ordinates 

=id  Counting interval of detector Di i.e. ( )iii tftctf ,∆−  

( )F r
�

= Fission rate per unit volume at point r� , of the subcritical system ( )3 1cm s− −  

( , )Sf v Ω
�

= Direction and velocity source neutron distribution function 

Keff =Multiplication constant of the system 

( ))(),, FStvrL r +−Σ+∇Ω= ��
 Neutron transport operator 

( ))(),, +++ +−Σ+∇Ω−= FStvrL r
��

 Adjoint neutron transport operator 

( )1, |C in t d =Average number of counts in detector Di upon injection of one single neutron at 

(1,t)    

( )1, ,C in t tf =Detector counting rate at time itf  upon injection of one single neutron at ( )t,1  
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( )pH t nT− = Heaviside function 

,c cS S + = Direct and Adjoint scattering operators respectively 

( )S t = Time dependent neutron source ( )1s−  

So = Number of neutrons per pulse 

pT = Period of the neutron source ( )s  

Tw= pulse width ( )s  

v= neutron speed ( )1.cms−  

2tf , 3tf  = Final counting time of detectors D2 and D3 respectively 

nα =n-th α-eigenvalue of the neutron transport equation 

1 2( , )ij tf tfΨ = Cross correlation between detectors Di and Dj 

),,( ΩΦ vrm
� =mth α-eigenfunction of the neutron transport equation 

),,( ΩΦ + vrm
� =mth α-eigenfunction of the adjoint neutron transport equation 

fΣ = Fission cross section ( )1cm−  

)(vχ = Normalized spectrum of the fission neutrons 

Ω
�

=Unitary vector indicating the direction 

η =Neutron detector efficiency 

iDΣ = Neutron detector cross section ( )1cm−  

3( ,  ) dv d d r= Ω∫ ∫ ∫  

3tf

to
dt dv d d r= Ω∫ ∫ ∫ ∫  

REFERENCES 

 

1. Gandini A., Salvatores M., “The Physics of Subcritical Multiplying Systems”, Nuclear 
 Science Technology, 39, 673-686 (2002) 



Stochastic Transport Theory for a pulsed source 

 11 

2. Degweker S.B., “Some variants of the Feynman alpha method in critical reactors and    
  ADS”, Annals of Nuclear Energy, 27, 1245-1257 (2000) 

3. Pazsit I., Ceder M., “  Theory and analysis of the Feynman-alpha method for 
 deterministically and randomly pulsed neutron sources” , PHYSOR, Korea (2002)     

4. Kuang F.F., Pazsit I., “Derivation of the Feynman and Rossi-alpha formulae with multiple 
 emission sources” , Nuclear Science and Engineering, 13, 305 (2000) 

5. Rugama Y, Muñoz-Cobo J.L, Valentine T., “Modal Influence of the Detector Location for 
 the Noise Calculation of the ADS” , Annals of Nuclear Energy, 29, 215-234 (2001) 

6. Pal L., Il Nuovo Cimento, supplemento VI I  25, (1958) 

7. Bell G.I., Nuclear Science and Engineering, “  On the Stochastic Theory of Neutron 
 Transport” , 21, 390 (1965) 

8. Muñoz-Cobo J.L., Perez R., Verdu G., “  Stochastic Neutron Transport Theory: Neutron 
 counting Statistics in Nuclear Assemblies” , Nuclear Science and Engineering, 95, 83-
 105, (1987) 

9. Muñoz-Cobo J.L., Perez R., Valentine T., Rugama Y., Mihalczo J., “The Stochastic Neutron 
 and Photon Coupled Fields: Neutron and Photon Counting Statistics in Nuclear Assemblies",
  Annals of Nuclear Energy, 27, 1087-1114 (2000) 
 
10. Rugama Y., Kloosterman J.L., Winkelman A., “Preliminary Measurements of the prompt 
 neutron decay constant in MASURCA", Progress in Nuclear Energy (in press), 
 (2002) 

11. Bell G.I. and Glasstone S., Nuclear Reactor Theory, R.E. Krieger, Florida (1970) 

12. Muñoz-Cobo J.L, Rugama Y., Valentine T., Perez R., Mihalczo J., “Subcritical reactivity 
 monitoring in accelerator driven systems “Annals of Nuclear Energy 28, 1519-
 1547 (2001) 

13. Valentine T., “MCNP-DSP Manual”  ORNL/TM-13334, (1995) 


